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Abstract 

The work described within this thesis details explorations into the 

area of molecular luminogens, in particular using zirconium-mediated 

coupling to access novel classes of color tunable emitters based on 

germanium, tellurium, and butadienes.  

Chapter 2 features new class of air-stable phosphors termed as 

spirocyclic germafluorene-germoles. This new library of color tunable 

luminogens was prepared using Suzuki-Miyaura, Stille, and zirconocene-

mediated couplings. In addition, the synthesis and properties of homo- and 

co-polymers based on spirocyclic germafluorene-germole unit were 

explored and challenges associated with these materials are discussed 

herein. 

Chapter 3 describes a new general Suzuki-Miyaura cross-coupling 

protocol for the synthesis of symmetrical diarylalkynes. They were further 

transformed into new tetraarylbutadienes, and their fluorescent properties 

and photo- and thermal stability were investigated. Attempts to prepare 

potentially blue luminescent tin-capped building block based on a cumyl-

substituted tetraarylbutadiene for further Stille polymerization protocols is 

reported. 

In Chapter 4 the synthesis and characterization of new symmetric 

tellurium heterocycles for both hole-transport and light-emitting 

applications is presented. This work builds upon the general alkyne 

synthesis route introduced in Chapter 3.  
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1.1. Brief overview of metallacycles 

Metallacyclic compounds play a major role in the development of 

synthetic chemistry.1 The most common synthetic route to metal-

containing rings is cyclometallation (Equation 1.1),2 where a M-C bond is 

formed during the cyclization process.3,4 Selected examples of 

catalytically active metallacycles (1-5) are presented in Figure 1.1. 

 
 

Heterocycles containing transition metals are known to activate 

olefins and acetylenes in catalytic processes (e.g., complex 1),5 as well as 

for the electro- and photochemical reduction of water to hydrogen6 (e.g., 

complex 2), cycloadditions,7 and different functionalization reactions.8 

Moreover, five-membered heterocyclic compounds containing transition 

metals such as Pt, Pd, Rh, Ir, Ru, Os and Au, as well as N, P, O and S-

coordinating atoms (e.g., 3 and 4) have been extensively explored as 

anticancer agents.9 Cyclometallated platinum(II),10 iridium(III) 11 and 

relatively unexplored gold(III) complexes (5)12 have been explored in 

organic light-emitting devices as efficient phosphorescent luminophors 

with tunable color emission.  
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Figure 1.1. Selected examples of metallacycles. 

 

Metallacycles have been thoroughly explored as building blocks in 

supramolecular chemistry,13 where one of the main goals is to develop 

molecular architectures that have similar properties to natural systems.14 

Recent examples include chiral metallacycles that mimic natural 

enzymes,14 metallacycles for fullerenes hosts15 and supramolecular 

coordination complexes, obtained through coordination-driven self-

assembly.16 The latter also have been highlighted as an important strategy 

for synthesis of fluorescent metallacycles and metallocages for ion 

detection.17 

Metallacycles have become a major area of investigation in 

organometallic chemistry, and are normally generated in situ during 

reductive coupling of two unsaturated organic substrates on a low valent 

transition metal center.18 Zirconacycles are useful synthons19 for the one-
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step preparation of carbocycles (important precursors in the synthesis of 

natural products and functional materials),20 cyclic ketones,21 pyridine and 

benzene derivatives,1b as well as polyacenes with electrical 

conductivity.18b Recent advances in the chemistry of group 4 metallacycles 

have been highlighted in multiple reviews by Tilley,22 Tanabe23, 

Takahashi,24 and Rosenthal.25  

Another useful reaction of zirconacycles is Fagan-Nugent 

transformation,26 affording main group element heterocycles with a wide 

range of applications from nitroaromatic explosives detection27 to organic 

light-emitting devices.28 Zirconacyclopentadienes, related heterocycles 

and their properties will be discussed in detail in the next section as these 

species play a central role in advancing the chemistry described in this 

Thesis. 

