ERA

Download the full-sized PDF of The effect of exercise training on metaboreflex regulation of heart rate and blood pressureDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R32R3P52P

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

The effect of exercise training on metaboreflex regulation of heart rate and blood pressure Open Access

Descriptions

Other title
Subject/Keyword
Exercise Training
Cardiovascular Physiology
Exercise Physiology
Metaboreflex
High-Intensity Interval Training
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Reinhart, Chance W.
Supervisor and department
Darren S. DeLorey (Physical Education and Recreation / Rehabilitation Medicine)
Examining committee member and department
Michael Kennedy (Physical Education and Recreation)
Craig Steinback (Physical Education and Recreation)
Department
Physical Education and Recreation
Specialization

Date accepted
2015-02-18T13:43:58Z
Graduation date
2015-06
Degree
Master of Science
Degree level
Master's
Abstract
The metaboreflex is a cardiovascular reflex which activates the sympathetic nervous system when a mismatch between oxygen delivery and demand occurs during exercise; metabolic by-products accumulate in the interstitium of skeletal muscle tissue and stimulate afferent nerve fibers. This in turn elevates heart rate and blood pressure by increasing cardiac output as well as peripheral vasoconstriction. This thesis investigated the effects of exercise training on metaboreflex regulation of heart rate and blood pressure during dynamic exercise in healthy humans. It was hypothesized that activation of the metaboreflex would produce a smaller increase in heart rate and blood pressure during exercise following aerobic exercise training. Young males (age=24.7±3.9) were assigned to traditional aerobic (n=10) or sprint interval (SPRI n=15) exercise training on a cycle ergometer. The traditional aerobic training group trained five days/week for six weeks at a workload that elicited 75% of maximum heart rate for a flywheel distance of 16 km. The sprint interval training group performed repeats of 30 s bouts of exercise at a resistance equal to 7.5% of the subject’s body weight on three days/week for six weeks. Each exercise bout was separated by 4.5 minutes of cycling with minimal resistance to allow for recovery. Young males performed steady-state recumbent cycling exercise at 60% of maximum heart rate in control and partial flow-restricted conditions before and after traditional aerobic and sprint interval exercise training. Once heart rate achieved steady-state, pneumatic leg cuffs were inflated to partially restrict leg blood flow during exercise and stimulate the metaboreflex. Heart rate and blood pressure were measured continuously measured via finger-cuff photo-plethysmography. Traditional aerobic and sprint interval exercise training both improved aerobic fitness (PRE: TRAD-50.3±10.6 mL/kg/min., SPRI-48.7±9.5 kg/mL/min.; POST: TRAD-53.5±8.0 mL/kg/min., SPRI-50.3±8.4 mL/kg/min.) and peak power output (PRE: TRAD-305±35W., SPRI-289±52 W; POST: TRAD-325±33 W L/min., SPRI-312±52 W). However, neither traditional aerobic nor sprint interval exercise training altered the heart rate and mean arterial pressure response to metaboreflex activation in either the exercise trained legs (ΔHR - PRE:TRAD- 7.7±4.9 bpm, SPRI- 7.4±5.8 bpm; POST: TRAD- 6.9±3.3 bpm, SPRI- 7.2±3.4 bpm)(ΔMAP- PRE: TRAD- 11.1±6.0 mmHg, SPRI- 7.3±5.6 mmHg; POST: TRAD- 12.1±6.7 mmHg, SPRI - 8.9±4.3 mmHg) or the untrained forearm (ΔHR- PRE: TRAD- 0.4±10.7 bpm, SPRI- -2.3±8.4 bpm; POST: TRAD- -3.2±9.7 bpm, SPRI- -2.51±9.8 mmHg)(ΔMAP - PRE: TRAD- 18.3±13.2 mmHg, SPRI- 23.3±10.5 mmHg; POST: TRAD- 15.3±14.0 mmHg, SPRI- 23.5±9.1 mmHg). In conclusion, exercise training did not alter the magnitude of the heart rate and blood pressure response to metaboreflex activation during exercise in healthy young males.
Language
English
DOI
doi:10.7939/R32R3P52P
Rights
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2015-06-15T07:07:32.239+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 836654
Last modified: 2015:10:21 23:53:32-06:00
Filename: Reinhart_Chance_W_201501_MSc.pdf
Original checksum: 87c4d0c25fdbfae930bcf604a981bad6
Well formed: true
Valid: true
File title: Chapter 1: Introduction
File title: Chance William Reinhart
File author: IHEPLAB
Page count: 67
File language: EN-CA
Activity of users you follow
User Activity Date