Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain).

  • Author(s) / Creator(s)
  • The River Piedra in the Monasterio de Piedra Natural Park (NE Spain) is a modern tufa-depositing river that encompasses various depositional environments that are inhabited by different cyanobacterial populations. Molecular (16S rDNA) and morphological analyses of the cyanobacteria from different facies showed that Phormidium incrustatum dominates in the fast-flowing water areas where the mean depositional rate is 1.6 cm/year. Stromatolites in these areas are formed of palisades of hollow calcite tubes (inner diameter of 6.0–7.5 μm, walls 2–12 μm thick) that formed through calcite encrustation around the filaments followed by decay of the trichomes. In contrast, in slow-flowing water areas with lower depositional rates (mean depositional rate of 0.3 cm/year), Phormidium aerugineo-caeruleum is the dominant species. In these areas, randomly oriented calcite tubes (inner diameter of 5–6 μm, walls 3–8 μm thick) formed by calcite encrustation, are found in thin and uneven laminae and as scattered tubes in the loose lime mud and sand-sized carbonate sediment. Although this species did not build laminated deposits, it gave cohesiveness to the loose sediment. In the stepped and low waterfalls, with intermediate deposition rates (mean depositional rate of 0.9 cm/year), both species of Phormidium are found in association with spongy moss and algal boundstones, which is consistent with the variable flow conditions in this setting. The calcite encrustations on the cyanobacteria from different environments exhibit irregular patterns that may be linked to changes in the calcite saturation index. The physicochemical conditions associated with extracellular polymeric substances may be more significant to CaCO3 precipitation in microbial mats in slow-flowing water conditions than in fast-flowing water conditions. These results show that flow conditions may influence the distribution of different cyanobacteria that, in turn, leads to the development of different sedimentary facies and structures in fluvial carbonate systems.

  • Date created
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
  • License
    Attribution-NonCommercial-NoDerivatives 4.0 International