 

1.2. Metallacycle transfer 

1.2.1. Zirconacyclopentadienes  

In the 1970s, Rausch and Floriani first reported the reductive 

coupling of the group 14 metallocenes Cp2M(CH2)2 or Cp2M(CO)2 (M = 

Zr, Ti, Hf; Cp = ɖ5-C5H5) with alkynes to give symmetrically 

tetrasubstituted metallocyclopentadienes Cp2MC4R4.
29,30 In 1961, the first 

tetraaryl-substituted zirconacyclopentadiene Cp2ZrC4Ph4 was synthesized 

by Braye and Hübel from the condensation reaction between zirconocene 

dichloride (Cp2ZrCl2) and 1,4-dilithio-1,2,3,4-tetraphenylbutadiene; this 
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latter reagent can be prepared from diphenylacetylene and finely divided 

lithium metal.31  

The field of zirconacyclopentadienes has grown immensely due to 

extensive development of various formally low-valent zirconium(II) 

precursors, many of which can be generated and used in situ. Examples of 

reactive sources of ñCp2Zr(II)ò include Cp2ZrCl2/Na,32 Cp2ZrCl2/Mg,30b 

Cp2ZrCl2/Ln (Ln is an alloy of Ce, La, Nd, and Pr),33 Cp2ZrBu2 (Negishiôs 

reagent),34 Cp2ZrEt2 (Takahashiôs reagent),35 and 

Cp2Zr(py)(Me3SiCCSiMe3) (Rosenthalôs reagent).
36 Insights into the 

reaction of Cp2ZrCl2 with nBuLi to give the commonly used zirconacycle 

precursor Cp2ZrBu2 were provided by both the Negishi and Harrod 

groups. First, Negishi and co-workers reported the reversible displacement 

of Cp- from a zirconium center during the reaction of excess nBuLi (3 

equiv.) with Cp2ZrCl2, leading to the formation of a 1:1 mixture of 

CpZrBu3 and LiCp.37  Meanwhile, Harrod and co-workers studied 

decomposition of the reaction mixture of initially generated Cp2ZrBu2 

(i.e., ñCp2Zrò source) at room temperature, where predominantly Zr(III) (7 

and 8) and Zr (IV) (6 and 9) products were identified and characterized by 

EPR or multidimensional, multinuclear NMR spectroscopy (Scheme 

1.1).38  
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Scheme 1.1. Products of thermal decomposition of dibutylzirconocene 

reaction mixture (ñCp2Zrò source) at room temperature. 

[Adapted with permission from Harrod and co-workers, Organometallics, 

1997, 16, 1452-1464. Copyright 1997 American Chemical Society]. 

 

1.2.2. Synthesis of bicyclic zirconacycles  

When linked diynes are reacted with Cp2Zr(II) sources, one can 

obtain bicyclic zirconacycles; a general mechanism for this reaction is 

presented in Scheme 1.2. Investigation of the mechanism was performed 

by Negishi30c and Takahashi,39 using alkynes. In the reaction of ñCp2Zrò 

with two equivalents of PhCſCPh, zirconacyclopropene 10 (product of 

oxidative coupling) was trapped by stabilization with electron-donating 

phosphines PR3 (PR3 = PMe3 and PMePh2), and characterized by X-ray 

crystallography. Isolation of 10 supports the mechanism (Scheme 1.2), 

involving the initial generation of a zirconacyclopropene followed by its 

intramolecular carbometallation with the remaining free alkyne moiety of 

a diyne.30c In the proposed mechanism by Negishi and co-workers30c and 

later confirmed by DFT calculations from Tilley group,40 the rate-
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determining step in the reaction of Cp2ZrCl2 with nBuLi in the presence of 

diyne34 is formation of ñCp2Zrò. ñCp2Zrò is a 14-electron species with two 

valence-shell empty orbitals and at least one filled nonbonding orbital for 

-́complexation/carbometallation of diyne, leading to the formation of a 

zirconacycle.30c, 34, 37b, 41  

 
 

Scheme 1.2. Mechanism of formation of a zirconacycle. Structure of the 

isolated zirconacyclopropene 10. 

[Adapted with permission from Negishi and co-workers, Tetrahedron Lett. 

