Energy metabolism in the hypertrophied newborn rabbit heart

  • Author / Creator
    Jesus Cadete, Virgilio Jorge
  • The newborn heart possesses a higher tolerance to ischemia in comparison to adult hearts. Post-ischemic interventions that increase energy production are beneficial for recovery. These data suggest that the newborn heart holds on a very tight energetic plasticity and may not be capable to effectively respond to increases in energetic demand. Congenital heart defects can lead to the development of cardiac hypertrophy and often require surgical intervention. Using an animal model of newborn hypertrophy and biventricular isolated working heart we confirm the metabolic profile of the newborn rabbit heart, in which fatty acid oxidation provides the vast majority of energy to the heart. Our findings show that when right ventricle load is added, the increasing energy requirements are met by increasing glucose oxidation rates. Our data generated by the isolated biventricular working heart model further supports the concept of the newborn heart in a state of deficient energy reserve.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Medical Sciences - Pediatrics
  • Supervisor / co-supervisor and their department(s)
    • Lopaschuk, Gary (Pediatrics)
  • Examining committee members and their departments
    • Light, Peter (Pharmacology)
    • Dyck, Jason (Pharmacology)