This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
- 204 views
- 230 downloads
Finite plane deformations of elastic solids reinforced with fibers resistant to flexure: complete solution
-
- Author(s) / Creator(s)
-
A model for the deformation of an elastic solid reinforced by embedded fibers is presented in which elastic resistance of the fibers to bending is incorporated. Within the framework of strain-gradient elasticity, we formulated the equilibrium equations and necessary boundary conditions which describe the finite plane deformations of fiber-reinforced composite materials. The resulting nonlinear partial differential equations are numerically solved by employing the finite element method. A complete analytical solutions is also obtained within the limitation of superposed incremental deformations.
-
- Date created
- 2018-01-12
-
- Subjects / Keywords
-
- Type of Item
- Article (Published)
-
- License
- This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00419-018-1344-3