Usage
  • 65 views
  • 101 downloads

Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube Arrays for Photoelectrocatalytic Water Splitting

  • Author(s) / Creator(s)
  • Recent evidence of exponential environmental degradation will demand a drastic shift in research and development toward exploiting alternative energy resources such as solar energy. Here, we report the successful low-cost and easily accessible synthesis of hybrid semiconductor@TiO2 nanotube photocatalysts. In order to realize its maximum potential in harvesting photons in the visible-light range, TiO2 nanotubes have been loaded with earth-abundant, low-band-gap fibrous red and black phosphorus (P). Scanning electron microscopy– and scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron microscopy, and UV–vis measurements have been performed, substantiating the deposition of fibrous red and black P on top and inside the cavities of 100-μm-long electrochemically fabricated nanotubes. The nanotubular morphology of titania and a vapor-transport technique are utilized to form heterojunctions of P and TiO2. Compared to pristine anatase 3.2 eV TiO2 nanotubes, the creation of heterojunctions in the hybrid material resulted in 1.5–2.1 eV photoelectrocatalysts. An enhanced photoelectrochemical water-splitting performance under visible light compared with the individual components resulted for the P@TiO2 hybrids. This feature is due to synergistically improved charge separation in the heterojunction and more effective visible-light absorption. The electronic band structure and charge-carrier dynamics are investigated in detail using ultraviolet photoelectron spectroscopy and Kelvin probe force microscopy to elucidate the charge-separation mechanism. A Fermi-level alignment in P@TiO2 heterojunctions leads to a more reductive flat-band potential and a deeper valence band compared to pristine P and thus facilitates a better water-splitting performance. Our results demonstrate effective conversion efficiencies for the nanostructured hybrids, which may enable future applications in optoelectronic applications such as photodetectors, photovoltaics, photoelectrochemical catalysts, and sensors.

  • Date created
    2019-05-09
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
    https://doi.org/10.7939/r3-mg7z-we25
  • License
    Attribution-NonCommercial 4.0 International