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Abstract

The work described within this thesis details explorations into the
area of molecular luminogenin particular using zirconiurmediated
coupling to access novel classes of color tunable emitters based on

germanium, tellurium, and butadienes.

Chapter 2 featuresew class of aistable phosphors termed as
spirocyclic germafluorengermoles This new library of color tunable
luminogers was prepared using Suzukiliyaura, Stille, and zirconocene
mediated couplings. laddition,the synthesis and properties of honamd
co-polymers based orsprocyclic germafluorengermole unit were
explored andchallenges associated with these materaaks discussed

herein.

Chapter 3 describes a new general Sumlifaura crosscouping
protocol forthe synthesis of symetrical diarylalkynes. They wefarther
transformed intcnew tetraarylbutadienes, and th#irorescent properties
and phote and thermal stability werevestigated Attempts to prepare
potentiallyblue luminecent in-capped building blockased on a cumyl
substituted tetiaylbutadienefor further Stille polymerizatiomrotocols is

reported.

In Chapter 4he syrnthesis and characterization of new symmetric
tellurium heterocycles for bothholetransport and lightemiting
applications is presented’his work builds upon the general alkyne

synthesis route introduced in Chapter 3.
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Figure 3.20.DSC trace ofameasured undera{30-600 °C,

scan rate = 10C/min).

Figure 3.21.DSC trace oi7b measured undera{30-600 °C,
scan rate = 10 °C/min)

Figure 3.22.DSC trace o8 measured underJd{30-500 °C,

scan rate = 10 °C/min)
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Figure 3.28.1B{!H} NMR (in CDCls) spectrum of compound
1
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Figure 3.30.13C{*H} NMR (in CDCls) spectrum ofl,2-bis(4
isopropylphenyl)ethyn€2).

Figure 3.31.1H NMR (in CDCk) spectrum of crud@ after

alternative to column chromatography purification method: ¢
(-30 °C) diethyl ether wash €24 mL).

Figure 3.32.13C{'H} NMR (in CDCls) spectrum of crud2
after alternative to column chromatography purification
method: cold{30 °C) diethyl gher wash (2 4 mL).

Figure 3.33.1H NMR (in CDCk) spectrum ofL,2-bis(thiophen
2-yl)ethyne(3).
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Figure 3.34.3C{*H} NMR (in CDCl3) spectrum ofl,2-
bis(thiopher2-yl)ethyne(3).

Figure 3.35.!H NMR (in CDCk) spectrum of cruda after

alternative to column chromatography purification method: ¢
(-30 °C) diethyl ether wash €24 mL).

Figure 3.36.2*C{*H} NMR (in CDCls) spectrum of cruda
after alternative to column chromatography purification mett
- cold (-30 °C) diethyl ether wsh (23 4 mL).

Figure 3.37.'H NMR (in CDCk) spectrum obis(3-hexyk2-
thienyl)ethyng(4).

Figure 3.38.23C{*H} NMR (in CDCls) spectrum obis(3-
hexyl2-thienyl)ethyng(4).

Figure 3.39.'H NMR (in CDCk) spectrum ofL,2-
bis(triphenylaminepthyne(5).

Figure 3.40.1*C{'H} NMR (in CDCls) spectrum ob.

Figure 3.41."H NMR (in CDCk) spectrum of crude compoun:
5 after diethyl ether wash.

Figure 3.42.1H NMR (in CsDe) spectrum of
bis(cyclopentadienyl)zirconiug,3,4,5tetra(4
isopropylphenyl)methanidga).

Figure 3.43.23C{*H} NMR (in CsDs) spectrum of
bis(cyclopentadienyl)zirconiug,3,4,5tetra(4
isopropylphenyl)methanid@a).

Figure 3.44.!H NMR (in CDCk) spectruncis,cis-1,2,3,4
tetra(4isopropylbenzene),3-butadiene 7a).

Figure 3.45.13C{*H} NMR (in CDCls) spectrum of compound
7a.
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Figure 3.46.'H NMR (in CDCk) spectrum otis,cis-1,2,3,4
tetra(2thienyl)-1,3-butadieng7b).

Figure 3.47.33C{'H} NMR (in CDCls) spectrum of compound
7b.

