Metal-enrichment in microbial carbonates: the role of carboxylated biomacromolecules

  • Author / Creator
    Petrash, Daniel Alejandro
  • Carboxylated macromolecules such as alginate and glycoproteins are abundant components of modern shallow marine sediments where they are secreted by bacteria and marine infauna. Both organic compounds are proton and metal reactive; hence, they have the potential to facilitate metal sorption and biomineralization reactions. In this study, lab experiments were coupled to field-based sampling to assess the role that these compounds play in microbial mats, with particular emphasis on the hypersaline lagoons of Los Roques, Venezuela.

    Here I applied a surface complexation approach to model proton and Cd adsorption behaviour of both uronic acid-rich alginate and mucin. Measured total site concentrations, available for metal adsorption, demonstrate that these compounds have the potential to induce metal partitioning in early diagenetic microenvironments. Field results from Venezuela are consistent with Mg- and trace metal- enrichment that follows a likely correlation with the degradation states of microbial biomass trapped during accretion of modern microbialites.

  • Subjects / Keywords
  • Graduation date
    Fall 2010
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.