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This study examines the ability of revealed preference (RP), site-specific stated preference (SP), 

transferred SP, and various joint RP-SP models to predict aggregate and individual recreation 

site choice behavior in a holdout sample.  For two statistical comparisons, the site-specific RP 

model provided the most accurate predictions of individual choices.  However, the transferred 

SP model, applied directly or estimated jointly with the RP data, performed best in three 

aggregate and one individual prediction tests and second best in the other individual prediction 

comparisons.  In every test examined the transferred SP models outperformed the site-specific 

SP models.  This result is traced to the method used to collect the hypothetical choice data (mail 

out vs. in-person settings) and illustrates the importance of data quality in accuracy of behavioral 

prediction.  These findings suggest that data from well designed and conducted SP surveys from 

one site can be combined with site-specific RP data from another site to generate improved 

models of recreation site choice. 

 

Key words: choice experiments, nonmarket valuation, prediction of behavior, recreation site 

choice. 



 

1  

Do Hypothetical Choices Reflect Actual Behavior? A Comparison of the Predictive 
Abilities RP and SP Models 

 
An objective of many economic studies is the ability to predict behavior.  Model 

predictions can inform policy makers of the probable results of changes in resource management 

or demography.  However, developing models with predictive power is a formidable challenge 

within the social sciences.   

 Environmental economists have used probabilistic models such as the random utility 

model to build models of recreation site choice.  Such models can be based on actual or revealed 

behavior (revealed preference- RP), or on responses to hypothetical scenarios (stated preference- 

SP).  There is not complete agreement as to whether RP or SP data are best at producing models 

which predict behavior (Louviere 1994; Blamey et al. 1999b).  It is often assumed that models 

based on actual behavior have superior predictive ability compared to models based on 

hypothetical behavior.  However, it is also recognized that as a result of their controlled design, 

SP models are desirable because they capture responses to changes in attributes (Swait, Louviere 

and Williams.).  Therefore, as noted by Louviere (1994:19), it is an open empirical question 

whether SP models estimated from choice experiment data predict behavior more accurately than 

RP models estimated from data in real markets. 

 In recent years, many advances were made in modeling behavioral choice, particularly 

through the use of random utility models.  These advances include the development of joint or 

sequential estimation of RP and SP data which in theory allows the strengths of each data type to 

be realized in developing superior choice models.  Several studies have shown that the within 

sample predictive ability of joint models exceeds that of models estimated with only RP data  

(Adamowicz et al.; Swait, Louviere and Williams). 

Recent research has also focussed on the transferability of preferences across regions 

and/or time.  In most studies model or equation transfers were found to be more feasible and 

defensible than the transfer of point estimates of benefits (Bergstrom and De Civita).  Many 

different tests and measures have been proposed to assess the transferability of discrete choice 

models, particularly in the transportation literature (see Koppelman and Wilmot, Ortuzar and 

Williamson).  Some of these tests include formal tests of parameter equality (within a factor of 

proportionality) using the techniques of Swait and Louviere.  Predictive ability has also been 

used as a means of assessing the transferability of discrete choice models (Atherton and Ben-
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Akiva).  In the environmental economic literature, however, only Parsons and Kealy use 

predictive ability as a test of benefits transfer.  In their empirical example they suggest that if a 

model from one region accurately predicts behavior in another region, it could be used to 

conduct benefits transfers between the regions.    

  We possess discrete choice RP data and SP data for the same activity from two different 

regions (a total of 4 data sources).  This provided us with the opportunity to compare the 

prediction success of RP, SP and joint RP-SP models, and to use this information to examine the 

transferability of SP models across these two regions.  In this examination we focus on the 

ability of these models to predict holdout sample choices since we feel that this aspect of model 

performance is often neglected. We agree with Horowitz and Louviere that models that cannot 

satisfactorily predict choices in holdout samples are less useful than those that can.  Our motives 

are driven by the need to develop predictive models to be used as decision support tools for 

resource management, and to expand current criteria used to examine the potential for benefits 

transfer. 

 In this paper we examine the “performance” of several econometric models and data 

generating mechanisms.  Performance is measured in terms of the success in aggregate and 

individual prediction of a holdout sample.  In our analysis, we employ relatively simple 

econometric models.  Prediction success could potentially be improved by considering 

heterogeneity (with random parameter or latent class models), correlation structure (nested 

models or multinomial probit models), temporal dimensions (habits, etc.) or a variety of other 

factors. However, we wish to examine prediction success, and the performance of various data 

generating mechanisms, using common and simple approaches.  We also wish to employ 

techniques that practitioners are able to implement using currently available software. The 

results suggest that even with these simple models, some data types and modeling strategies 

produce remarkably accurate aggregate predictions.  Furthermore, distinct differences in 

performance can be detected even in these relatively simple models. 
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Background and Motivation 

A number of studies examined recreational moose hunting in Canada (Morton et al. 

1995; Boxall et al. 1996; Adamowicz et al. 1997; Boxall and McNab 1999).  In two of these 

studies choice experiments involving hypothetical sites and information on hunting trips to 

actual sites was collected from two different geographical areas (west-central Alberta and central 

Saskatchewan). Thus, two choice experiments (SP data) and two RP data sets exist.  These 

datasets provided an opportunity for us to examine statistical differences in preferences over the 

attributes involved, and the success of some single and joint models in predicting behavioral site 

choice between these two geographical areas.   

Our interest in this endeavor was motivated by the need of forest managers in 

Saskatchewan to understand the impact of forestry operations on moose hunting.  In this case, 

the managers did not have current information on moose hunters in their forest management area 

in northwestern Saskatchewan.  However, the availability of Alberta data and Saskatchewan data 

from an adjacent forest management area in central Alberta, prompted us to examine 

opportunities for benefits transfer.  Using the data available we can assess whether hunting 

preferences differ significantly by region.  This information will help us determine whether we 

need site-specific information for northwestern Saskatchewan or whether models from other 

boreal forest region would be applicable.  To examine the transferability of preferences, we 

developed a holdout sample from the central Saskatchewan survey data.  This sample allows the 

examination of the success of an RP model estimated on information from those not in the 

holdout sample, but who actually visited the area.  Our expectation at the outset was that the 

performance of this RP model would be the benchmark to compare other site choice models 

with.  