Figure 3.48.1H NMR (in CDCk) spectrum otis,cis-1,2,3,4
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Figure 3.50.UV/Vis absorption spectra ebmpound in
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Figure 3.56.UV/Vis absorption spera ofthe film of 8 before
and after photobleaching

Figure 4.1.Thermal ellipsoid plot (30% probability) of

compound2awith hydrogen atoms omitted for clarity.

Figure 4.2. Thermal ellipsoid plot (30% probability) of
compound2b with hydrogeratoms and chloroform solvate

omitted for clarity.
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Chapter One : Introduction



1.1. Brief overview of metallacycles

Metallacyclic compoundglay a major role in the development of
synthetic chemistry. The most common synthetic route to metal
containing rings is cyclometallation (Equation 22iyhere a MC bond is
formed during the cyclization proce¥s. Selected examples of

catalytically active metallacycleg-6) are presented in Figure 1.1.

o —C
— M + RH (1.1)
C-H /

C= CaIkyI: Caryl: Calkenyl
E = Neutral or anionic element
R = leaving group

Heterocycles containingransition meta are known to activate
olefins and acetylendn catalytic processe®.g, complex1),® as well as
for the electre and photochemical reduction of water to hydrégeng,
complex 2), cycloadditions, and different functionalization reactiofs.
Moreover, fivememberedheterocyclic compoundsontaining transition
metals such aBt, Pd, Rh, Ir, Ru, Os amdlu, as well as N, P, O and S
coordinating atomse(g, 3 and 4) have been extensively explored as
anticancer agenfs.Cyclometallated platinum(IB? iridium(lll)** and
relatively unexplored gold(lll) complexe$)? have been exploreth
organic lightemitting devices as efficient phosphorescent luminophors

with tunable color emission.



5 ,,/\_l2+ Ph
N

N-H
Pld—CI
PPh,
2 3
N ,QQ
Au
4 5

Figure 1.1.Selected examples of metallacycles.

Metallacycles have been thoroughly explored as building blocks in
supramoleculachemistry*® where one of the main goais to develop
molecular architectures thatve similar properties toatural system¥:
Recent examples includehiral metallacycles that mimic natural
enzymes; metallacycles for fullerenes hosStsand supramolecular
coordination complexes, obtained through coordinatioven self
assembly® The latter also have been highlighted as an important strategy
for synthesis of fluorescénmetallacycles and metallocages for ion

detectiont’

Metallacycles have become amajor area of investigation in
organometallicchemistry, and are normally geatd in situ during
reductive coupling of two unsaturated angc substrates on a low valent
transition metal centéf Zirconacycles are useful synthdhor the one

3



step preparation of carbocycles (import precursors ithe synthesis of
natural products and functional materigfsyclic ketone€? pyridine and
benzee derivatives? as well as polyaceneswith electrical
conductivity!8® Recent advances in the chemistry of group 4 metallacycles
have been highlighted in multiple reviews by Tilféy,Tanabé®,

Takahashf* and Rosenth&P

Another useful reaction of zirconacycles is Fagament
transformatiorf® affording main group element heterocycles with a wide
range of applications from nitroaromatic explosives detettimnorganic
light-emitting device$® Zirconacyclopentadienes, related heterocycles
and their properties will be discussed in detail in the next sectitreas
species play a central role in advancing the chemistry described in this

Thesis.

1.2. Metallacycle transfer
1.2.1. Zirconacyclopentadienes

In the 1970s, Rausch and Floriani first reported the reductive
coupling of the group 14 metallocenes:RIPCH2)2 or CpM(CO), (M =
Zr Ti , H¥CsHs) @ith alkynesd to give symmetrically
tetrasubstituted metallocyclopentadienesNdpsR4.2%%° In 1961, the first
tetraarylsubstituted zirconacyclopentadiene@iCsPhs was synthesized
by Braye and Hibel from the condensation reaction between zirconocene
dichloride (CpzZrCly) and 1,4dilithio-1,2,3,4tetraphenylbutadiene; this

4



latter reagent can be prepared from diphenylacetylene and finely divided

lithium metal3!