1986, 27, 2829-2832 and J. Am. Chem. Soc. 1989, 111, 3336-3346. 

Copyright 1986 ScienceDirect and 1989 American Chemical Society]. 

 

Asymmetric zirconacycles can be obtained either by the step-wise 

addition of two different alkynes or by addition of two equivalents of an 

asymmetrically-substituted alkyne (R1-CſC-R2). In the former case, 

Takahashi and co-workers42 found that Cp2ZrEt2 or Cp2ZrBu2 in the 

presence of ethylene gas could be used to obtain unsymmetrical 

zirconacycles (Scheme 1.3). It is worth noting that when using Cp2ZrEt2 

as a precursor (generated in situ from Cp2ZrCl2 and EtMgBr) small 

amounts (up to 10 %) of homocoupled alkynes (diynes) as well as low 

yields of cross-coupling products for silyl-substituted alkynes were 
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reported,35 while Cp2ZrBu2 in the presence of ethylene gas gave excellent 

selectivity and yields for  ɓ,ɓ-isomer (Scheme 1.4).30d 

 
 

Scheme 1.3. Synthesis of asymmetrical zirconacycles using two different 

alkynes. 

[Adapted with permission from Takahashi and co-workers, Bull. Chem. 

Soc. Jpn. 1999, 72, 2591-2602. Copyright 1999 The Chemical Society of 

Japan]. 

 

In the case of asymmetrical alkynes, substituents can adopt ŬŬ, Ŭɓ 

or ɓɓ positions on a metallocyclopentadiene ring (Scheme 1.4), and 

Tilleyôs group investigated the regioselectivity of the reaction based on the 

steric and electronic nature of the substituents. Using Erkerôs findings 

about the reversibility of zirconacycle formation in the presence of 

SiMe3/
tBu-substituted alkynes,43 Tilley and others reported that sterically 

demanding substituents (e.g., R3Si, tBu,44 PPh2
45) prefer to occupy Ŭ 

positions, while electron-withdrawing (e.g., C6F5, mesityl) prefer ɓ-

positions, whereas mesityl groups (due to their steric bulk) also promote 

the reversibility of alkyne couplings.22 Indeed, based on the step-wise 

mechanism (Scheme 1.5), both steric and electronic factors influence the 

structure of the transition state, and thus, the substitution pattern in the 

final product. For instance, based on multidimensional NMR spectroscopy 
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studies and DFT calculations of the isomers, Tilley and co-workers 

rationalized that in the case of an electron-withdrawing C6F5 group, 

electronic factors (i.e., charge distribution in the transition state) controls 

the orientation of at least one alkyne as they are coupled. During the 

formation of an asymmetric transition state, which has two unequally 

activated alkyne moieties, one strongly and one weakly bound alkyne is 

present at the zirconium center. This ɓ,ɓ-regioselective coupling reaction 

with C6F5-susbstituted alkyne was used to obtain electron-transporting 

conjugated polymers (e.g., 11).40 

 
 

Scheme 1.4. Possible isomers of zirconacycles derived from coupling 

asymmetric alkynes. Structure of the conjugated polymer 11. [Adapted 

with permission from Tilley and co-workers, Acc. Chem. Res. 2011, 44, 

435-446. Copyright 2011 American Chemical Society]. 
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Scheme 1.5. Step-wise mechanism of alkyne coupling to form asymmetric 

zirconacycles. 

[Adapted with permission from Tilley and co-workers, Acc. Chem. Res. 

2011, 44, 435-446. Copyright 2011 American Chemical Society.] 

 

Zirconacycles are used in the synthesis of challenging organic 

compounds through reactions with different electrophiles to prepare 

benzene derivatives,46 (hetero)acenes,47 indenes,48 fluorenes,48 pyridines,49 

multi-substituted dienes,50 enones,51 and linear trienes.52 Selected synthetic 

transformations are presented in Scheme 1.6. The transformation of 

greatest relevance to this Thesis is the reaction stated at the beginning of 

this Introduction, namely the preparation of inorganic element-containing 

five-membered metalloles via formal zirconium-element exchange. 
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Scheme 1.6. Selected synthesis of organic compounds using 

zirconacycles. 

