Usage
  • 205 views
  • 253 downloads

Hydrology of Forested Hillslopes on the Boreal Plain, Alberta, Canada

  • Author / Creator
    Redding, Todd
  • Understanding the controls on water movement on forested uplands is critical in predicting the potential effects of disturbance on the sustainability of water resources. I examined the controls on vertical and lateral water movement on forested uplands on a range of landforms (coarse textured outwash, fine textured moraine) and time periods (individual events, during snowmelt, through the growing season, annually, and long-term) at the Utikuma Region Study Area (URSA) on the sub-humid Boreal Plains of Alberta, Canada. To quantify vertical and lateral water movement, hydrometric and tracer measurements were made under natural and experimental conditions at plot and hillslope scales.
    Vertical flow and unsaturated zone storage dominated hydrologic response to snowmelt and rainfall at the plot and hillslope scales. Plot-scale snowmelt infiltration was greater than near-surface runoff, and when runoff occurred it was limited to south-facing outwash hillslopes underlain by concrete frost. Rainfall simulation studies showed that even under the extreme conditions tested, vertical flow and storage dominated the hydrologic response. Soils at field capacity and precipitation inputs of 15-20 mm or greater at high intensities were required to generate lateral flow via the transmissivity feedback mechanism. The threshold soil moisture and precipitation conditions are such that lateral flow will occur infrequently under natural conditions. Seasonal vertical water movement under natural conditions was greater on outwash than moraine uplands. The maximum downward vertical movement occurred in response to snowmelt, with little subsequent movement over the growing season. Recharge following snowmelt was similar for outwash and moraine sites and was followed by declining water tables through the growing season. Tracer estimates of long-term root zone drainage were low, while estimates of recharge for the moraine were high, raising questions about the appropriateness of this method for these sites.
    These results emphasize the dominance of vertical relative to lateral water flow on Boreal Plain uplands. Detailed understanding of the controls on water movement can be used to predict the potential effects of disturbance on hydrology and water resources.

  • Subjects / Keywords
  • Graduation date
    Fall 2009
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3D62D
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Silins, Uldis (Renewable Resources)
    • Bayne, Erin (Biological Sciences)
    • Mendoza, Carl (Earth and Atmospheric Sciences)
    • Buttle, James (Geography, Trent University)