Theses and Dissertations

This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.

Items in this Collection

Skip to Search Results
  • Fall 2011

    Qi, Fei

    The large number of control loops in a modern industrial plant poses a serious challenge for operators and engineers to monitor these loops to maintain them at optimal conditions continuously. Much research has been done on control loop performance assessment and monitoring of individual components

    missing pattern concept is introduced. The incomplete evidence problems are categorized into single missing pattern ones and multiple missing pattern ones. A novel method based on marginalization over an underlying complete evidence matrix (UCEM) is proposed to include the incomplete evidences into the

    under the Bayesian framework. An approach to estimate the distributions of monitor readings with sparse historical samples is proposed to alleviate the intensive requirement of historical data. The statistical distribution functions for several monitoring algorithm outputs are analytically derived. A

1 - 1 of 1