The field of zirconacyclopentadienes has grown immensely due to
extensive development of various formally lealent zirconium(ll)
precursors, many of which can be generated andinsstl. Examples of
reactive saZu( énelydd @pZrClANED CpZrCl/Mg,3P
CpZrClz/Ln (Ln is an alloy of Ce, La, Nd, and PACpZrBuz( Ne gi shi 6s
reagenty? CpZrEt; (Takahashi 0§® andeagent
CpZr(py)(MesSiCCSiMe) ( Rosent h#lingights inte athpe nt ) .
reaction of CpZrCl, with "BuLi to give the commonly used zircangle
precursor CgZrBu, were provided by both the Negishi and Harrod
groups. First, Negishi and aworkers reportedhereversible displacement
of Cp from a zirconium center during the reaction of exc#sli (3
equiv.) with CpZrClz, leading to the fanation of a 1:1 mixture of
CpZrBw and LiCp¥’ Meanwhile, Harrod and eworkers studied
decomposition ofthe reaction mixture of initially generated £ZpBu.

(he, BZQpd0 source) at room temper7atur e,
and8) and Zr (IV) 6 and9) products were identified and characterized by
EPR or multidimensional, multinuclear NMR spectroscofscheme

1.1)38

wher



—==" Cp,Zr. .ZrCp,

[CpZZr\/( <—>szer
/ wrsuz — f\
Bu
CpyZrBu, 41- CpoZr. p2ZrBus

C

CppZr(BuH — = Cp2 ZF\H,ZFCPz

BuH -BuH Bu

-BuH - BuH

Me
Cp,ZrB
|:Cp22r§’ZGC2 ] ~—— "Cp,Zr" &—CpZZrBu 7
H

) i-%\/

g
|

2
6

Cp,ZrH 8

Scheme 1.1Products of thermal decomposition of dibutylzirconocene
reaction ZAOxsouecehCpt room temperature.
[Adapted with permission from Harrod and-workers,Organometallics

1997 16, 14521464. Copyright 1997 American Chemical Society].

1.2.2. Synthesis of bicyclic zirconacycles

When linked diynes are reacted with 2Zgll) sources, one can
obtain bicyclic zirconacycles; a general mechanism for this reaction is
presented in Scheme 1.2. Investigation of the mechanism was performed
by Negisht’® and Takahasfusi ng al kynes. bZmr 0t he react |
with two equivalents of 10P(pr&icCd? h , zircona
oxidative coupling) was trapped by stabilization with electlonating
phosphines PR(PR: = PMe& and PMeP}), and characterized by-pay
crystallography. Isolation 010 supportsthe mechanism (Scheme 1.2),
involving the initial generation of a zirconacyclopropene followed by its
intramolecular carbometallation with the remaining free alkyne moiety of
a diyne3°¢ In the proposednechanisnmby Negishi and cavorkers® and

later confirmed by DFT calculations from Tilley grotipthe rate



determining step in the reaction of &ZZpCl> with "BuLi in the presence of
diyne*i s f or ma4Zir @ n2Z i & p ite@pren spedes with two
valenceshell empty orbitals and at least one filled nonbonding orbital for
“-complexation/carbometallation of diyne, leading to the formation of a

zirconacycle?0s 34 37b 41

H
2 "BuLi N
ClLZrCp, —————® "Bu,ZrCp, ——®=  ZICp, + £/ ——— "ZiCp," + "Bu—H

z

/

"Bu ‘ 4

Z S : Ph;

~—7z "ZrCpy" adi = " "= i :
R __ 2 R ZrCp, |———™ R:J:?ZFCF& ZiCpy" = @>zrCp, :szziq 5
=7z & a 5 Phi
z \ 3 )

0

1
ﬁ and heteroatom-containing chain PR; = PMe; and

R
Z C, Si, and Sn PMePh,

Scheme 1.2Mechanism of formation of a zirconacycktructure ofthe
isolatedzirconacyclopropenéo.

[Adapted with panission from Negishi and eworkers,Tetrahedron Lett.
1986 27, 28292832 andJ. Am. Chem. Socl989, 111, 33363346
Copyright 1986 ScienceDirect and 1989 American Chemical Society].