In the marketing and transportation literatures assessing the success with which SP 

models predict actual behavior is used as a test of transferability.  For example, Koppleman and 

Wilmot examine prediction success and transferability in a transportation setting, and Horowitz 

and Louviere assess prediction success for college choice by students.   

In the environmental economics literature, there have been a variety of tests of 

transferability (e.g. Bergstrom and de Civita) but most have used comparisons of welfare 

measures or model parameters as a measure of the success of transferability.  While this 

approach does provide insight into the transferability of models, it does not provide an overall 
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impression of the ability of these models to predict behavior.  The coefficients estimated from 

models for two regions may be “similar”, but the models may not predict actual choices very 

well. 

 In a recent paper, Blamey et al. (1999b) compare the results of two SP choice models 

with RP data for a green product (toilet paper). Blamey et al. (1999b:3) point out that 

divergences in RP and SP estimates may result from “measurement error associated with the 

inclusion of objective attribute definition and levels in SP questionnaires rather than those 

perceived by respondents.”  Blamey et al. (1999b) also note that a stronger test of predictive 

validity would involve the assessment of prediction success for choice sets different to those 

represented in the RP data set.  We essentially conduct this type of assessment in this study.  We 

use the information from SP, RP and joint SP-RP models, estimated from different data sources, 

to predict a holdout sample of actual choices. The approach provides insight into the ability of 

SP, RP and joint models to predict actual choice. 

 
Data and Models 
 
The Saskatchewan Revealed Preference Data 
 

In 1994, the Canadian Forest Service conducted a moose hunting survey involving a 

specific area: the Weyerhaeuser Forest Management Lease Area (FMLA) in central 

Saskatchewan.  Residents of larger centers in the vicinity of the FMLA were included in the 

sample and residents of smaller communities in the area were over-sampled.   

In the survey respondents were asked to record the frequency and location (wildlife 

management zone (WMZ)) of hunting trips they took in 1993.  They were also asked to indicate 

the level of access, encounters, forestry activity and moose populations that best described the 11 

WMZs in the study region.  Similar information was also elicited from wildlife biologists and 

conservation officers from the region.  These responses in combination with information related 

to hunting activity and wildlife populations were used to create an attribute matrix that described 

the WMZs in the region.  

The survey was mailed to 1274 individuals whose names and addresses were obtained 

from registered licensed hunters held by the Government of Saskatchewan.  The Saskatchewan 

sample collected information from about 660 respondents.  A total of 706 trips were taken to the 

WMZs included in the study region by 315 individuals.  The holdout sample consisted of about 



 

5  

half these people (157 individuals) randomly drawn from the respondents.  The choices of the 

remaining individuals were used to estimate the RP models reported below.   

 

The Alberta and Saskatchewan Stated Preference Data  

 The 1993 Alberta moose hunting choice experiment is described by Boxall et al. and 

Adamowicz et al.  In this experiment six measurable attributes associated with moose hunting 

experiences (Table 1) of either 2 or 4 levels were determined.  Experimental design methods (see 

Louviere 1988) were used to produce 32 choice sets that were blocked into two sets of 16.  A 

hunter sampled in the study was presented with one of these 16 pairs of alternative descriptions1 

of moose hunting sites.  This choice experiment was administered to samples of hunters selected 

from Alberta Fish and Wildlife Services license records.  The hunters were sampled from 5 

locations, four located in within the study area in west central Alberta and the fifth a large 

metropolitan centre (Edmonton) located about 100 km outside the area.  Telephone recruitment 

and reminders generated a sample of 271 hunters.  The choice experiment instruments were 

administered in person to groups of hunters ranging from 20 to 55 individuals at 8 meetings held 

in various locations throughout the study area.  The final data set contained information from 

271 respondents who provided answers for 4080 choice scenarios.  

The 1994 Saskatchewan moose hunting mail survey also included a choice experiment 

that contained a similar presentation to the one used in the Alberta study.  However, in the 

Saskatchewan study the Road Quality attribute was deleted and a Wildlife Species Diversity 

attribute was added.  The attributes were also described in 3 levels rather than 2 or 4.  The 

resulting experimental design generated 2 versions of 14 choice scenarios (see Boxall and 

McNab).  The Saskatchewan sample involved information from about 660 hunters who provided 

answers for about 7832 choice scenarios.  In order to compare this information with the Alberta 

data, a random sample of 4080 choices was drawn from this data to ensure comparability with 

the Alberta sample. 

Although the two choice experiment designs are not exactly the same, there is a large 

degree of similarity in the attributes that were included in the designs.  To improve 

comparability, three of the Alberta attributes were coded to match the levels in the Saskatchewan 

                                                           
1 The option of not choosing either alternative (not going moose hunting) was also presented with each pair. 
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data, and one Saskatchewan attribute (Forestry Activity) was coded to match the Alberta 

attribute (see Table 1). The coding permitted the attributes common between the two datasets to 

have the same number of levels.  These levels also correspond more closely to the information 

about the WMZs gathered from the Saskatchewan wildlife biologists and conservation officers.  

Socioeconomic data were also collected as part of both the Alberta and Saskatchewan 

surveys.  Residence location was elicited and used to categorize the respondent as rural or urban.  

In the Alberta sample only participants from Edmonton were included in the urban category 

since the other respondents were from communities of less than 25,000 people.  In the 

Saskatchewan sample, urban respondents included those from several communities with 

populations exceeding 25,000.  Other demographic information collected includes income, age, 

education level and years of hunting experience2.  

