Download the full-sized PDF of A model - data  intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesisDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Renewable Resources, Department of


This file is in the following collections:

Journal Articles (Renewable Resources)

A model - data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis Open Access


Author or creator
Schwalm, C. R.
Williams, C. A.
Schaefer, K.
Anderson, R.
Arain, M. A.
Baker, I.
Barr, A.
Black, T.A.
Chen, G. S.
Chen, J. M.
Ciais, P.
Davis, K. J.
Desai, A.
Dietze, M.
Dragoni, D.
Fischer, M. L.
Flanagan, L. B.
Grant, R.
Gu, L. H.
Hollinger, D.
Izaurralde, R. C.
Kucharik, C.
Lafleur, P.
Law, B. E.
Li, L. H.
Li, Z. P.
Liu, S. G.
Lokupitiya, E.
Luo, Y. Q.
Ma, S. Y.
Margolis, H.
Matamala, R.
McCaughey, H.
Monson, R. K.
Oechel, W. C.
Peng, C. H.
Poulter, B.
Price, D. T.
Riciutto, D. M.
Riley, W.
Sahoo, A. K.
Sprintsin, M.
Sun, J. E.
Tian, H. Q.
Tonitto, C.
Verbeeck, H.
Verma, S. B.
Additional contributors
Eddy convariance data
Global vegetation model
Leaf-area index
Mixed hardwood forest
Net ecosystem exchange
Primary productivity
Interannual variability
Dioxide exchange
United States
Atmosphere exchange
Type of item
Journal Article (Published)
Abstract: Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO2 exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans similar to 220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO2 exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was similar to 10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.
Date created
License information
© 2010 American Geophysical Union. This version of this article is open access and can be downloaded and shared. The original author(s) and source must be cited.
Citation for previous publication
Schwalm, C.R., C.A. Williams, K. Schaefer, R. Anderson, M.A. Arain, I. Baker, A. Barr, T.A. Black, G.S. Chen, J.M. Chen, P. Ciais, K.J. Davis, A. Desai, M. Dietze, D. Dragoni, M.L. Fischer, L.B. Flanagan, R. Grant, L.H. Gu, D. Hollinger, R.C. Izaurralde, C. Kucharik, P. Lafleur, B.E. Law, L.H. Li, Z.P. Li. S.G. Liu, E. Lokupitiya, Y.Q. Luo, S.Y. Ma, H. Margolis, R. Matamala, H. McCaughey, R.K. Monson, W.C. Oechel, C.H. Peng, B. Poulter, D.T. Price, D.M. Riciutto, W. Riley, A.K. Sahoo, M. Sprintsin, J.E. Sun, H.Q. Tian, C. Tonitto, H. Verbeeck and S.B. Verma. (2010). A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis. J. Geophys. Res., 115, G00H05, doi: 10.1029/2009JG001229
Link to related item

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 742008
Last modified: 2015:10:12 15:49:41-06:00
Filename: JGR_115_2010_G00H05.pdf
Original checksum: dd66553daa4337d723d06122cda5a37d
Well formed: true
Valid: true
File title: jg001229 1..22
Page count: 22
Activity of users you follow
User Activity Date