Asymmetric zirconacycles can be obtained either by thesisep
addition of two different alkynes or by addition of two equivalents of an
asymmetricallysubstituted alkyne (RC[ ®?. In the former case,
Takahashi and eworkerg? found that CpZrEt. or CpZrBu. in the
presence of ethylene gas could be used to obtain unsymmetrical
zirconacycles (Scheme 1.3). It is worth noting that when usingrEp
as a precwor (generatedn situ from CpZrCl, and EtMgBr) smal
amounts (up to 10 %) of homocouplatkynes(diynes)as well as low

yields of crossoupling products for silysubstituted alkynes were



reported® while CpZrBu, in the presence dadthylene gas gave excellent

selectivityand yields o r -isonfief (Bcheme 1.4%¢

1) 2 EtMgBr R' R

. R2 R2
2) R'——R? c ij R3——R* Cozt
r
Cp,ZrCl, P2 f’ P2Zr

RS
1) 2 "BuLi ﬂ R
H,C=CH
2) ethylene ,»’\\ 2 2
3) RI———R? Cpozr

2

Scheme 1.3 Synthesis of asymmetrical zirconacycles using two different
alkynes.

[Adapted with penission from Takahashi and -weorkers, Bull. Chem.
Soc. Jpnl1999,72, 25912602 Copyright 1999 The Chemical Society of
Japan].

In the cae of asymmetrical alkynes, substituents can addpt, U b
or bb po simetallacyclepentadiene ring (Scheme 1.4), and
Tilleybdbs group investigated the regiosele
steric and electronic nature of the sub:
about the reversibility of zianacycle formation in the presence of
SiMey/'Bu-substituted alkyne® Tilley and others reported that sterically
demanding substituente.g, RsSi, '‘Bu** PPh*) prefer to occupy
positions, while electrowithdrawing €.g, CsFs, mesitytl) prefer
positions, whereas mesityl groups (due to their steric bulk) also promote
the reversibility of alkyne coupling$? Indeed, based on the stefse
mechanism (Scheme 1.5), both steric and electronic factors influence the
structure of the transition statand thus the substitution pattern in the

final product. For instance, based on multidimensional NMR speofrgsc



studies and DFT calculations of the isomefdley and coeworkers
rationalized that inthe case ofan electronwithdrawing GFs group,
electronic factas (i.e., charge distribution in the transition state) controls
the orientation of at least one afiey as hey are coupledDuring the
formation of an asymmetrictransition state, which has two unequally
activated alkyne moieties, one stghnand one weakly bound alkyne
presentat thezirconium center. Thi® ,-régioselective coupling reaction
with CeFs-susbstituted alkyne was used to obtain eleetransporting

conjugated polymers(g, 11).%°

R Co, Cps Cp, ardirecting substituents: RgSi, Bu, PPh,
CppZr" a Zr a

Zr. o Zl" o Ar
> ()‘. L R . . .
I R ‘ R } 3 p-directing substituents:
B li l l r

F
Ar AI’
i oo of BB _§ F _§
FF

Scheme 1.4 Possible isomers of zirconacycleégrived from coupling
asymmetric alkynesStructure of theconjugatedpolymer 11. [Adapted
with pemission from Tilley and cevorkers,Acc. Chem. Re2011, 44,

435446. Copyright 2011 American Chemical Society].




R’ R’ R’

-L R'——R?
CpZer( == Cpyzr{ < = CppZrd
1 +L R1 /

L R2 R2 \ 2R2
R
R’ ¥ /
R! A
R2 A\
1/ ” ?\RZ
R R

asymmetric transition state

Scheme 1.5Stepwise mecharsm of alkyne coupling to form asymmetric
zirconacycls.

[Adapted with panission from Tilley and cevorkers,Acc. Chem. Res.
2011, 44, 435446. Copyright 2011 American Chemical Society.]

Zirconacycles are used in the synthesis of challenging organic
compounds through reactions with different electrophiles to prepare
benzene derivative$,(hetero)acene¥,indenes’ fluorenes’® pyridines?®
multi-substituted diene¥,enones? and linear triene¥ Selected synthetic
trarsformations are presented ®cheme 1.6. The transformation of
greatest relevance to this Thesis is the reaction stated at the beginning of
this Introduction namely the preparation of inorganic elerreontaining

five-membered metallolesa formal zirconiumelement exchange.
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Ph
SiMe
MesSi o, 25 Ph—=—Me, L
Cp,2Z r)j NiCl,(PPh3), | A (Synthesis of pyridines)
= 50°C,12h P
Et Ph” "N” TEt
Et 1)NCS, r.t,1h
Et 2)MeO,C—==—CO,Me Et Et QO:Meco me - _
Co. 77 S5 22CuCl,-20°C.3h . _ _ (Synthes:s of trlenesj
P22l g OH T oa = H
Et Et Et

Scheme 1.6. Selected synthesis of organic compoundsising
zirconacycles.

