Search
Skip to Search Results-
2014-06-05
The classical particle filter, introduced in 1993, approximates the normalized filter directly. It has two defiencies, over resampling and the inability to distinguish models, the former of which was overcome but the later is fundamental. Conversely, the weighted particle filter, motivated by the...
-
1994
Heunis, A. J., Kouritzin, Michael
In this note we consider the almost sure convergence (as ϵ→0) of solution Xϵ(·), defined over the interval 0 ≤ τ ≤ 1, of the random ordinary differential equation View the MathML source Here {F(x, t, ω), t ≥ 0} is a strong mixing process for each x and (x, t) → F(x, t, ω) is subject to regularity...
-
A law of the iterated logarithm for stochastic processes defined by differential equations with a small parameter
Download1994
Heunis, A.J., Kouritzin, Michael
Consider the following random ordinary differential equation: X˙ϵ(τ)=F(Xϵ(τ),τ/ϵ,ω)subject toXϵ(0)=x0, where {F(x,t,ω),t≥0} are stochastic processes indexed by x in Rd, and the dependence on x is sufficiently regular to ensure that the equation has a unique solution Xϵ(τ,ω) over the interval...
-
2004
Zhao, Xingqiu, Long, Hongwei, McCrosky, Jesse, Kim, Surrey, Kouritzin, Michael
In this paper, we discuss multi-target tracking for a submarine model based on incomplete observations. The submarine model is a weakly interacting stochastic dynamic system with several submarines in the underlying region. Observations are obtained at discrete times from a number of sonobuoys...
-
2004
Kouritzin, Michael, Kim, Surrey, Sun, Wei, Kim, Hyukjoon
In this note, we consider the problem of detecting network portscans through the use of anomaly detection. First, we introduce some static tests for analyzing traffic rates. Then, we make use of two dynamic chi-square tests to detect anomalous packets. Further, we model network traffic as a...
-
2001
Chan, Hubert, Kouritzin, Michael
Filtering is a method of estimating the conditional probability distribution of a signal based upon a noisy, partial, corrupted sequence of observations of the signal. Particle filters are a method of filtering in which the conditional distribution of the signal state is approximated by the...
-
2008
Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended...
-
2005
Kouritzin, Michael, Kim, H., Hu, Y., Ballantyne, D.
This paper addresses the problem of detecting and tracking an unknown number of submarines in a body of water using a known number of moving sonobuoys. Indeed, we suppose there are N submarines collectively maneuvering as a weakly interacting stochastic dynamical system, where N is a random...
-
2008
In this paper, we give a direct derivation of the Duncan–Mortensen–Zakai filtering equation, without assuming right continuity of the signal, nor its filtration, and without the usual finite energy condition. As a consequence, the Fujisaki–Kallianpur–Kunita equation is also derived. Our results...
-
2000
Ballantyne, David, Chan, Hubert, Kouritzin, Michael
Particle approximations are used to track a maneuvering signal given only a noisy, corrupted sequence of observations, as are encountered in target tracking and surveillance. The signal exhibits nonlinearities that preclude the optimal use of a Kalman filter. It obeys a stochastic differential...