This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
-
Electromechanical Performance Comparison of Low-voltage Ride-through Methods for Variable Speed Wind Turbines
DownloadSpring 2021
The increasing penetration of the renewable wind energy systems and the decommissioning of the traditional fuel systems has resulted in an increasingly strict grid codes to circumvent issues with the grid’s stability and reliability. The low-voltage ride-through (LVRT) requirement is one of the...
-
Spring 2011
Blanco-Benavides, Jose Mauricio
The nightside auroral region is known to be the most powerful source of radiation from Earth to space. Emitted radiation reaches up to 10^9 watt, with frequencies ranging 100 - 600 kHz, and is known as Auroral Kilometric radiation (AKR). AKR is generated through coherent emission by highly...
-
Fall 2018
The SNO+ experiment will soon complete its commissioning and begin searching for the neutrinoless double beta decay of tellurium, loaded within its liquid scintillator. As a large-scale (780 tonne) liquid scintillator detector, SNO+ will also be well positioned to make a precision measurement of...