Usage
  • 212 views
  • 157 downloads

A mathematical model to capture complex microstructure orientation on insect wings.

  • Author(s) / Creator(s)
  • Microstructures on insect wings can promote directional drop shedding, and the local orientation of these structures is expected to facilitate drop removal. However, microstructures may exhibit very different orientations at different locations on the wing. Using the march fly Penthetria heteroptera, we propose that local orientation of small hairs (microtrichia) reflects a balance of three nonexclusive strategies: (1) preventing water from becoming stuck in intervenous grooves (microtrichia point upslope), (2) shedding water off the wing as readily as possible (microtrichia point towards the nearest edge), and, (3) shedding water away from the body (microtrichia point distally). We present evidence for all three and show that local microtrichial orientation is seldom determined by any one factor. We develop a mathematical model that employs factor-specific weighting values determined via optimization. Our predictions are tested against the orientation of microtrichia randomly sampled from a P. heteroptera specimen. Using the best-fit weighting parameters, the model displays a median residual of 20°; no residual is greater than 46°. The model also reproduces qualitative aspects of microtrichial orientation, such as bifurcation midway between veins and convergence toward peaks. This strong correspondence between modelled and observed orientation supports the role of microtrichia as directional antiwetting devices and highlights the importance of considering both function and wing geometry to explain the organization of natural microstructure arrays.

  • Date created
    2015-01-01
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
    https://doi.org/10.7939/R3K06XD8T
  • License
    Attribution 4.0 International
  • Language
  • Citation for previous publication
    • Polet, D., Flynn, M., and Sperling, F. (2015). A mathematical model to capture complex microstructure orientation on insect wings.. PLoS One, 10(10), e0138282.
  • Link to related item
    http://dx.doi.org/10.1371/journal.pone.0138282