This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
-
Interactions among Nitrogen Input, Nitrification Inhibition, Edaphic and Environmental Conditions on N2O Fluxes and associated Biological Processes in Central Alberta Soils
DownloadFall 2020
Increasing atmospheric concentration of nitrous oxide (N2O) emissions due to intensified human activities is of concern, as N2O is not only a precursor for stratospheric ozone destruction but also an important greenhouse gas. Agriculture accounted for about 82% of the anthropogenic N2O production...
-
Nitrous Oxide Emission Reduction in an Annual Cropping System as a function of Nitrification Inhibitors and Liquid Manure Injection Timings
DownloadFall 2016
Nitrous oxide (N2O) contributes to global warming and ozone depletion. Two-thirds of the global N2O emissions are derived from agricultural soils receiving manure or fertilizer applications. The goal of this study was to identify and develop management practices that can decrease N2O emissions...