- 257 views
- 688 downloads
Computational Assessments on Bubble Dynamics Applied to Flotation Cells
-
- Author / Creator
- Mammadov, Asif
-
Au, Ag, Hg, many other metals, diamond, coal, oil and tar sands are extracted by flotation process. We can define flotation as a single, most significant unit operation in mineral processing, used in extraction of all kinds of minerals. A study of air bubble dynamics and gas-liquid multiphase flow is important for the design, development and understanding of industrial processes such as bubble column reactors, flotation cells and boilers. Hence bubble generation and attachment is an important part of flotation process. In order to understand bubble dynamics, we built models of single bubble systems. The growth and detachment of air bubble from single orifice in water tank was studied. An axisymmetric model based on the Volume of Fluid method, available in ANSYS-Fluent software was used for simulation of air bubble rising in water. Numerous numerical simulations were carried out using an axisymmetric domain with different orifice diameters (0.8, 0.4 mm), air inlet velocities (50, 150 mlph) and phase surface tensions (50, 72 mN/m). Bubble growth and rise velocity were studied and validated against experimental data published in literature. Relative good agreement was achieved. Velocity profiles of the rising bubbles as well as Reynolds, Weber and Capillary numbers were calculated. Effect of surface tension and nozzle diameter to bubble size and dynamics were discussed. It was shown that smaller surface tension of the system yields to smaller bubble size which is more favorable for flotation process.
-
- Subjects / Keywords
-
- Graduation date
- Spring 2017
-
- Type of Item
- Thesis
-
- Degree
- Master of Science
-
- License
- This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.