Optimal use of resources: classic foraging theory, satisficing and smart foraging – modelling foraging behaviors of elk

  • Author / Creator
    Weclaw, Piotr
  • It is generally accepted that the Marginal Value Theorem (MVT) describes optimal foraging strategies. Some research findings, however, indicate that in natural conditions foragers not always behave according to the MVT. To address this inconsistency, in a series of computer simulations, I examined the behaviour of four types of foragers having specific foraging efficiencies and using the MVT and alternative strategies in 16 simulated landscapes in an ideal environment (no intra- and inter-species interactions). I used data on elk (Cervus elaphus) to construct the virtual forager. Contrary to the widely accepted understanding of the MVT, I found that in environments with the same average patch quality and varying average travel times between patches, patch residence times of some foragers were not affected by travel times. I propose a mechanism responsible for this observation and formulate the perfect forager theorem (PFT). I also introduce the concepts of a foraging coefficient (F) and foragers’ hub (α), and formulate a model to describe the relationship between the perfect forager and other forager types. I identify situations where a forager aiming to choose an optimal foraging strategy and maximize its cumulative consumption should not follow the MVT. I describe these situations in a form of a mathematical model. I also demonstrate that the lack of biological realism and environmental noise are not required to explain the deviations from the MVT observed in field research, and explain the importance of scale in optimal foraging behaviour. I also demonstrate that smart foraging, which is a set of rules based on key ecological concepts: the functional response curve (FRC), satisficing, the MVT, and incorporates time limitations, should allow for fitness maximization. Thus, it should be an optimal behavior in the context of natural selection. I also demonstrate the importance of the FRC as a driver for foraging behaviors and argue that animals should focus more on increasing the slope of their FRC than on choosing a specific foraging strategy. Natural selection should, therefore, favor foragers with steep FRC. My findings introduce new concepts in behavioural ecology, have implications for animal ecology and inform wildlife management.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Foote, A. Lee (Renewable Resources)
    • Nielsen, Scott (Renewable Resources)
    • Chanasyk, David (Renewable Resources)
    • Gillingham, Michael (Natural Resources and Environmental Studies Institute, University of Northern British Columbia)
    • Kershaw, G. P. (Earth and Atmospheric Sciences)