This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
- 288 views
- 10 downloads
Sensor selection for model-based real-time optimization: relating design of experiments and design cost
-
- Author(s) / Creator(s)
-
Real-time optimization systems have become a common tool, in the continuous manufacturing industries, for improving process performance. Typically, these are on-line, steady-state, model-based optimization systems, whose effectiveness depends on a large number of design decisions. The work presented here addresses one of these design decisions and proposes a systematic approach to the selection of sensors to be used by the RTO system. This paper develops a sensor system selection metric based on a trade-off between two approaches to the design of experiments, which is shown to be consistent with the design cost approach of Forbes and Marlin [Computers Chem Eng 20 (1996) 7/7]. The resulting design metric is incorporated into a systematic procedure for RTO sensor selection problem. Finally, the proposed RTO sensor selection procedure is illustrated with a case study using the Williams–Otto [AIEE Trans 79 (1960), 458] plant.
-
- Date created
- 2010-03-30
-
- Subjects / Keywords
-
- Type of Item
- Article (Published)