Usage
  • 250 views
  • 409 downloads

Nanometer scale connections to semiconductor surfaces

  • Author / Creator
    Zikovsky, Janik
  • Extending electronic devices beyond the limitations of current micro-electronics manufacturing will require detailed knowledge of how to make contacts to semiconductor surfaces. In this work, we investigated several methods by which such connections to silicon surfaces could be achieved. Scanning tunneling microscopy (STM) was our main experimental tool, allowing direct imaging of the surfaces at the atomic level.

    First, the growth of self-forming linear nanostructures of organic molecules on silicon surfaces offers a possibility of creating devices with hybrid organic-silicon functionality. We have studied the growth of many different molecules on a variety of hydrogen-terminated silicon surfaces: H-Si(100)-2x1, H-Si(100)-3x1, and H-Si(111)-1x1. We found molecular growth patterns affected by steric crowding, by sample doping level, or by exposure to ion-pump created radicals. We formed the first contiguous "L-shaped" molecular lines, and used an external electric field to direct molecular growth. We attempted to study a novel method for nanoscale information transfer along molecular lines based on excitation energy transfer.

    The second part of the work focuses on the development and use of a new multiple-probe STM instrument. The design and the custom STM control software written for it are described. Connections to Si surfaces were achieved with a combination of lithographically defined metal contacts and STM tips. Two-dimensional surface conductivity of the Si(111)-7x7 surface was measured, and the effect of modifying the surface with organic molecules was investigated. A novel method, scanning tunneling fractional current imaging (STFCI), was developed to further study surface conductance. This method allowed us to determine, for the first time, that the resistance of steps on the Si(111)-7x7 surface is significantly higher than that of the surface alone.

  • Subjects / Keywords
  • Graduation date
    Fall 2009
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R38G7T
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Hegmann, Frank (Physics)
    • Freeman, Mark (Physics)
    • Salmeron, Miquel (Materials Sciences)
    • Backhouse, Christopher (Electrical and Computer Engineering)