1.3. Metalloles: synthesis and challenges
Metalloles are @rivatives of cyclopentadiene whereby a methylene

unit is replaced by a main group element (E), suc8,&e, Te, N, P, As,
Sb, Bi, Si, Ge, Sn, B, Al, Gand others? In 1988 William Nugent and
Paul Fagan first reported the synthesis of main groupnfigmbered
heterocycles through thdransfer of a butadiene fragment from
zirconacyclopentadienes to main group etaets, a process known as
metallacycle transfer(Equation 1.2¥% In general, thge metallole
syntheses are facile and versatfitlowever due to low nucleophilicity of
zirconacycles? there are some reaction sedpmitations, as evidenced by
the very slow reaction of somelock element halides with less polar E
X bonds. For example, SiBreacts with CgZrCsMes over two days at

150 °C to give only a 28 % vyield of the resulting silole;®CsMes.>

11



1 1

RO Rre  EX,y22 RU R
co Zij X = halide X Eij (12)
YAy —_— y-2 .
= R3S - CP22rX; = R3

R4 R4

Nugent and Fagan proposed wals transition states for
metallacycle transfer (Figure 1.2) based on the coordination number of the
starting main group halide. Accordingly the authors emphasized that
coordinative unsaturation and low steric bulk at the main group center
facilitates methacycle transfer. Also as one descends a group, the weaker
nature of the EX bonds coupled with the generally larger sizes of the

main group elements leads to much faster reacfitity.

z z
@2}( cﬁ% c@(%
Ccp=4 Cp'%r" .

Cprz'r-—_‘ ' L] 1
X---E< X---E=X X---E<ax
SX A ™.
X X X
coordinatively unsaturated four-coordinate three-coordinate
main group compound main group compound compound with a lone pair

Figure 1.2. Proposedransition statedluring the first step ofnetallacycle
transfer.

[Adapted with panission from Fagan and seorkers,J. Am. Chem. Soc.
1994,116 18831889 Copyright 1994 American Chemical Society.]

In order to expand the substrate scope and increase the
effectiveness of metallacycle transfer, other strategies hawn be
developed (Scheme 1.7) such as: a) transmetallation withilitido-1,3-
butadiene® and b) coppemediated transmetallati®f.In general these

alternate methods afford more reactived_.and CdC bonds in relation to

12



the ZrC bonds in zirconacyclopentiades. Specifically protocols a/b
outlined in Scheme 1.7 were usedg@in access to boroles (routes’A
B®®), alumoles (A,>° siloles (A),%° stannoles (B%! pyrroles (A%2 B%354),

stiboles (A,%° bismoles (A,°® and thiophenes (B’

R4 R!
R3 R2
= Route A: X =1 2 X3 (CuCl cat.) X
ZGCz '
s Route B: X=Brorl -Cp.ZrX; X773
R R
R’ R4
EY,,
- Cp,ZrCl, |cucl Cul (cat.) _2"Bul | 2"BuLi
Route B Route B Route A
1 1
s R4 Route B R R2 Route A R R2
—=Cu EX; e EXz Li—
2 e -~
2 S-Cu - CuX A Ngs -2LiX M es
R! R* R4

Scheme 1.7Alternativeapproaches for metallole formation.
[Adaptedwith pemission from Xi and cavorkers,Acc. Chem. Re2015
48, 935946. Copyright 2015 American Chemical Society.]

Metalloles are of interest in understanding the fundamental
reactivity profiles of inorganic heterocycles such as the Biéder [4+2]
cyclodimerization of borole®€ Metalloles are also frequently used as
building blocks for optoelectronic materilsincluding in photovoltaic
devices!? organic lightemitting diode<} organic field effect nsistors?

chemical sensors, and in bioimaging materi&She main focus of this

Thesis is synthesis and optoelectronic properties of new germoles and

tellurophenes, and pertinent review @ds discussing other group 14 and

16 elementontaining heterocycles can be found in the literattifé.
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1.4. Germoles: an overview
1.4.1. Synthesis
Germoles (or germacyclopentadienes) afeuilding blocks with

unigue electronic and optical properties. One characteristic feature of these

species is the presence of atbwy i ng L UMQG *d ueo rtjou glat i on

the ring, arising from effective mixi

GeChbonds and the ~* orbital of t he
membered ring (Figure 1.3).In comparison to the lighter silicon
congeners (siloles), the energies of theRGand SiR 0 * orbitals
similar, leading to comparable LUMO levels in each heterocycle. The
germanium atom also stabilizes/lowers the HOMO level of the diene
compared to the carbon analogiiethus possibly increasing the thermal

stability of germoles.

