ERA

Download the full-sized PDF of Examining the electronic structure of metal pnictides via X-ray spectroscopyDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3XQ6R

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Examining the electronic structure of metal pnictides via X-ray spectroscopy Open Access

Descriptions

Other title
Subject/Keyword
X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, solid state chemistry, X-ray absorption near-edge spectroscopy
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Blanchard, Peter Ellis Raymond
Supervisor and department
Prof. Arthur Mar, Chemistry
Prof. Ronald G. Cavell, Chemistry
Examining committee member and department
Prof. Alexander Brown, Chemistry
Prof. Jonathan G.C. Veinot, Chemistry
Prof. Stephanie L. Brock, Chemistry, Wayne State University
Prof. Zhenghe Xu, Chemical and Materials Engineering
Prof. Michael J. Serpe, Chemistry
Department
Department of Chemistry
Specialization

Date accepted
2011-05-31T15:57:52Z
Graduation date
2011-11
Degree
Doctor of Philosophy
Degree level
Doctoral
Abstract
Given the wide range of properties and applications of intermetallic compounds, it is important to achieve a detailed understanding of their structure and bonding. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) were used to study the electronic structure of several types of pnictides (compounds containing Pn = P, As). ZrAs2, forming a PbCl2-type structure, has been established to be a genuine binary phase that is strictly stoichiometric. At 900 °C, it supports extensive solubility of Ge to form the ternary extension Zr(GexAs1−x)As (0 ≤ x ≤ 0.4). XPS analysis and band structure calculations confirmed that the Ge and As atoms are anionic in character and that the substitution of Ge for As is driven by a depopulation of anion–anion antibonding states. ZrCuSiPn and REMAsO are important representatives of ZrCuSiAs-type materials. The small magnitudes of the binding energy shifts in the XPS spectra of ZrCuSiPn suggest significant covalent character in the Zr–Si, Zr–Pn, and Cu–Pn bonds, consistent with a three-dimensional structure. On progressing from ZrCuSiP to ZrCuSiAs, the charge transfer from metal to Pn atoms becomes less pronounced, as indicated by changes in the intensity of the Cu K-edge and Zr K, L-edge XANES spectra. Binding energy shifts and satellite features of the XPS spectra of REMAsO indicated that bonding in the [REO] layer is ionic, whereas bonding in the [MAs] layer is strongly covalent. Altering the electronic structure of one layer (by M or RE substitution) does not affect the electronic structure of the other layer, consistent with a two-dimensional structure in REMAsO. Metal-rich phosphides M2P (forming Cr2P-, Fe2P-, and Co2P-type structures) and M3P (forming Ni3P-type structures) were examined by XPS and XANES. The P 2p3/2 binding and P K-edge absorption energies decrease with greater ionic character of the M−P bonding and indicate the presence of anionic phosphorus. Interatomic effects play a more important role in affecting the energy shifts in these metal-rich phosphides than in the monophosphides, becoming more pronounced with higher metal concentration. Surprisingly, intraatomic effects dominate in mixed-metal phosphides (Ni1-xMx)2P despite evidence of metal-to-metal charge transfer from the Ni XANES spectra and Ni 2p XPS satellite features.
Language
English
DOI
doi:10.7939/R3XQ6R
Rights
License granted by Peter Blanchard (pblancha@ualberta.ca) on 2011-05-29T18:12:46Z (GMT): Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of the above terms. The author reserves all other publication and other rights in association with the copyright in the thesis, and except as herein provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2014-04-25T00:24:40.179+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 3464950
Last modified: 2015:10:12 16:10:19-06:00
Filename: Thesis_Revised.pdf
Original checksum: 5de854c83fe7f528dcfbf863b66ca34a
Well formed: false
Valid: false
Status message: Unexpected error in findFonts java.lang.ClassCastException: edu.harvard.hul.ois.jhove.module.pdf.PdfSimpleObject cannot be cast to edu.harvard.hul.ois.jhove.module.pdf.PdfDictionary offset=4518
Page count: 251
Activity of users you follow
User Activity Date