This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
Search
Skip to Search Results- 163Mathematical and Statistical Sciences, Department of
- 163Mathematical and Statistical Sciences, Department of/Research Publications (Mathematical and Statistical Sciences)
- 109Biological Sciences, Department of
- 109Biological Sciences, Department of/Journal Articles (Biological Sciences)
- 12The NSERC TRIA Network (TRIA-Net)
- 12The NSERC TRIA Network (TRIA-Net)/Journal Articles (TRIA-Net)
- 55Mark A. Lewis
- 50Lewis, Mark A.
- 31Kouritzin, Michael
- 14Wang, Hao
- 7Jonathan R. Potts
- 6Krkošek, Martin
-
2001-01-01
Clark, James S., Lewis, Mark A., Horvath, Lajos
For populations having dispersal described by fat‐tailed kernels (kernels with tails that are not exponentially bounded), asymptotic population spread rates cannot be estimated by traditional models because these models predict continually accelerating (asymptotically infinite) invasion. The...
-
Wild salmon sustain the effectiveness of parasite control on salmon farms: Conservation implications from an evolutionary ecosystem service
Download2018-01-01
Kreitzman, Maayan, Ashander, Jaime, Driscoll, John, Bateman, Andrew W., Chan, Kai M.A., Lewis, Mark A., Krkošek, Martin
Rapid evolution can increase or maintain the provision of ecosystem services, motivating the conservation of wild species and communities. We detail one such contemporary evosystem service by synthesizing theoretical evidence that rapid evolution can sustain parasiticide efficacy in salmon...
-
Integrated step selection analysis: Bridging the gap between resource selection and animal movement
Download2016-01-01
Avgar, Tal, Potts, Jonathan R., Lewis, Mark A., Boyce, Mark S.
A resource selection function is a model of the likelihood that an available spatial unit will be used by an animal, given its resource value. But how do we appropriately define availability? Step selection analysis deals with this problem at the scale of the observed positional data, by matching...
-
2005-01-01
Pachepsky, E., Lewis, Mark A., Lutscher, F.
Individuals in streams are constantly subject to predominantly unidirectional flow. The question of how these populations can persist in upper stream reaches is known as the “drift paradox.” We employ a general mechanistic movement-model framework and derive dispersal kernels for this situation....
-
2015-01-01
Bateman, Andrew W., Neubert, Michael G., Krkošek, Martin, Lewis, Mark A.
Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease...
-
2016-01-01
Goodsman, Devin W., Lewis, Mark A.
Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. 2....
-
2011-01-01
The critical domain size problem determines the size of the region of habitat needed to ensure population persistence. In this paper we address the critical domain size problem for seasonally fluctuating stream environments and determine how large a reach of suitable stream habitat is needed to...
-
2020-01-19
Mélodie Kunegel-Lion, Mark A. Lewis
The efficacy of direct control methods in bark beetle outbreaks is a disputed topic. While some studies report that control reduces tree mortality, others see little effect. Existing models, linking control rate to beetle population dynamics and tree infestations, give insights, but there is a...
-
2020-03-21
Nathan G. Marculis, Maya L. Evenden, Mark A. Lewis
Trade-offs between dispersal and reproduction are known to be important drivers of population dynamics, but their direct influence on the spreading speed of a population is not well understood. Using integrodifference equations, we develop a model that incorporates a dispersal–reproduction...