n* conjugation

AN

R\Ge/R \ O
' Ge
e 5

A .
~oL-

o* orbitals

Figure 1.3 Left: * * o r bi t athe bdtaderge maiety inoafgermole.
Rightt A Si devi ewo of wthntwoeexoayclit ligandgi.eq f Ge
G* orbital -€fbonds)xandhgc kbsal tSiihg adbi t
overlap.
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The first germole derivative (PBeGPh, 12) was reported by
Leavitt and ceworkers in 1959 from the reaction of &eCb with 1,4
dilithiotetraphenylbutadien®. In 1969 Curtis used a similar salt
elimination reaction method to prepare a series of functionalized
tetraphenylsubstituted germolds$-17’7 (Figure 1.4) and characterized
these materials by elemental analysis. Since this important early work,
interest in germacyclopentadienes has grown rapidly and a number of

derivatives are now kown (see Figures 1.4.6)."8

1= 2 = 0
R' = Ph, R = CI, H, OH, SiMe, (13-17) R=R'=R%=Me, R? = SiMe, (29)

R'=R2=H, Cl, Me, ONMe,,

. R = R® = Me, Et, 2-thienyl; R" = R? = CI (30-32)
SiMes, SnMe;, cyclo-C5Hs (18-24)

R = R® = Me, R' = R2 = Br, Me, Ph (33-35)

R'=R2= —§ =R
R = 3-thienyl, 4-CH3CgH,, 4-CF43CgH, (25-27) R =R®*=Me, R' = H, R? = Mes, Si(SiMe,), (36, 37)

Figure 1.4 Representative examples of germoles.

Selected examples of germoles obtained by the initial dimerization
of functionalized acetylenes in the presence of lithium met&2()
(Equation 1.3), followed by Fagawugent transmetallation28-37) are

presented in Figure 1.4.

Ph Li Li Ry LR
. | 1P2
\ -2 LiCl \S\_/Z/ '
Ph PR Ph Pt Ph
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Electrochemical investigation of the germol&8, 20 and 22
showed at least two irreversible oxida waves and a dependence of the
oxidation potential on the nature of the germantwand substituents in
the germacyclopentadiene ring. For example, comp@dbearingtwo
electrondonating SiMe groups, has an increased HOMO energy level an
decrease oxidation potentialvhen compared td9 which has electron
withdrawing Cl groups at the germanium at6imDensity functional
theory (DFT) was used to computeetelectronic structures 4B and 20
andshowed that the HOMO and LUMO levels are mainly localized in the

germole ring and on the two phenyl groups at thep@gtionss®

Me Me
Mey _Me G~
Ph— % Ph  NC__CN cH. 20°C,15h_ Ph Ph
B R e
Ph Ph NC™ "CN / CN
Ph” Ph N
20 CN
Me Me
\Ge/ M M
Ph . ey Me
Ph CN  photolysis Me,Ge - + Ph Ge Ph
—>
/ CN ¢ \S\_/Z/
CN
Ph” Ph CN 1/n (Me,Ge), PR Ph

Scheme 1.8Diels-Alder reaction of germol20.

Germolesl8, 20 and24 also take part in Dielé\lder cycloaddition
reactionswith different dienophiles (e.g.20 with tetracyanoethylene,
Scheme 1.8) to form-@ermanorbornadienes andg&rmanorbornenes,

and the generated norbornenes were shown to be viable precursors for

16



generation of reactive germylenes . @:)8! Tilley and ceworkers
reported a reaction between (386 (Me)GeGMes (29) and Tad to give
antger mol e | igand i°>gesnolyl dadtalummfcompléxe t ar ge't

38 (Equation 1.8

cl :

. , ﬁ,— :

M%Ge/s"\"eﬁ 1) CH,Cl, Ge-Me : 5

Me Me 2) Et,0 S : cl -
+TaCly —L=2= 3 tcl-Tas P14
\ / 5 " Me,SiCl \\ 1 Cl-Ta_ : (1.4)

- cl ,

H [ .Me !