In the models presented below, we examine the frequency of alternatives chosen from a 

fixed choice set.  The choice set for the SP data is a pair of designed, hypothetical hunting sites 

and an option to not go hunting.  The choice set for the Saskatchewan RP data is the set of 11 

WMZs in central Saskatchewan.  The models developed from these data sets are then used to 

predict choices over the 11 WMZs made by the holdout sample.  

 

Theory and Econometric Estimation of the Choice Models 

 We utilize the discrete choice model to analyze the choice between alternative recreation 

sites. The discrete choice model is based on random utility theory that postulates that an 

individual (in this case, a hunter) will select the option that provides them with the greatest 

utility.  Therefore, the probability of selecting an alternative increases as the utility associated 

with it increases.  The utility that an individual derives from an alternative is considered to be 

associated with the attributes of the alternative.  The utility function is composed of a 

deterministic component (V) and an unobservable or stochastic component (ε): 

(1) ε+=VU    

V is the indirect utility function in which the attributes are arguments.  Therefore, V can be 

characterized as: 

(2) iki XV β=    
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where X is a vector of k attributes associated with alternative i and β is a coefficient vector.  If 

the distribution of the stochastic component or error terms, is characterized as IID Gumbel, 

McFadden shows that the conditional choice probability of selecting alternative i is: 

(3) ∑
∈

=

Cj
jk

ik
X

Xiprob )exp(
)exp()( µβ

µβ    

Where µ is a scale parameter and C is the choice set.  When a single set of data is used to 

estimate a model, µ is confounded with the parameter vector and cannot be identified.  When 

estimating the RP and SP models reported in this study, we assume µ=1 and the parameters are 

estimated using maximum likelihood methods. 

If two complementary samples are jointly estimated, however, then the ratio of scale 

parameters can be determined.  This would mean that the parameter vectors between the groups 

or samples differ by a scale or factor of proportionality.  However, since the scale parameter is 

inversely proportional to error variance, it also means that the two samples display different 

levels of error in their choices.  Equation 4 below (from Louviere, Hensher and Swait) illustrates 

the relationship between the relative scale and variance for two samples of data where variance 

is represented by σ, scale by µ and the two different samples are designated A and B.  

(4) 
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2

B
2
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2

2
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2

2
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2
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6
⎟
⎟
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⎝

⎛
===
µ
µ

µ
µ
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σ
σ    

 

The ratio of scale parameters becomes relevant where joint models are estimated using 

data consisting of both RP and SP observations, which we do in this study.  Following 

Adamowicz et al. (1997), the likelihood function we used for these joint conditional logit models 

was: 

(5)  { } { }τββτβ ,,|Prln,|Prln),,,(
11

SP
N

n Ci

SP
in

RP
N

n Ci

RP
in

SPRP ZifZifZZL
SP

n

RP

n

∑∑∑∑
= ∈= ∈

+=   

where n indexes individuals from the RP and SP samples; i indexes alternatives; RP
inf , SP

inf  are 

the frequencies of choice in the RP and SP observations, respectively; { }RPZi ,|Pr β  

                                                                                                                                                                                           
2 More information related to the Saskatchewan survey is provided in McFarlane and MacNab (1999). The Alberta 
survey is described in detail by McLeod et al. 



 

8  

and { }τβ ,,|Pr SPZi  are the probabilities of an individual n choosing alternative i in the RP and 

SP samples, respectively; β is the parameter vector common between the RP and SP data which 

is restricted to be equal in estimation; SPZ  and RPZ are parameter vectors associated with 

variables unique to the RP and SP data; and τ represents µSP/µRP, or the ratio of the scale of the 

SP data to that of the RP data.  As in Adamowicz et al., the choice variable for the RP data, RP
inf , 

is specified as proportions so as to eliminate the possible over-weighting of RP observations in 

the joint model.   

Joint estimation was achieved by vertically concatenating the data matrices of the 

individual data sets and estimating a single set of parameters.  For variables common between 

the data sets, the coefficients are restricted to be equal within a factor of proportionality or scale.  

The attribute matrix of one data set is multiplied by this relative scale parameter.  The estimation 

of this relative scale parameter allows variance differences between the data sets to be accounted 

for in the estimation procedure (see Swait and Louviere). 

 

Parameter Estimates 

 In estimating model parameters, the distance variable was expressed as travel costs3 and 

the other attributes and levels of the choice alternatives were effects coded identically across all 

the RP and SP models.  Note that effects coded attributes result in one fewer parameter than the 

number of levels; thus for a 3-level attribute, the coefficient on the 3rd level is the negative sum 

of the coefficients on the other 2 levels (see Louviere 1988; Boxall and MacNab).  The 

coefficient vectors, log likelihood values, and D2 statistics for 10 models are reported in Table 2.  

The data sources used for each model are described by the labels listed below:  

 

                                                           
3 In this calculation we value out-of-pocket expenses at $0.28/km and the opportunity cost of time was estimated as  
one third of an individual’s hourly wage (income/2040 hrs) and an assumed speed of 80 km/hr. 



 

9  

Acronym Data Used in Estimation 

SK-RP1 Saskatchewan RP data, Specification 1 

SK-RP2 Saskatchewan RP data, Specification 2 

SK-SP1 Saskatchewan SP data, Specification 1 

SK-SP2 Saskatchewan SP data, Specification 1 

AB-SP1 Alberta SP data, Specification 1 

AB-SP2 Alberta SP data, Specification 2 

J-ABSP1 Joint Alberta SP, Saskatchewan RP, Specification 1 

J-ABSP2 Joint Alberta SP, Saskatchewan RP, Specification 2 

J-SKSP1 Joint Saskatchewan SP, Saskatchewan RP, Specification 1 

J-SKSP2 Joint Saskatchewan SP, Saskatchewan RP, Specification 2 

 

The Saskatchewan RP data (non-holdout sub-sample) contained information from the 

sub-sample of 370 trips to the study region from 157 hunters.  The levels of the attributes at the 

11 WMZs in the region were developed from the expert judgements of regional biologists and 

foresters working in the area.  The hunters’ choices were represented as proportions in the 

econometric estimations.  The two RP models estimated differed in that the second model (SK-

RP2) included an urban travel cost interaction term (Table 2).  This term was included to 

facilitate comparison with the SP and joint models described below.  The signs of the parameters  

are consistent with theory and previous research on moose hunting.  For example, travel costs 

are negative, WMZs with fewer encounters are preferred, and zones with higher moose 

encounters are desired.  Note that coefficients could not be estimated for all attributes due to lack 

of variation in their levels at the 11 sites (based on expert judgements), and that where only one 

is reported, the other level is simply the negative of the reported coefficient.  

