Usage
  • 19 views
  • 148 downloads

MIMO Relays for Increased Coverage and Capacity in Broadband Cellular Systems

  • Author / Creator
    Jacobson, Kevin Robert
  • A significant challenge for fourth generation cellular systems is the reliable delivery of high speed (up to 1 gigabit per second) data to mobile or nomadic users throughout a cluttered urban environment. The wireless channel is a difficult channel over which to achieve high rate reliable communications. The wireless channel suffers many impairments such as small-scale multipath fading, shadowing, high path loss, co-channel interference, and Doppler shift due to mobility of the terminals and mobility in the propagation environment. Since radio spectrum is a scarce resource it is necessary to build cellular networks with high spectral efficiency. Two promising methods to solve this problem are multihop (MH) relaying and multiple-input multiple-output (MIMO) antenna techniques. The most difficult mobile users to serve reliably are those close to cell edges and those shadowed by large objects such as buildings. With MH relaying, a number of simple and inexpensive wireless relays are deployed throughout the cell to relay transmissions around obstacles and to reduce the path loss to distant mobile users. Also, MH relaying enables the deployment of small subcells throughout the cell, increasing the system's area averaged spectral efficiency. Various MIMO techniques can be used in scattering channels to increase capacity and reliability of data links in a wireless network. MH relaying and MIMO are key inclusions in emerging cellular standards such as IEEE 802.16 and LTE-Advanced, so it is necessary to study how these may be used jointly in a cellular environment. We look at various techniques available in MH relaying and MIMO, and assess the benefits and difficulties of these techniques when used in cellular systems. We put together a realistic cellular system model, with typical cellular topologies and well-accepted propagation models, and assess the performance of a multihop MIMO system. We find that there are tradeoffs in using these techniques jointly since they provide gains by somewhat conflicting methods. MH relaying lowers path loss and mitigates scattering in the channel, while MIMO benefits from significant scattering. As a result, it is necessary to understand how to design a MH-MIMO network carefully in order to maximize the net benefit.

  • Subjects / Keywords
  • Graduation date
    2010-11
  • Type of Item
    Thesis
  • DOI
    https://doi.org/10.7939/R3C01N
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Electrical and Computer Engineering
  • Supervisor / co-supervisor and their department(s)
    • Krzymien, Witold (Electrical and Computer Engineering)
  • Examining committee members and their departments
    • Jing, Yindi (Electrical and Computer Engineering)
    • MacGregor, Mike (Computing Science)
    • Fapojuwo, Abraham O. (Electrical and Computer Engineering, University of Calgary)
    • Jiang, Hai (Electrical and Computer Engineering)