Usage
  • 26 views
  • 142 downloads

Fabrication, modeling and experimental study of bending deformation of micro-ferrogel fibers in a non-uniform magnetic field

  • Author / Creator
    Khaleque, Tasnuva
  • Hydrogel smart polymers have achieved a great attention in the research area of drug delivery, MEMS/NEMS, microfluidics and sensor design because of their responsiveness to various environmental stimuli- pH, temperature, light, electric field, enzyme etc. This thesis presents the modeling, fabrication and study of the bending deformation of magnetic field sensitive hydrogel micro fibers called ferrogels. The objective is to externally actuate the ferrogel fibers by applying magnetic field, for the application of targeted drug delivery inside the alveoli of a human lung. Prediction of the bending deformation of the ferrogel fibers is done by the Multiphysics Finite Element Modeling in an Arbitrary Lagrangian Eulerian (ALE) framework. Ferrogel micro fibers are fabricated and the bending deforma-tion is studied experimentally by varying the aspect ratio of the fibers, volume fraction of the magnetic particle content of the fibers and the magnetic field strength. The numerical and experimental results are compared. This is the first attempt to numerically predict the bending deformation of ferrogel micro-fibers.

  • Subjects / Keywords
  • Graduation date
    2009-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R31M8D
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Mechanical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Moussa, Walied (Mechanical Engineering)
  • Examining committee members and their departments
    • Adeeb, Samer (Civil and Environmental Engineering)
    • Ma, Yongsheng (Mechanical Engineering)