Usage
  • 40 views
  • 26 downloads

Asphaltene aggregation and fouling behavior

  • Author / Creator
    Derakhshesh, Marzie
  • This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 ̊C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano- aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant. Analysis of the spectra of the whole asphaltene samples in toluene indicates that the absorbance of visible light with wavelengths > 600 nm follows a λ-4 dependence. This functional dependence is consistent with Rayleigh scattering. Rayleigh scattering provides strong evidence that the apparent absorption of visible light by asphaltenes from 600-800 nm is not a molecular absorption phenomenon but rather a scattering mechanism. Rayleigh scattering equations were combined with experimental visible spectra to estimate the average nanoaggregate sizes, which were in a very good agreement with the sizes reported in the literature. The occlusion of two polynuclear aromatic hydrocarbons (PAHs) (pyrene and phenanthrene) in asphaltene precipitates was tested by adding PAHs to the asphaltene in toluene solutions, precipitating by n-pentane and determining the amount of PAHs in precipitates using simulated distillation instrument. Pyrene and phenanthrene, which are normally soluble in the toluene-n-pentane solutions, were detected in the asphaltene precipitates at up to 6 wt% concentration. Trapping of PAHs outside of the nanoaggregates during precipitation gave 7-14 times less of the PAHs in the solid precipitate. This study shows that asphaltene aggregates can interact significantly with PAHs. The results are consistent with the presence open porous asphaltene nanoaggregates in solutions such as toluene.

  • Subjects / Keywords
  • Graduation date
    2012-09
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3GH9BF74
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Chemical and Materials Engineering
  • Specialization
    • Chemical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Gray, Murray R., (Chemical and Materials Engineering)
  • Examining committee members and their departments
    • Gray, Murray R. (Chemical and Materials Engineering)
    • Zeng, Hongbo (Chemical and Materials Engineering)
    • Luo, Jingli (Chemical and Materials Engineering)
    • Deo, Milind (Chemical Engineering)
    • Hegmann, Frank (Physics Department)