Two Saskatchewan SP models were estimated: one without and one with an urban travel 

cost interaction term (Table 2 columns 4-5).  The parameter vectors show that the patterns of 

preferences across the attributes are similar to those observed in the RP models, but the weights 

on the attributes are quite different.  The wildlife viewing attribute is statistically significant in 

these models, but not in the RP models. 
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The Alberta SP data was used to estimate two models (see Table 2).  Due to the slightly 

different design of the AB choice experiment, the parameter vector differs from the 

Saskatchewan models.  A full set of urban interaction terms was included in the second model 

(AB-SP2). These interaction terms are all significant at the 90% level of confidence, but due to 

space limitations are not reported.  The patterns of preferences implied by the parameters is 

similar to both the RP and SP models estimated from Saskatchewan data.  

The final set of models consists of four joint models that utilize both RP and SP data in 

estimation (see Table 2).  Since the data now contain RP information, some parameters not 

identified in the Alberta SP models could be estimated (e.g. the wildlife viewing attributes).  The 

parameters of these joint models are consistent with their SP counterparts, but the magnitudes of 

those parameters common between the RP and SP data change.  In other words, the inclusion of 

the RP information results in different weights on the attributes.  

We did not include alternative specific constants (ASCs) for WMZs in the parameter 

vectors for any models that used RP information.  ASCs are typically included to capture the 

utility of an alternative that is not captured by the attributes in the model.  A complete set of 

ASCs would produce prefect within sample prediction success.  ASCs are thought to generally 

improve model performance, but they cannot be used in predicting the effect of changes due to 

attribute changes.  Ideally, one would want to use attributes to thoroughly explain choice 

(Adamowicz et al.1997:73).  Furthermore, unless one employs a “branded” SP experiment (i.e. 

Blamey et al. 1999a), ASCs relevant to the actual sites cannot be determined from SP data.  In 

order to construct a “fair” comparison between SP and RP data we did not include ASCs in the 

RP or joint models.   

 

Tests of Model Performance: Prediction Tests 

 A variety of tests and measures have been used to compare the predictive ability of 

choice models.  Many of these tests operate at the aggregate level comparing observed and 

predicted market shares or in this case observed and predicted trip distribution.  However, there 

are also tests that utilize prediction success at the individual level.  We utilize both in comparing 

the abilities of the 10 models to predict the choices of the holdout sample. 
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Koppelman and Wilmot review some measures of predictive ability based on aggregate 

predictions.  The first is the sum of absolute errors (SAE) which gives equal weight to all errors. 

The calculation of the SAE is simply:  

(6) )ˆ(
1

i

J

i
i NNSAE −=∑

=

  

where iN̂  is the total number of trips predicted to destination i, Ni is the number of trips observed 

to destination i and J is the number of observations.   

 Another common measure is the aggregate prediction statistic (APS) which is generated 

from a one sample P2 test of the hypothesis that the observed frequencies of choice in each group 

are collectively generated by the prediction model (Koppelman and Wilmot).  In our case, we did 

not aggregate destinations; therefore each of the 11 sites represents a group as defined by 

Koppelman and Wilmot.  Following Siegel, the one sample P2 statistic is calculated as:   

(7) ii

J

i
i NNN 2

1

2 )ˆ( −=∑
=

χ   

with degrees of freedom J-1.  Koppelman and Wilmot (1982:20) note that this test assumes that 

the trip distribution is predicted without sampling error and as a result “is more likely to reject 

the hypothesis that all frequencies come from the candidate model than would a statistic that 

takes account of sampling variation”.  We report this measure because many other studies use 

this statistic, but we demonstrate that it can provide some erroneous conclusions regarding 

prediction success.   

The P2 statistic provides a measure of the weighted sum of squared errors.  According to 

Siegel (1956:43), the larger the χ2 is, the more likely it is that the observed frequencies did not 

come from the population upon which the null hypothesis is based.  Due to the squaring of 

errors, the APS gives greater weight as the difference between the predicted and the actual 

frequency increases.   

 Horowitz and Louviere list other aggregate level tests of predictive ability. These include 

the degree of correlation between predicted and observed market shares, and regression tests for 

a slope of one and intercept of zero in a regression of observed aggregate shares on predicted 

shares.  Since these measures would result in the same ordinal ranking of models, we only 

computed the degree of correlation between the predicted and observed aggregate distributions.  
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 The tests described above are based on assessment of aggregate prediction success.  

However, tests of predictive ability at the individual level may be more useful.  These tests 

operate by comparing the observed and predicted choices for each individual in the sample. 

Horowitz and Louviere developed a test that involves regressing observed shares (probabilities) 

on predicted shares (probabilities).  However, they adjust this test to account for the effects of 

random sampling errors by including the variance-covariance matrix associated with the 

parameter estimates.  Since we were only looking to compare models, we computed an overall 

correlation coefficient using the observed and predicted probabilities for each individual.  We 

also computed individual-specific correlation coefficients (i.e. one for each of the individuals in 

the sample) and examine the distributions generated by this procedure.  

Our final measure of individual level prediction success is McFadden's prediction success 

index  (σ ).  This index is calculated from a prediction success table where the proportions of 

successful predictions for each alternative within the choice set are examined (Maddala). The 

index is then calculated as: 

(8) ∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

m

i

iii

N
N

N
N

1

2
.

....
σ    

where N.. is the total number of choice occasions, Nii is the number of correct predictions for 

alternative i, N.i is the total number of choice occasions where the choice is predicted to be i. 

