Use of surfaces functionalized with phage tailspike proteins to capture and detect bacteria in biosensors and bioassays

  • Author / Creator
    Dutt, Sarang
  • The food safety and human diagnostics markets are in need of faster working, reliable, sensitive, specific, low cost bioassays and biosensors for bacterial detection. This thesis reports the use of P22 bacteriophage tailspike proteins (TSP) immobilized on silanized silicon surfaces, roughened at a nano-scale, for specific capture and detection of Salmonella. Towards developing TSP biosensors, TSP immobilization characteristics were studied, and methods to improve bacterial capture were explored. Atomic force microscopy was used to count TSP immobilized on gold thin-films. Surface density counts are dependent on the immobilization scheme used. TSP immobilized on flat silicon (Si), silanized with 3-aminopropyltriethoxysilane and activated with glutaraldehyde, showed half the bacterial capture of gold thin-films. To improve bacterial capture, roughened mountain-shaped ridge-covered silicon (MSRCS) surfaces were coated with TSP and tested. Measurements of their bacterial surface density show that such MSRCS surfaces can produce bacterial capture close to or better than TSP-coated gold thin-films.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Department of Electrical and Computer Engineering
  • Supervisor / co-supervisor and their department(s)
    • Evoy, Stephane (Electrical and Computer Engineering)
  • Examining committee members and their departments
    • Szymanski, Christine (Biological Sciences)
    • Chen, Jie (Electrical and Computer Engineering)