 

1.3. Metalloles: synthesis and challenges 

Metalloles are derivatives of cyclopentadiene whereby a methylene 

unit is replaced by a main group element (E), such as S, Se, Te, N, P, As, 

Sb, Bi, Si, Ge, Sn, B, Al, Ga and others.53 In 1988 William Nugent and 

Paul Fagan first reported the synthesis of main group five-membered 

heterocycles through the transfer of a butadiene fragment from 

zirconacyclopentadienes to main group elements, a process known as 

metallacycle transfer (Equation 1.2).26 In general, these metallole 

syntheses are facile and versatile.54 However due to low nucleophilicity of 

zirconacycles,53 there are some reaction scope limitations, as evidenced by 

the very slow reaction of some p-block element halides with less polar E-

X bonds. For example, SiBr4 reacts with Cp2ZrC4Me4 over two days at 

150 °C to give only a 28 % yield of the resulting silole, Br2SiC4Me4.
54 
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Nugent and Fagan proposed various transition states for 

metallacycle transfer (Figure 1.2) based on the coordination number of the 

starting main group halide. Accordingly the authors emphasized that 

coordinative unsaturation and low steric bulk at the main group center 

facilitates metallacycle transfer. Also as one descends a group, the weaker 

nature of the E-X bonds coupled with the generally larger sizes of the 

main group elements leads to much faster reactivity.54 

 
 

Figure 1.2. Proposed transition states during the first step of metallacycle 

transfer.  

[Adapted with permission from Fagan and co-workers, J. Am. Chem. Soc. 

1994, 116, 1880-1889. Copyright 1994 American Chemical Society.] 

 

In order to expand the substrate scope and increase the 

effectiveness of metallacycle transfer, other strategies have been 

developed (Scheme 1.7) such as: a) transmetallation with 1,4-dilithio-1,3-

butadienes55 and b) copper-mediated transmetallation.56 In general these 

alternate methods afford more reactive Li-C and Cu-C bonds in relation to 
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the Zr-C bonds in zirconacyclopentadienes. Specifically protocols a/b 

outlined in Scheme 1.7 were used to gain access to boroles (routes A,57 

B58), alumoles (A),59 siloles (A),60 stannoles (B),61 pyrroles (A,62 B63,64), 

stiboles (A),65 bismoles (A),66 and thiophenes (B).67 

 
 

Scheme 1.7. Alternative approaches for metallole formation.  

[Adapted with permission from Xi and co-workers, Acc. Chem. Res. 2015, 

48, 935-946. Copyright 2015 American Chemical Society.] 

 

Metalloles are of interest in understanding the fundamental 

reactivity profiles of inorganic heterocycles such as the Diels-Alder [4+2] 

cyclodimerization of boroles.68 Metalloles are also frequently used as 

building blocks for optoelectronic materials69 including in photovoltaic 

devices,70 organic light-emitting diodes,71 organic field effect transistors,72 

chemical sensors, and in bioimaging materials.73 The main focus of this 

Thesis is synthesis and optoelectronic properties of new germoles and 

tellurophenes, and pertinent review articles discussing other group 14 and 

16 element-containing heterocycles can be found in the literature.53, 74 



14 
 

 

1.4. Germoles: an overview 

1.4.1. Synthesis  

Germoles (or germacyclopentadienes) are -́building blocks with 

unique electronic and optical properties. One characteristic feature of these 

species is the presence of a low-lying LUMO due to ů*-ˊ* conjugation in 

the ring, arising from effective mixing of the ů* orbitals of two exocyclic 

Ge-C bonds and the ˊ* orbital of the butadiene moiety of the five-

membered ring (Figure 1.3).75 In comparison to the lighter silicon 

congeners (siloles), the energies of the Ge-R and Si-R ů* orbitals are 

similar, leading to comparable LUMO levels in each heterocycle. The 

germanium atom also stabilizes/lowers the HOMO level of the diene 

compared to the carbon analogues75, thus possibly increasing the thermal 

stability of germoles.    

 
 

Figure 1.3. Left:  ˊ* orbital diagram of the butadiene moiety in a germole. 

