Ecotones and LiDAR in tropical dry forests

  • Author / Creator
    Duan, Menglei
  • Secondary succession is defined as natural regeneration following complete forest clearance from anthropogenic or natural disturbances. Traditional strategies aimed to map and characterize secondary succession using remote sensing are usually based on deterministic approaches, where transitions between successional stages are not considered. These transitions represent rich environments between successional stages and play a key role in ecosystem regeneration. Here, we evaluate the use of the Full-waveform Airborne LiDAR to characterize changes in forest structure between the transition of early-to-intermediate and intermediate-to-late forest succession at the Santa Rosa National Park Environmental Monitoring Super Site (SRNP-EMSS),
    Guanacaste, Costa Rica. The vertical forest structure was analyzed on twenty cross-sections selected between forest transitions previously mapped using machine learning; leaf area density (LAD) and waveform metrics were studied based on the waveform profile derived from twenty-seven plots distributed in different successional forest patches. Results suggest that LiDAR techniques can identify forest structure differences between successional stages and their transitions. The significance proves that transitions exist, highlights the unique transitional characteristics between intermediate and late successional stages and contributes to understanding the
    significance of inter-successional stages (transitions) in secondary dry forests.

  • Subjects / Keywords
  • Graduation date
    Spring 2023
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.