Search
Skip to Search Results
2002
In the context of simulating the transport of a chemical or bacterial contaminant through a moving sheet of water, we extend a wellestablished method of approximating reactiondiffusion equations with Markov chains by allowing convection, certain Poisson measure driving sources and a larger...

20130910
The equivalences to and the connections between the modulusofcontinuity condition, compact containment and tightness on DE[a, b] with a < b are studied. The results within are tools for establishing tightness for probability measures on DE[a, b] that generalize and simplify prevailing results...

2004
Kouritzin, Michael, Long, H., Sun, W.
Herein, we consider direct Markov chain approximations to the Duncan–Mortensen–Zakai equations for nonlinear filtering problems on regular, bounded domains. For clarity of presentation, we restrict our attention to reflecting diffusion signals with symmetrizable generators. Our Markov chains are...

1995
Suppose {εk, −∞ < k < ∞} is an independent, not necessarily identically distributed sequence of random variables, and {cj}∞j=0, {dj}∞j=0 are sequences of real numbers such that Σjc2j < ∞, Σjd2j < ∞. Then, under appropriate moment conditions on {εk, −∞ < k < ∞}, View the MathML source, View the...

2005
Herein, we analyze an efficient branching particle method for asymptotic solutions to a class of continuousdiscrete filtering problems. Suppose that t→Xt is a Markov process and we wish to calculate the measurevalued process t→μt(⋅)≐P{Xt∈⋅σ{Ytk, tk≤t}}, where tk=kɛ and Ytk is a distorted,...

20131122
We address the missing analog of vague convergence in the weakconverge largedeviations analogy. Specifically, we introduce the weak Laplace principle and show it implies both the wellknown weak LDP and the Laplace principle lower bound. Both the weak LDP and weak Laplace principle hold in...

Rates of convergence in a central limit theorem for stochastic processes defined by differential equations with a small parameter
Download1992
Kouritzin, Michael, Heunis, A.J.
Let μ be a positive finite Borel measure on the real line R. For t ≥ 0 let et · E1 and E2 denote, respectively, the linear spans in L2(R, μ) of {eisx, s > t} and {eisx, s < 0}. Let θ: R → C such that ∥θ∥ = 1, denote by αt(θ, μ) the angle between θ · et · E1 and E2. The problems considered here...