Right:  ñSideviewò of interaction of Ge with two exocyclic ligands (i.e., 

ů* orbital of exocyclic Si-C bonds) and the resulting ů*- ˊ* orbital 

overlap.  
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The first germole derivative (Ph2GeC4Ph4, 12) was reported by 

Leavitt and co-workers in 1959 from the reaction of Ph2GeCl2 with 1,4-

dilithiotetraphenylbutadiene.76 In 1969 Curtis used a similar salt 

elimination reaction method to prepare a series of functionalized 

tetraphenylsubstituted germoles 13-1777 (Figure 1.4) and characterized 

these materials by elemental analysis. Since this important early work, 

interest in germacyclopentadienes has grown rapidly and a number of 

derivatives are now known (see Figures 1.4-1.6).78  

 
 

Figure 1.4. Representative examples of germoles. 

 

Selected examples of germoles obtained by the initial dimerization 

of functionalized acetylenes in the presence of lithium metal (13-27) 

(Equation 1.3), followed by Fagan-Nugent transmetallation (28-37) are 

presented in Figure 1.4. 
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Electrochemical investigation of the germoles 19, 20 and 22 

showed at least two irreversible oxidation waves and a dependence of the 

oxidation potential on the nature of the germanium-bound substituents in 

the germacyclopentadiene ring. For example, compound 22, bearing two 

electron-donating SiMe3 groups, has an increased HOMO energy level and 

decreased oxidation potential when compared to 19 which has electron-

withdrawing Cl groups at the germanium atom.79 Density functional 

theory (DFT) was used to compute the electronic structures of 18 and 20 

and showed that the HOMO and LUMO levels are mainly localized in the 

germole ring and on the two phenyl groups at the 2,5-positions.80  

 
 

Scheme 1.8. Diels-Alder reaction of germole 20.  

 

Germoles 18, 20 and 24 also take part in Diels-Alder cycloaddition 

reactions with different dienophiles (e.g., 20 with tetracyanoethylene, 

Scheme 1.8) to form 7-germanorbornadienes and 7-germanorbornenes, 

and the generated norbornenes were shown to be viable precursors for 
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generation of reactive germylenes (R2Ge:).81 Tilley and co-workers 

reported a reaction between (Me3Si)(Me)GeC4Me4 (29) and TaCl5 to give 

an ɖ4-germole ligand instead of the target ɖ5-germolyl tantalum complex 

38 (Equation 1.4).78f 

 
 

Synthetic routes to germoles are not limited to the Fagan-Nugent 

metallacycle transfer reaction or to the coupling of 1,4-dilithiobutadienes 

with germanium halides. For example the asymmetrically-substituted 

germoles 39-41 were obtained from the reaction of the heavy carbene 

analogue dimethylgermylene, Me2Ge, with the corresponding alkynes 

(Scheme 1.9).82 In addition, the 1,1-dihydro-germole 42 was synthesized 

via UV irradiation of matrix isolated 1,1-diazido-1-germacyclopent-3-ene 

(Scheme 1.9)83 while the tetrahydrogermoles (R2GeC4H4; R = Me, Mes or 

nBu; 43-45) were obtained from the palladium-catalyzed coupling of 

cyclogermanes (e.g., (Mes2Ge)3) with acetylenes (Figure 1.5).84   
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Scheme 1.9. Synthesis of germoles 39-42. 

 

 
 

Figure 1.5. Selected examples of symmetric and asymmetric 2,5- and 3,4-

substituted germoles. 