Maddala notes that σ > 0 and that the maximum value of σ  (σ max)  is ∑
=

⎟
⎠
⎞

⎜
⎝
⎛−

m

i N
iN

1

2

..

.1 .  We report 

the normalized index (σ n) which involves dividing σ by σ max .  

 

Comparison of Predicted Trip Distributions 

The predictive abilities of the ten models were compared using the holdout sample of 157 

of the SK-RP respondents.  According to their reports, these individuals took a total of 336 

hunting trips to the 11 wildlife management zones in the study region in 1993.  The distribution 

of these trips is shown in Table 3.  WMZs 59 and 63 were by far the most popular choices.   

Each model in Table 2 was used to predict the trips taken by the individuals in the 

holdout sample.  The parameter vectors of these models were combined with the site attributes 

generated through expert judgements and travel costs to estimate the probability of each 
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individual visiting each WMZ.  These probabilities were then used to determine how the total 

number of trips (336) were distributed across the sites. 

The resulting aggregate predicted trip distributions are shown in Table 3 and for the RP 

and SP models the actual and predicted trip distributions are plotted in Figure 1.  The RP models 

predict the holdout sample trips reasonably well.  However, the Saskatchewan SP models predict 

poorly, particularly for WMZ 63.  The Alberta models appear to predict actual trips more 

accurately than the SK SP models.  

To further compare these distributions, the aggregate trip distributions were used to 

calculate the aggregate P2, the SAE, and the correlation coefficient between the observed shares 

and the predicted shares.  These statistics are reported in the last three columns of Table 3. The J-

ABSP and the RP models have the lowest P2 values, although their magnitudes suggest that the 

observed and predicted distributions are significantly different.  The SAE values, on the other 

hand, suggest that the two Alberta SP models and one joint model using Alberta SP information 

had the lowest errors in prediction.  Finally, the highest degree of correlation (largest correlation 

coefficient) between the aggregate observed and predicted trip distributions was associated with 

the Alberta SP models. 

The results of the individual prediction tests are shown in Table 4.  The overall 

correlation coefficient for individual (as opposed to aggregate) choices further highlights the 

higher accuracy of prediction of the RP models and the Alberta SP models. Those joint models 

using Saskatchewan SP information do not predict as well as those using the Alberta SP 

information.  The other individual level statistics further suggest that the prediction accuracy of 

the RP models, the Alberta SP models, and the joint models using the Alberta SP information is 

higher than that of the Saskatchewan models.  However, the normalized McFadden indices point 

to the Alberta SP models as the best predictors. 

Individual specific correlation coefficients were calculated for each of the 157 

individuals in the holdout sample using the predictions from each model.  The means of the 

resulting distributions of correlation coefficients do not differ appreciably among the 10 models 

(Table 4).  To further examine this information, histograms showing the distributions of these 

coefficients for one model in each group are shown in Figure 2.  What is striking about these 

distributions is the biomodal nature of the distribution of Saskatchewan SP correlations; most of 
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the coefficients are between 0.9 and 1.0 or close to 0.  This pattern is not evident for the other 

three models.   

 The 10 models were ranked according to their prediction performance for each of the 

tests.  The models that achieved the top five ranks are presented in Table 5.  Note that while each 

test provides a different ranking of the models, none of the models using the Saskatchewan SP 

data make the top five.  The aggregate level tests suggest that the J-ABSP2 and the AB-SP1 

model are superior models.  However, the χ2 tests rate the Saskatchewan RP models high. The 

individual level tests provide somewhat different rankings than the aggregate tests.  The overall 

correlation coefficient between predicted and actual choices suggests that the SK-RP2 model 

performs best, but both of the AB-SP models achieve good results as well.  The mean of the 

individual correlations and the σn’s also point to the performance of the RP models.  However,  

the models using the Alberta SP information alone or jointly with the RP data predict the holdout 

sample’s actual trips almost as well. 

    

Discussion 

 These findings are unexpected in a number of ways.  First, we expected the 

Saskatchewan RP models to outperform either the single or joint SP models in prediction 

success.  This expectation was based on the belief in the literature that models based on actual 

behavior would predict actual behavior well. While some of our comparisons between the RP 

and SP predictions identify greater accuracy with the RP data (e.g. overall correlation coefficient 

for individual choices, Table 4), the overall picture of the success of the RP models is not clear.   

Second, we reveal the rather surprising result that SP information from Albertan hunters 

who hunted in areas over XXX km away, predicts the behavior of the holdout sample far better 

than the SP information generated from individuals who actually hunted in the same area as the 

holdout sample. We expected the Saskatchewan SP models to out-perform the Alberta SP 

models.  Of the single data set models, the SK-RP and AB-SP models perform best.  Considering 

this, it is not surprising that a joint SK-RP and AB-SP model (J-ABSP2) generates the least 

predictive error of the joint models. 

 Explaining the prediction success of this Alberta data is challenging.  One possible 

reason may be the difference of the degree of error variance between the two sources of SP data.  

Information on this can be gained by examining the relative scale parameter in the joint models.  
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In these models, the scale of the SK-RP data was normalized to 1.  Because of the relationship 

between the relative scale parameter and the ratio of error variances (equation 4) above we can 

compare the relative error variance in the SK-SP and AB-SP data.  From J-ABSK2 model the 

relative scale ratio (µSK-SP/µRP) is about 0.6 (Table 2) and using equation (4), the variance of the 

SK-RP data is about 36% that of the SK-SP data.  Similarly from the joint estimation of the AB-

SP/SK-RP models (J-ABSP2) we attain a scale ratio of about 0.68, indicating that the variance of 

the SK-RP data is about 46% of the variance of the AB-SP data.  This identifies that the error 

variance of the SK-SP data is about 1.3 times that of the AB-SP data. 

