ERA is in the process of being migrated to Scholaris, a Canadian shared institutional repository service (https://scholaris.ca). Deposits and changes to existing ERA items and collections are frozen until migration is complete. Please contact erahelp@ualberta.ca for further assistance
- 182 views
- 481 downloads
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Framework for Photocatalytic, Photovoltaic and Adsorbent Applications
-
Modification of carbon nitride based polymeric 2D materials for tailoring their optical, electronic and chemical properties for various applications has gained significant interest. The present report demonstrates the synthesis of a novel modified carbon nitride framework with a remarkable 3:5 C:N stoichiometry (C3N5) and an electronic bandgap of 1.76 eV, by thermal deammoniation of the melem hydrazine precursor. Characterization revealed that in the C3N5 polymer, two s-heptazine units are bridged together with azo linkage, which constitutes an entirely new and different bonding fashion from g-C3N4 where three heptazine units are linked together with tertiary nitrogen. Extended conjugation due to overlap of azo nitrogens and increased electron density on heptazine nucleus due to the aromatic π network of heptazine units lead to an upward shift of the valence band maximum resulting in bandgap reduction down to 1.76 eV. XRD, He-ion imaging, HR-TEM, EELS, PL, fluorescence lifetime imaging, Raman, FTIR, TGA, KPFM, XPS, NMR and EPR clearly show that the properties of C3N5 are distinct from pristine carbon nitride (g-C3N4). When used as an electron transport layer (ETL) in MAPbBr3 based halide perovskite solar cells, C3N5 outperformed g-C3N4, in particular generating an open circuit photovoltage as high as 1.3 V, while C3N5 blended with MAxFA1–xPb(I0.85Br0.15)3 perovskite active layer achieved a photoconversion efficiency (PCE) up to 16.7%. C3N5 was also shown to be an effective visible light sensitizer for TiO2 photoanodes in photoelectrochemical water splitting. Because of its electron-rich character, the C3N5 material displayed instantaneous adsorption of methylene blue from aqueous solution reaching complete equilibrium within 10 min, which is significantly faster than pristine g-C3N4 and other carbon based materials. C3N5 coupled with plasmonic silver nanocubes promotes plasmon-exciton coinduced surface catalytic reactions reaching completion at much low laser intensity (1.0 mW) than g-C3N4, which showed sluggish performance even at high laser power (10.0 mW). The relatively narrow bandgap and 2D structure of C3N5 make it an interesting air-stable and temperature-resistant semiconductor for optoelectronic applications while its electron-rich character and intrasheet cavity make it an attractive supramolecular adsorbent for environmental applications.
-
- Date created
- 2019-01-01
-
- Subjects / Keywords
-
- Type of Item
- Article (Published)