Cyclotron Production of Technetium-99m

  • Author / Creator
    Gagnon, Katherine M
  • Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n)99gTc excitation function in the range of 8–18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18 to 10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron-produced 99mTc has been extensively compared with relevant United States Pharmacopeia (USP) specifications for the existing 99Mo/99mTc production strategy. Additional quality testing, including biodistribution studies of [99mTc]pertechnetate and [99mTc]disofenin in both mice and rabbits was also evaluated. Using the strategies and results presented throughout this dissertation, this thesis concludes with the world’s first cyclotron-based 99mTc patient images obtained as part of a Phase I Clinical Trial at the University of Alberta using [99mTc]pertechnetate.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Department of Physics
  • Specialization
    • Medical Physics
  • Supervisor / co-supervisor and their department(s)
    • Robinson, D. (Oncology, Physics)
    • McQuarrie, S.A. (Oncology)
  • Examining committee members and their departments
    • Krauss, C. (Physics)
    • Mercer, J. (Oncology)
    • Wilson, J. (Oncology)
    • Lewis, J. (Radiology)
    • Jans, H. (Oncology)