Usage
  • 44 views
  • 187 downloads

Protective/Conductive Coatings for Ferritic Stainless Steel Interconnects Used in Solid Oxide Fuel Cells

  • Author / Creator
    Shaigan, Nima
  • Ferritic stainless steels are the most commonly used materials for solid oxide fuel cell interconnect application. Although these alloys may meet the criteria for interconnect application for short periods of service, their application is limited for long-term use (i.e., 40,000 h) due to poor oxidation behaviour that results in a rapid increase in contact resistance. In addition, volatile Cr species migrating from the chromia scale can poison the cathode resulting in a considerable drop in performance of the cell. Coatings and surface modifications have been developed in order to mitigate the abovementioned problems. In this study, composite electrodeposition of reactive element containing particles in a metal matrix was considered as a solution to the interconnect problems. Nickel and Co were used as the metal matrix and LaCrO3 particles as the reactive element containing particles. The role of the particles was to improve the oxidation resistance and oxide scale adhesion, while the role of Ni or Co was to provide a matrix for embedding of the particles. Also, oxidation of the Ni or Co matrix led to the formation of conductive oxides. Moreover, as another part of this study, the effect of substrate composition on performance of steel interconnects was investigated. Numerous experimental techniques were used to study and characterise the oxidation behaviour of the composite coatings, as well as the metal-oxide scale interface properties. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), as well as surface analysis techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS), were used for the purpose of characterization. The substrate used for coating was AISI-SAE 430 stainless steel that is considered as a typical, formerly used interconnect material. Also, for the purpose of the metal-oxide scale interfacial study, ZMG232 stainless steel that is a specially designed interconnect alloy was used. It is shown that the composite coatings greatly reduce the contact resistance and effectively inhibit Cr outward migration. In addition, it was determined that the presence of impurities in the steel, especially Si, and the absence of reactive elements drastically contribute to interconnect degradation.

  • Subjects / Keywords
  • Graduation date
    2009-11
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R39613
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Chemical and Materials Engineering
  • Supervisor / co-supervisor and their department(s)
    • Dr. Douglas G. Ivey, ( Department of Chemical and Materials Engineering)
    • Dr. Weixing Chen, (Department of Chemical and Materials Engineering)
  • Examining committee members and their departments
    • Dr. Qi Liu, (Department of Chemical and Materials Engineering)
    • Dr. John Nychka, (Department of Chemical and Materials Engineering)
    • Dr. Anthony Petric, (McMaster University)
    • Dr. Andre McDonald, (Department of Mechanical Engineering)