Usage
  • 141 views
  • 169 downloads

Resilience of Mountain Pond Communities to Extreme Thermal Regime Shifts

  • Author / Creator
    Johnsen, Mitchell
  • Elevational gradients are ideal ecological venues for testing how communities respond to environmental changes associated with global warming. Recent warming rates have been shown to increase with elevation, thereby potentially having adverse effects on cold-adapted alpine communities. Additionally, as selective pressures vary along elevational gradients, alpine and montane communities may differ in their adaptive potential to novel thermal regimes. I tested this hypothesis by conducting a replicated two-factor (source × elevation) experiment involving a reciprocal transplant of alpine and montane pond communities across two elevational sites (1390 m versus 2345 m asl). At each elevation, half of the mesocosms were inoculated with zooplankton and sedimentary egg-banks collected from alpine ponds while the other mesocosms were similarly seeded with zooplankton and sedimentary egg-banks collected from montane ponds in 2016. After overwintering, the mesocosms were sampled for temperature and plankton during the ice-free periods of 2017 and 2018. The mesocosms at the low elevation were 8.0 ± 1.2 ºC warmer than those at the high elevation. Elevation significantly affected total zooplankton biomass, whereas source effects did not. Elevation effects revealed that the temperature difference between sites affected the phenology of species within the assembled communities, but not their total biomass, and neither assemblage displayed local adaptation to a particular elevation. Functional trait analysis revealed that the warmer environment selected for smaller body size and asexual reproduction as a warmer thermal regime stimulated several small parthenogenetic herbivores while suppressing larger, obligate sexual omnivores. Nevertheless, thermal regime shifts did not substantially affect the abundance-weighted mean functional identities of either transferred pond community, highlighting ponds as potential sources of functional insurance against expected increasingly extreme climate events.

  • Subjects / Keywords
  • Graduation date
    Fall 2019
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/r3-f6ww-v284
  • License
    Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.