Usage
  • 35 views
  • 11 downloads

Insights into the Transcriptional Regulation and Physiological Importance of Phosphatidylethanolamine N-Methyltransferase

  • Author / Creator
    Cole, Laura Kathleen
  • Phosphatidylcholine (PC) is made in all nucleated mammalian cells via the CDP-choline pathway. Another major pathway for PC biosynthesis in liver is catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). We have identified 3T3-L1 adipocytes as a cell culture model that expresses PEMT endogenously. Analysis of the proximal PEMT promoter in 3T3-L1 adipocytes revealed an important regulatory region. Sp1 binds to a GC-rich site within this section of the promoter and inhibits PEMT transcriptional activity. Tamoxifen is an anti-estrogen drug widely used for the treatment of hormone-responsive breast cancer but has a frequent side-effect of increasing accumulation of lipid in the liver (hepatic steatosis). Tamoxifen represses PEMT gene expression by promoting Sp1 binding to the promoter. However, decreased catalytic activity of PEMT was not a major initial contributor to tamoxifen-mediated hepatic steatosis. We found that increased de novo fatty acid synthesis is the primary event which leads to tamoxifen-induced steatosis in mouse liver. Tamoxifen did not significantly alter hepatic fatty acid uptake, triacylglycerol secretion or fatty acid oxidation. Finally, we provide evidence that deletion of the PEMT gene in a well-established mouse model of atherosclerosis (apolipoprotein E deficient) reduces the formation of aortic lesions and prevents the associated development of dilated cardiomyopathy. This beneficial effect is likely due a reduction of atherogenic lipoproteins. These results indicate that treatment strategies aimed at the inhibition of PEMT could prevent the development of atherosclerosis that predisposes individuals to heart failure.

  • Subjects / Keywords
  • Graduation date
    2010-06
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3ZX5R
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Biochemistry
  • Supervisor / co-supervisor and their department(s)
    • Vance, Dennis E. (Biochemistry)
  • Examining committee members and their departments
    • Godbout, Rosaline (Oncology/Biochemistry)
    • Dyck, Jason R. B. (Pediatrics/Pharmacology)
    • Sul, Hei Sook (Nutritional Science and Toxicology, Univ of California, Berkeley
    • Vance, Dennis E. (Biochemistry)
    • Schultz, Michael C. (Biochemistry)