 

Germoles functionalized exclusively at the 2- and 5-positions were 

obtained in good yield by Murakami and co-workers through the 

ruthenium-catalyzed (i.e., [Cp*Ru(MeCN)3]PF6) trans-hydrogermylation 

of 1,3-diynes with dihydrogermanes (Ph2GeH2). The same strategy was 

successfully applied to synthesis of 2,2´-bigermoles.85 Moreover, the area 

of 3,4-substituted germoles was extensively developed in the 1980s by 

Dubac and Manuel.86 These germoles were obtained by the dehydration of 

1-germacyclopent-4-en-3-ols on alumina (290-300 °C) or from the 

thermolysis of 1-germa-3-phenylcarbamoycyclopent-4-enes to give 
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compounds 49-52 in good yield. The 3,4-substituted germoles obtained 

readily formed ˊ-complexes with electron deficient metal carbonyls to 

give compounds of the general form (ɖ4-metallole)M(CO)3 (M = Fe or 

Ru).87 

Tobitsu and Chatani developed a modular synthesis of 

benzogermoles (e.g., 53-57) through the Rh(I)-catalyzed activation of 

C(sp3)-Ge bonds in 2-germylphenylboronic esters in the presence of 

alkynes (Scheme 1.10).88 Germoles with electron-deficient -BEt2 

substituents at the 3-position 59-63 (Scheme 1.10) were prepared by 

Wrackmeyer via the 1,1-organoboration of alkyn-1-ylmetal compounds 

Me2Ge-CſC-R1 (R1 = alkyl, aryl, silyl, or stannyl). The syntheses 

involved intermolecular and then intramolecular activation of the M-C 

bonds by electron-withdrawing triorganoborane BEt3, followed by a 

selective new C-C bond formation via a 1,2-shift of an ethyl group from 

boron to carbon (Scheme 1.10).78e, 89 

 
 

Scheme 1.10. Synthesis of germoles 53-62. Mechanism of Wrackmeyer 

transformation. 
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1.4.2. Anionic germoles and the question of their aromaticity  

The synthesis, structures, physical and chemical properties of 

mono- and dianions of germoles were extensively studied by Saito, West 

and Boudjouk.90 Dianionic germoles are considered aromatic, while in 

contrast to the monoanionic siloles, there is no evidence of aromaticity 

within monoanionic germoles with the pyramidal geometries at the 

germanium atom (Figure 1.6). 

 
 

Figure 1.6. Synthesis of monoanionic germoles.  

 

Reduction of 1,1-dichloro-derivatives 19 and 31 with excess 

lithium in THF gave the dianionic germoles Li2GeC4R4 with ɖ5- and ɖ1/ɖ5-

coordination modes of lithium and equal C-C distances within the germole 

ring (i.e., delocalized ˊ-system), as determined by X-ray crystallography.91 

The related dilithioplumbole Li2[PbC4Ph4] (63) was prepared by Saito and 

co-workers through the reduction of hexaphenylplumbole, and is the 

heaviest congener of the cyclopentadienyl dianion. This species was 

shown to have aromatic-type bonding in the PbC4 ring by X-ray 

crystallography, NMR spectroscopy and theoretical calculations.92 

Moreover, Dysard and Tilley studied the coordination of the 

tetramethylgermole dianion [GeC4Me4]
2-, and demonstrated binding of 
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this dianion to one metal (e.g., Hf and Zr) in a ɖ5-fashion,93 or to two 

metals (e.g., Hf/Rh and Hf/Ir) to yield bimetallic complexes with metals in 

ů,ˊ-binding modes.94 West and co-workers used [GeC4Ph4]
2- in the 

reductive coupling of aldehydes to obtain 1,2-diols as the sole organic 

product.95 

1.4.3. Molecular diaza -, dinaphto -, dithieno -, and 

diselenoger moles, and polymers of germoles,  and their 

optoelectronic applications  

The Heinicke group prepared various diazagermoles (64-66; 

Figure 1.7) which can be viewed as heavier homologues of 

diaminocarbenes.96 Dinaphthoheteroles are of interest for their 

optoelectronic properties, thus Kurita and co-workers synthesized the first 

examples of optically active group 14 dinaphthogermoles (Figure 1.7). 

These species were prepared by a condensation reaction between 2,2'-

dilithio-1,1'-binaphtyl and dichlorogermanes (Equation 1.5). Compounds 

67 and 68 are fluxional on the NMR time scale at elevated temperatures 

(50-80 °C) and the estimated energy barrier for racemization in 68 is 80 ± 

2 kJ mol-1.97 

 
 

Figure 1.7. Selected examples of diaza- and dinaphthogermoles. 

 
































































































































































































































































































































































































































































































































































































































































