 The difference in error variance between the SP data sets could be due to differences in 

the administration of the survey instruments.  The Saskatchewan SP survey was administered by 

mail, whereas the Alberta SP survey was administered in-person during group meetings.  The in-

person setting of the AB survey may have generated more thought-out and reliable responses.  In 

addition, the research team was present to explain the survey and provide answers to questions.   

This method of data collection may have led to superior data quality and this might have led to 

the development of superior choice models.  We believe that this difference in data collection 

methods between the two SP studies is a major explanator of the differences in the success of 

predicting the behavior of the holdout sample.  

Our results suggest that under some conditions SP models can perform as well or better 

than RP models.  This conclusion is contrary to those of Blamey et al. (1999), who find that RP 

data generates models with better predictive ability than SP models. However, their test is 

within-sample and is restricted to aggregate level prediction.  In our case the comparison 

involves a holdout sample, and we use a much wider array of aggregate and individual level 

prediction tests.  The quality of the SP data may explain prediction performance in cases where 

SP models predict poorly compared to RP models for the same area.  Our results suggest that 

carefully designed and implemented SP studies can generate models that predict actual behavior 

as well or better than RP models.  However, even greater benefits may be realized from a well-

conducted SP survey because, as shown here, it may be transferable to other regions and used in 

combination with site-specific RP data to generate useful joint models.  

Conclusions 

 This paper has generated a number of findings.  First we demonstrate that, contrary to 

what is often assumed, SP surveys can be used to estimate models that have predictive ability on 
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par with RP models.  These SP models appear to predict the choices of a holdout sample of data 

quite well, a result that is comforting to users of such approaches.  Unfortunately, some of the 

models, in this case even ones based on data collected in the region, did not predict choices well.  

Second, if the data quality is superior, it may be preferable to use a transferred SP model instead 

of a site-specific SP model to predict aggregate behavior (trip distributions) in the site of interest.  

Third, we find that combining site-specific RP data with transferred SP data generates a joint 

model with the best superior predictive ability. 

 From our findings we can draw a number of conclusions.  It appears that surveys 

conducted in person or via group session where the interviewer is present attain superior data 

quality relative to mail surveys.  Although in person or group administration may be more 

expensive the investment may be warranted given that data quality will be improved.  Further, 

fewer site-specific surveys would be warranted, since the data could be combined with site-

specific RP data in other regions to generate joint models.  The development of a few data 

collection efforts of high quality may provide data useful for benefit transfers.  The NOAA panel 

(Arrow et al.) made a similar proposal when they recommended the development of some 

benchmark surveys of passive use values.  

 These findings raise several issues requiring further research. Understanding the benefits 

of in-person surveys compared to mail-out surveys and the differences in how individuals 

respond to these methods would contribute to the development of better SP studies.  In pursuit of 

more realistic predictive models, we also need to demonstrate how well RP, SP and joint models 

predict behavioral responses of actual (real life) attribute changes.  The results reported in this 

paper, in conjunction with other current research (e.g. Swait, Louviere and Williams), suggest 

that SP models may be best at predicting responses of individuals facing resource tradeoffs.  This 

suggestion needs to be tested in other studies involving different activities and environments.  

  
 
 
 
References 
 
Adamowicz, W., J. Swait, P. Boxall, J. Louviere, M. Williams. “Perceptions versus Objective 
Measures of Environmental Quality in Combined Revealed and Stated Preference Models of 
Environmental Valuation.”  J. Environ. Econ. and Manage. 32(1997):65-84. 
 



 

17  

Arrow, K., R. Solow, P. Portnoy, E. Leamer, R. Radner and H. Schuman. Report of the NOAA 
Panel on Contingent Valuation. Fed. Reg. 4601-4614, (1993). 
 
Atherton, T. J. and M. E. Ben-Akiva. “Transferability and Updating of Disaggregate Travel 
Demand Models”. Transp. Res. Rec. 610(1976):12-18. 
 
Bergstrom, J. C. and P. De Civita. “Status of Benefits Transfer in the United States and Canada: 
A Review.” Can . J. Agr. Econ. 47(1999):79-97.   
 
Blamey, R. K., J.W. Bennett, J.J. Louviere, M.D. Morrison and J. C. Rolfe. “The Use of Policy 
Labels in Environmental Choice Modeling Studies.” Choice modeling research report No. 9, 
School of Economics and Management, University College. Canberra, Australia: University of 
New South Wales, 1999a. 
 
Blamey, R. K., J.W. Bennett, J.J. Louviere, and M.D. Morrison. “Validation of a choice 
experiment involving green product choice.” Choice modeling research report No. 10, School of 
Economics and Management, University College. Canberra, Australia: University of New South 
Wales, 1999b. 
 
Boxall, P.C., W.L. Adamowicz, J. Swait, M. Williams, and J.J. Louviere. “A Comparison of 
Stated Preference Methods for Environmental Valuation.” Ecol. Econ. 18(1996):243-253. 
 
Boxall, P.C. and B. MacNab. “Exploring the Preferences of Wildlife Recreationists for Features 
of Boreal Forest Management: A Choice Experiment Approach.” Unpublished manuscript under 
review, 1999. 
 
Horowitz, J.L. and J.J. Louviere. “Testing Predicted Choices Against Observations in 
Probabilistic Discrete Choice Models.” Mktg. Sci. 12(1993): 270-279. 
 
Koppelman, F. S. and C. G. Wilmot. “Transferability Analysis of Disaggregate Choice Models.” 
Transp. Res. Rec. 895(1982):18-24. 
 
Louviere, J.J.  Analyzing Decision Making: Metric Conjoint Analysis.  Sage University Papers 
Series No. 67. Newbury Park CA: Sage Publications, 1988. 
 
Louviere, J. “Combining Revealed and Stated Preferences Data: The Rescaling Revolution.” 
Paper prepared for Association of Environmental and Resource Economists, Lake Tahoe, 2 June 
1996.  
 
Louviere, J.J. “Relating Stated Preference Measures and Models to Choices in Real Markets: 
Calibration of CV Responses.” Paper prepared for the DOE/EPA Workshop on Using 
Contingent Valuation to Measure Non-Market Values. Herndon VA, 19-20 May 1994. 
 
