ERA

Download the full-sized PDF of Self-assembling Peptide Based Nanoscaffolds to Manipulate the Inflammatory ResponsesDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3KW57Z1X

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Self-assembling Peptide Based Nanoscaffolds to Manipulate the Inflammatory Responses Open Access

Descriptions

Other title
Subject/Keyword
inflammatory responses
mast cell
drug delivery
nanoscaffold
self-assembling peptide
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Lu, Lei
Supervisor and department
Unsworth, Larry (Chemical and Materials Engineering)
Examining committee member and department
Choi, Hyo-Jick (Chemical and Materials Engineering)
Chen, Lingyun (Agricultural Food and Nutritional Science)
Kulka, Marianna (National Institute for Nanotechnology)
Chung, Hyun-Joong (Chemical and Materials Engineering)
Jones, Kim (Chemical Engineering at McMaster University)
Department
Department of Chemical and Materials Engineering
Specialization
Chemical Engineering
Date accepted
2017-05-11T10:02:43Z
Graduation date
2017-11:Fall 2017
Degree
Doctor of Philosophy
Degree level
Doctoral
Abstract
Inflammation is generally considered to be a protective response, however the effects of inflammation can also be harmful and even fatal. The study of regulating the inflammatory response in damaged tissue by using engineered biomaterials is not only essential for enhancing the biocompatibility of implantable biomaterials and devices, but also important for treatments that need for anti-inflammation. In addition, mast cells play a distinct role in the innate immunity and allergic inflammatory responses. Although the number of related study is somewhat limited, the potential of using nanomaterials directly interact with mast cells has showing a great potential in regulation inflammatory responses. Engineered nanoscaffolds, especially in situ forming nanoscaffolds are ideal platforms for modulating inflammatory responses, due to their localized in situ formation, good biocompatibility, porous 3D structure and programmability, etc. The self-assembling peptide (RADA)4 based nanoscaffolds have a wide range of applications in the field of tissue repair and tissue regeneration. This thesis focuses on the utilization of (RADA)4 nanoscaffolds to manipulate the inflammatory responses, which could generate new therapeutic strategies for various diseases. The research include two aspects: i. the controlled release of anti-inflammatory drug by nanoscaffolds; ii. the modulation of mast cell inflammatory responses by nanoscaffolds. Two strategies involving encapsulation of anti-inflammatory drug dexamethasone (Dex) within (RADA)4 matrix via negatively charged cyclodextrins were developed. One strategy is using chitosan/carboxymethyl-β-cyclodextrin nanoparticle system to load Dex, then form hybrid nanoscaffolds with the (RADA)4 nanofibers. The in vitro release of Dex from the hybrid system was observed to be pH sensitive. At pH 7.4, release was observed for more than 8 days, with three distinct kinetic domains in the first 6 days. Another strategy is using anionic sulfobutyl ether β-cyclodextrin (SBE-β-CD) as a carrier to load Dex in the peptide self-assembly nanofiber system. The ionic interaction between SBE-β-CD and the (RADA)4 peptide dramatically affects nanofiber formation, and the stability of the nanoscaffold matrix is highly dependent on the SBE-β-CD/(RADA)4 ratio. The different concentrations of SBE-β-CD and (RADA)4 peptides significantly affects the release kinetics. Prior to manipulation mast cells by engineered nanoscaffolds, the fundamental study on the effect of (RADA)4 nanoscaffolds on marrow-derived murine mast cell (BMMC) activity has been carried out. The results show BMMCs spontaneously adhere to the matrix without activation. IgE/antigen induced degranulation of adherent BMMCs is inhibited by the matrix. Through the literature review, we realized that most of peptide stimuli share a structural similarity, and activate human mast cell through MRGPRX2 receptor. To manipulate human mast cell activation, one peptide stimulus, PAMP-12 motif was conjugated with self-assembling peptide (RADA)4 via a -GG- bridge. The extended peptide, (RADA)4-GG-(PAMP-12) can freely mix with (RADA)4 to form nanofiber matrix in solution. The activation of human mast cell can be controlled by the ratio of (RADA)4-GG-(PAMP-12) in the co-cultured nanoscaffold matrix, which provide a new platform to modulate mast cells for various therapies, such as wound healing, angiogenesis, host defense against pathogens and toxins, etc.
Language
English
DOI
doi:10.7939/R3KW57Z1X
Rights
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication
Contents in “Chapter 3” of this thesis has been published in the paper “pH-triggered release of hydrophobic molecules from self-assembling hybrid nanoscaffolds” Biomacromolecules, 2016, 17(4): 1425-1436, authored by Lu L, Unsworth LD. I was responsible for the study design, experiment conduction, data collection, and analysis as well as manuscript composition. Unsworth LD was corresponding author and was involved with concept formation and manuscript composition.

File Details

Date Uploaded
Date Modified
2017-05-11T16:02:44.684+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 12422118
Last modified: 2017:11:08 17:18:59-07:00
Filename: Lu_Lei_201705_PhD.pdf
Original checksum: 3f522f3673f553fc4ac8136f279769bf
Activity of users you follow
User Activity Date