# Search

• ### Strong approximation for cross-covariances of linear variables with long-range dependence.

1995

Suppose {εk, −∞ < k < ∞} is an independent, not necessarily identically distributed sequence of random variables, and {cj}∞j=0, {dj}∞j=0 are sequences of real numbers such that Σjc2j < ∞, Σjd2j < ∞. Then, under appropriate moment conditions on {εk, −∞ < k < ∞}, View the MathML source, View the...

• ### Strong Convergence in the Stochastic Averaging Principle.

1994

In this note we consider the almost sure convergence (as ϵ→0) of solution Xϵ(·), defined over the interval 0 ≤ τ ≤ 1, of the random ordinary differential equation View the MathML source Here {F(x, t, ω), t ≥ 0} is a strong mixing process for each x and (x, t) → F(x, t, ω) is subject to regularity...

2015-09-21

• ### Rates of convergence in a central limit theorem for stochastic processes defined by differential equations with a small parameter

1992

Let μ be a positive finite Borel measure on the real line R. For t ≥ 0 let et · E1 and E2 denote, respectively, the linear spans in L2(R, μ) of {eisx, s > t} and {eisx, s < 0}. Let θ: R → C such that ∥θ∥ = 1, denote by αt(θ, μ) the angle between θ · et · E1 and E2. The problems considered here...

• ### Rates for branching particle approximations of continuous discrete filters.

2005

Herein, we analyze an efficient branching particle method for asymptotic solutions to a class of continuous-discrete filtering problems. Suppose that t→Xt is a Markov process and we wish to calculate the measure-valued process t→μt(⋅)≐P{Xt∈⋅|σ{Ytk, tk≤t}}, where tk=kɛ and Ytk is a distorted,...

• ### On random field CAPTCHA generation

2013

Herein, we propose generating CAPTCHAs through random field simulation and give a novel, effective and efficient algorithm to do so. Indeed, we demonstrate that sufficient information about word tests for easy human recognition is contained in the site marginal probabilities and the...

• ### On extending classical filtering equations.

2008

In this paper, we give a direct derivation of the Duncan–Mortensen–Zakai filtering equation, without assuming right continuity of the signal, nor its filtration, and without the usual finite energy condition. As a consequence, the Fujisaki–Kallianpur–Kunita equation is also derived. Our results...

• ### Markov chain approximations to filtering equations for reflecting diffusion processes.

2004

Herein, we consider direct Markov chain approximations to the Duncan–Mortensen–Zakai equations for nonlinear filtering problems on regular, bounded domains. For clarity of presentation, we restrict our attention to reflecting diffusion signals with symmetrizable generators. Our Markov chains are...

• ### Invariance Principles for Parabolic Equations with Random Coefficients

1997

A general Hilbert-space-based stochastic averaging theory is brought forth herein for arbitrary-order parabolic equations with (possibly long range dependent) random coefficients. We use regularity conditions onView the MathML sourcewhich are slightly stronger than those required to prove...

• ### Convergence of Markov chain approximations to stochastic reaction diffusion equations.

2002

In the context of simulating the transport of a chemical or bacterial contaminant through a moving sheet of water, we extend a well-established method of approximating reaction-diffusion equations with Markov chains by allowing convection, certain Poisson measure driving sources and a larger...

1 - 10 of 13