Louviere, J.J., D. Hensher, and J. Swait. Choice Modeling Book, 1999. 
 



 

18  

Maddala, G.S. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge 
University Press, Cambridge, 1983. 
 
McFarlane, B.L. and B. MacNab. Human Dimensions of the Saskatchewan Forest Habitat 
Project. Information Report (forthcoming), Northern Forestry Centre, Canadian Forest Service, 
Edmonton, Alberta, Canada, 1999. 
 
McLeod, K, P.C. Boxall, W.L. Adamowicz, W.L., M. Williams, and J.J. Louviere. Incorporation 
of non-timber goods and services in integrated resource management. Project Report Number 
93-12, Dept. Rural Economy, University of Alberta, Edmonton, Alberta, 1993. 
 
Morrison, M. Choice Modeling Non-Use Values, and Benefit Transfer. PhD Thesis. University 
of New South Wales, Canberra, Australia, 1998. 
 
Morton, K.M., W.L. Adamowicz and P.C. Boxall. “Economic Effects of Environmental Quality 
Change on Recreational Hunting in Northwestern Saskatchewan: A Contingent Behaviour 
Analysis.” Can. J. For. Res. 25(1995):912-920. 
 
Ortuzar, J. and L. G. Williamson. Modeling Transport. New York: J. Wiley and Sons, 1990. 
 
Parsons, G.R and M.J Kealy. “Benefits Transfer in a Random Utility Model of Recreation.” 
Water Resour. Res. 30(August 1994):2477-2484. 
 
Siegel, S. Nonparametric Statistics for the Behavioural Sciences. New York: McGraw-Hill, 
1956. 
 
Swait, J. and J.J. Louviere. “ The Role of the Scale Parameter in the Estimation and Comparison 
of Multinomial Logit Models.” J. Mktg. Res. 30(1993):305-314. 
 
Swait, J.,  J.J. Louviere, and M. Williams. “A Sequential Approach to Exploiting the Combined 
Strengths of SP and RP Data: Application to Freight Shipper Choice.” Transp. 21(1994): 135-52.



 

19  

Table 1: List of Attribute Levels and Codes used in Analysis 
 
 Alberta Saskatchewan 
Attribute 
(Variable 
Name/s)  

Survey Levels Codes Survey Levels Codes 

No trails, cutlines or seismic lines -1  -1 
Old trails cutlines or seismic lines, not passable 
without ATV 

-1  -1 
Access on foot and or ATV only -1  -1 

Newer trails, cutlines or seismic lines, passable with 
4WD truck 

0   1 Passable with a 4WD vehicle 0   1 

Access 
(access1, 
access2) 

Newer trails, cutlines or seismic lines, passable with 
2WD vehicle 

1   0 Passable with a 2WD vehicle 1   0 

No hunters, other than those in my hunting party 
are encountered 

 1  0 No other people other than those in your hunting party are 
encountered 

1   0 

Other hunters, hunting on foot are encountered  0  1 Other people, on foot, are encountered 0   1 
Other hunters, on ATV’s, are encountered -1  -1 

Encounters 
(enc1, enc2) 

Other hunters, in trucks, are encountered -1  -1 
Other people on ATV’s are encountered  -1  -1 

No evidence of logging 1 Little or no evidence of logging 1 
Small (max. width 440m), irregular shaped cutovers, 
scattered patches of residual tree 

-1 
Forestry 
Activity 
(forest) 

Some evidence of recent logging found in the area -1 

Large, straight edged clearcut area, no residual trees -1 
Evidence of less than 1 moose per day 1   0 Evidence of 1 moose every 2 days  1 0 
Evidence of 1 to 2 moose per day  0  1 Evidence of 1 moose per day  0 1 
Evidence of 3 moose per day -1  -1 

Moose 
Density 
(moose1, 
moose2) Evidence of more than 4 moose per day -1  -1 

Evidence of 3 or more moose every 2 days -1  -1 

Mostly paved, some gravel or dirt 1 Road 
Quality Mostly gravel or dirt, some paved -1 

 

Only common species of wildlife  1 0 
Common species of wildlife and 1-2 species you’ve never 
seen before 

 0 1 
Wildlife 
Species 
(species1, 
species2) 

 

Common specie of wildlife, 1-2 species you’ve never seen 
before, and a chance of seeing a rare or endangered species 

-1 -1 

Urban (Edmonton) 1 Urban  1 Residence 
(urban) Rural (Whitecourt, Hinton, Edson, Drayton Valley) -1 Rural -1 
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Table 2:  Parameter Estimates and Other Information for Ten Canadian Moose Hunting Site Choice Models. 
 

Saskatchewan data Alberta data Joint RP SP data Variables SK-RP1 SK-RP2 SK-SP1 SK-SP2 AB-SP1 AB-SP2 J-SKSP1 J-SKSP2 J-ABSP1 J-ABSP2 
 
SP Intercept 1   -1.5491 -1.5685 -1.8380 -2.0362 -2.6244 -2.5953 -2.7963 -2.9519 
Travel Cost -1.7226 -2.1550 -0.2499 -0.4565 -0.6479 -0.8680 -0.4541 -0.7788 -0.9906 -1.2545 
Access 1 -1.7308 -1.8043 0.2101 0.2097 -0.2278 -0.2623 0.2715 0.2693 -0.3614 -0.3917 
Access 2   0.0546 0.0551 0.1795 0.1177 0.1553 0.1493 0.2888 0.1819 
Encounters 1 3.0265 3.0353 0.4785 0.4779 0.5262 0.5176 0.7777 0.7602 0.7787 0.7240 
Encounters 2   -0.0381 -0.0366 -0.0637 -0.0801 -0.1049 -0.0991 -0.0458 -0.0179 
Forestry Activity -0.6790 2 -0.6738 0.1907 0.1904 0.0642 0.0713 0.2547 0.2498 0.1082 0.1231 
Moose 1 -1.7190 -1.7571 -0.6205 -0.6240 -1.0406 -1.0364 -1.0549 -1.0386 -1.4998 -1.4111 
Moose 2   0.1011 0.1024 0.1829 0.1908 0.2424 0.2391 0.2359 0.2178 
Species 1 (SK) 0.5898 0.6400 -0.1485 -0.1495   -0.2529 -0.2479 0.0531 -0.0280 
Species 2 (SK)   0.0559 0.0564   -0.0853 0.0849   
Road Quality (AB)     -0.0004 -0.0778   -0.0055 -0.1181 
Urban Travel Cost (SK)  0.5216  0.2557    0.4161  -0.0262 
Urban Cost Travel (AB)      0.4966    0.7259 
Other Urban Interactions? No No No No No Yes No No No Yes 
Relative scale parameter  3       0.6024 0.6161 0.6699 0.7027 
           
