Usage
  • 43 views
  • 142 downloads

Development of Greenhouse Gas Mitigation Options for Alberta’s Energy Sector

  • Author / Creator
    Subramanyam, Veena
  • Alberta is the third largest economy in Canada and is expected to grow significantly in the coming decade. The energy sector plays a major role in Alberta’s economy. The objective of this research is to develop various greenhouse gas (GHG) mitigations scenarios in the energy demand and supply sectors for the Province of Alberta. This is done through an energy-environment planning and forecasting tool called Long Range Energy Alternative Planning system model (LEAP). By using LEAP, a sankey diagram for energy and emission flows for the Province of Alberta has been developed. A reference case also called as business-as-usual scenario was developed for a study period of 25 years (2005-2030). The GHG mitigation scenarios encompassed various demand and supply side scenarios. In the energy conversion sector, mitigation scenarios for renewable power generation and inclusion of supercritical, ultra-supercritical and integrated gasification combined cycle (IGCC) plants were investigated. In the oil and gas sector, GHG mitigation scenarios with carbon capture and sequestration (CCS) option were considered. In Alberta’s residential and commercial sector 4-6 MT of CO2 equivalents per year of GHG mitigation could be achieved with efficiency improvement. In the industrial sector up to 40 MT of CO2 equivalents per year of GHG reduction could be achieved with efficiency improvement. In the energy conversion sector large GHG mitigation potential lies in the oil and gas sector and also in power plants with carbon capture and storage (CCS) option. The total GHG mitigation possible in the supply side option is between 20 – 70 MT CO2 equivalents per year.

  • Subjects / Keywords
  • Graduation date
    2010-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R36C75
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Mechanical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Kumar, Amit (Mechanical Engineering)
  • Examining committee members and their departments
    • Kumar, Amit (Mechanical Engineering)
    • Lipsett, Michael (Mechanical Engineering)
    • Li, Yunwei (Electrical and Computer Engineering)