Communities and Collections
Usage
- 220 views
- 1312 downloads
Processability Analysis using Principal Component Analysis and Support Vector Machine
-
- Author / Creator
- Zhang,Yixin
-
The obtained model developed outperforms the existing linear and logistic prediction methods in terms of content prediction error.
As the proof of concept, the methodology is applied to an oil sands processing
dataset created using an artificial model with such variables as bitumen content
and fines content of ores, along with the processing variables such as pH and temperature. -
- Subjects / Keywords
-
- Graduation date
- Spring 2014
-
- Type of Item
- Thesis
-
- Degree
- Master of Science
-
- License
- This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.