This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 2Flowback and produced water
- 116S rRNA gene sequencing
- 1Halotolerant bacteria
- 1Hydraulic fracturing
- 1Hydraulic fracturing water cycle
- 1Membrane filtration
-
A Combined Membrane Filtration - Aeration Approach for the Treatment of Hydraulic Fracturing - Flowback and Produced Water from the Duvernay Formation
DownloadSpring 2019
Membrane filtration technologies have been successfully applied for the treatment of many types of wastewater. In hydraulic fracturing operations, membrane processes can be applied as a cost-effective way of removing unwanted substances from flowback and produced water (FPW) and promoting its...
-
Microbial Community Dynamics in the Hydraulic Fracturing Water Cycle from Two Newly Fractured Shale Gas Wells in the Duvernay Formation, Alberta
DownloadFall 2017
The microbial ecology of the hydraulic fracturing water cycle may influence the efficiency of shale gas production and strategies for water reuse and treatment. In this study, microbial community dynamics were tracked by sequencing of 16S rRNA genes coupled with enumeration of live/dead cells in...