Log-Likelihood -269.91 -269.58 -3723.7 -3701.8 -3338.5 -3289.2 -4020.4 -3998.1 -3618.6 -3567.3 
ρ2 0.2830 0.2839 0.1693 0.1741 0.2551 0.2662 0.1725 0.1771 0.2552 0.2658 
No. of choices 336 336 4080 4080 4080 4080 4416 4416 4416 4416 
           
1 This intercept represents a dummy variable which equals 1 for the “no hunt option” and 0 otherwise. 
2 Italics indicate lack of significance at the 95% level of confidence. 
3 RP scale normalized to 1. 
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Table 3:  Aggregate Actual and Predicted Trip Distributions and Tests Using RP Holdout Sample Data. 
 

Number of Trips to WMZ1  Prediction statistics2  
Model 62 63 64 65 66 67 73 55 68 60 59  χ2 SAE Correlation 

Coefficient 
 Predicted Trips   
SK-RP1 10.3 66.4 2.2 11.6 20.9 28.4 2.8 7.6 5.2 35.9 144.7 58.5 119.4 0.9170 
SK-RP2 10.7 69.0 2.3 11.3 19.7 27.6 2.8 7.6 5.3 36.5 143.2 56.8 114.7 0.9240 
SK-SP1 14.4 30.4 20.3 24.8 26.8 25.2 17.4 22.3 20.6 29.8 103.9 394.7 200.2 0.7588 
SK-SP2 15.2 31.7 20.9 24.3 25.8 24.0 16.1 20.8 19.0 30.9 107.3 349.4 191.6 0.7709 
AB-SP1 18.4 65.6 15.6 13.8 20.4 34.8 16.2 10.7 8.9 26.6 105.0 155.1 100.6 0.9624 
AB-SP2 18.7 64.0 15.4 13.7 19.1 31.6 19.9 10.7 9.3 26.6 107.1 215.7 105.2 0.9521 
J-SKSP1 9.2 35.0 12.3 15.1 20.2 21.9 13.1 12.6 11.0 24.2 161.6 182.2 189.9 0.7901 
J-SKSP2 10.0 36.5 13.0 14.8 19.0 20.5 12.4 11.7 10.2 25.3 162.6 170.1 188.1 0.7959 
J-ABSP1 11.5 71.3 8.2 7.4 15.8 25.7 9.3 5.4 4.2 22.4 154.9 64.9 116.7 0.9262 
J-ABSP2 12.9 73.1 11.5 8.2 15.6 29.2 5.8 5.7 4.2 24.1 145.8 40.9 102.1 0.9404 
 Actual Trips  
 25.0 101.0 6.0 11.0 18.0 35.0 2.0 4.0 4.0 17.0 113.0 
1 Total trips=336 
2 These statistics refer to the APS or aggregate χ2 test, the SAE or sum of absolute errors statistic, and the correlation coefficient computed between the observed 
and predicted trip distributions.
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Table 4: Individual Level Tests of Choice Prediction Success Using RP Holdout Sample 
   Data. 

 
All Data  

 
Model 

Correlation 
coefficient 

Mean of individual 
correlation coefficients 

σn 
1 

SK-RP1 0.4959 0.3889 0.0756 
SK-RP2 0.5242 0.3927 0.0850 
SK-SP1 0.3319 0.3712 0.0579 
SK-SP2 0.3486 0.3738 0.0626 
AB-SP1 0.5170 0.3806 0.0939 
AB-SP2 0.5191 0.3822 0.0967 
J-SKSP1 0.3345 0.3760 0.0067 
J-SKSP2 0.3513 0.3790 0.0118 
J-ABSP1 0.4826 0.3878 0.0442 
J-ABSP2 0.5095 0.3880 0.0675 
 

1 McFadden’s normalized prediction success index. 
2 Individuals who took 10 or more trips (4 in total) were removed. 
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Table 5: Summary of Aggregate and Individual Level Test Results. 
 

Aggregate Tests  Individual Level Tests 

Rank 
χ2 SAE Correlation 

coefficient 
 Correlation 

coefficient 
Mean of 

individual 
correlation 
coefficients 

σn 

1 J-ABSP2 AB-SP1 AB-SP1  SK-RP2 SK-RP2 AB-SP2 
2 SK-RP2 J-ABSP2 AB-SP2  AB-SP2 SK-RP1 AB-SP1 
3 SK-RP1 AB-SP2 J-ABSP2  AB-SP1 J-ABSP2 SK-RP2 
4 J-ABSP1 SK-RP2 J-ABSP1  J-ABSP2 J-ABSP1 SK-RP1 
5 AB-SP1 J-ABSP1 SK-RP2  SK-RP1 AB-SP1 J-ABSP2 
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 Figure 1: Comparison of Actual and Predicted Aggregate Trip Distributions.  
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Figure 2: Histograms Comparing Distributions of Individual Correlation Coefficients between Actual and Predicted Trips. 
 
 
 
 

0

10

20

30

40

50

60

70

-0.
2

-0.
1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation

Fr
eq

ue
nc

y SK-RP2
SK-SP2
AB-SP2
J-ABSP2


