Usage
  • 118 views
  • 392 downloads

PLGA-based nanoparticles for targeting of dendritic cells in cancer immunotherapy and immunomonitoring

  • Author / Creator
    Ghotbi, Zahra
  • Cancer vaccines have shown little success in clinic. Dendritic cells (DCs) are of particular interest in cancer vaccination due to their role in cell-mediated immunity. Active targeting of DCs, through PLGA nanoparticles (PLGA-NPs) decorated with ligands for DC-expressed mannose receptor (MR) can enhance internalization, processing and presentation of antigens and subsequent immnuostimulation. In this study we have shown PLGA-NPs decorated with mannan and the synthetic hydrophobized mannan, especially those with covalent attachment, can target DCs leading to increased uptake of nanoparticles and DC maturation. This approach may be used for improved delivery of antigens and adjuvants to DCs and development of more efficient cancer vaccines. Moreover, significant progress in cancer vaccination requires immunomonitoring. Live imaging using a Positron Emission Tomography (PET) probe encapsulated in PLGA-NPs can elucidate dynamics of recruitment and fate of DCs to develop successful vaccines. The PET-nanoprobe prepared by radio-iodinated 5-IDFPdR demonstrated uncontrolled high burst release implying low quality images.

  • Subjects / Keywords
  • Graduation date
    Spring 2010
  • Type of Item
    Thesis
  • Degree
    Master of science
  • DOI
    https://doi.org/10.7939/R3PX1R
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.