' e

Me Me Cl-Ta=Cl
29 Cl

Synthetic routes to germoles are not limited to the Fagagent
metallacycle transfer reaction tw the coupihg of 1,4dilithiobutadienes
with germanium halides. For example the asymmetricallystituted
germoles39-41 were obtained from the reaction of the heavy carbene
analogue dimethylgermylene, Mee, with the corresponding alkynes
(Scheme 1.9% In addition, the 1dihydro-germole42 was synthesized
via UV irradiation of matrix isolated 1;diazido-1-germacyclopenrB-ene
(Scheme 1.9 while the tetrahydrogermoles {8eGHa; R = Me, Mes or
"Bu; 43-45) were obtainedfrom the palladiuncatalyzed coupling of

cyclogermanege.g, (MesGe)) with acetylenes (Figure 1.8j.
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MeQ ,Me

=G-R + Me,G R_CS_R' [R=BuR'=H (@39
R-C=C-R e6e —» "\ R = CO,Me, R = Me (40)

R R R = CO,Et, R = Ph (41)
39-41
Nay N3 Hy LH
Ge UV irradiation Ge
O e W
42

Schene 1.9.Synthesis of germole39-42.

Ph Ph

5
R 8 _R
U

R'=R2=Me; R = Bu, R?= H (39) i R=Ph 4-MeOCeHy, ! RT=R2=Me, R®=H, R = Me (49)

i 3-BrCgH, (46-48)
R! = R2 = Me; R = CO,Me, R® = Me (40) : i R'=R2=R3=R = Me (50)
R' = R? = Me; R = CO,Et, R®= Ph (41) : i R'=Me, R2="Bu, R*=R = Me (51)
R=R?®=H; R'=R2=H, Me, Mes, "Bu (42-45) : © R'=R2=IPr,R=R?="Bu (52)

Figure 1.5 Selected examples eymmetric ancdasymmetric 2,5and 3,4
substituted germoles.

Germoles functionalized exclusively at theahd 5positions were
obtained in good vyield by Murakami and -ewrkers throgh the
rutheniumcatalyzed(i.e., [Cp*Ru(MeCNXx|PFs) transhydrogermylation
of 1,3diynes with dihydrogermang®hGeky). The same strategy was
successfully applied to synthesis of 2pjermole$® Moreover, the area
of 3,4substituted germoles was extensively developed in the 1980s by
Dubac and Manuéf These gamoles were obtained by the dehydration of
1-germacyclopenrt-en3-ols on alumina (29300 °C) or from the

thermolysis of 3igerma3-phenylcarbamoycyclopedtenes to give

18



compounds49-52 in good yield The 3,4substituted germoles obtained
readi | y -cdnplexesewdth electron deficient metal carbonyls to
give compounds o f-mdataioe) M@ ~&d or f or m ( d

Ru)®’

Tobitsu and Chatani developed @aodular synthesis of
benzogermolese(g, 53-57) through the Rh(Hcatalyzed activation of
C(sp)-Ge bonds in jermylphenylboronic esters in the presence of
alkynes (Scheme 1.18J. Germoles with electrodeficient -BEt
substituentsat the 3position 59-63 (Scheme 1.10) were prepared by
Wrackmeyer via the 1;@rganoboration of alkyi-ylmetal compounsl
MeGeC [ ®' (R! = alkyl, aryl, silyl, or stannyl) The syntheses
involved intermolecular and then intreolecular activation of the AN
bonds by electromvithdrawing triorganoborane Bt followed by a
selective new € bond formation via a 1;2hift of an ethyl group from

boron to carbon (Scheme 1.7898°

R =R'" ="Pr, 2-thienyl (53, 54)

cl)/jL R -
Bio” 4 || —IRNClcod); G mol ) Q_\g\ R=Ph, R' = Me (55)
Me R

& (2 equiv.) Ge
Ge R (h‘] —a; 1=
Me R = SiEty, R' = Ph (56
Me” “Me [N 2 iEts (56)
R = CO,Me, R" = Ph (57)
Ve Me Me,\\Ge’Me
“ce” + BEty R! R [R1 = Me, Ph, SiMes;, OMe, SnMe; (58-62)]
1 Z 1 \
R R ELE  Et
) , R! %l Me, ,Me
R R Et — Ge
VMew * BEty Mew =<, Me‘(ae)_( BEt, — R R
— Mg BER Me™" o~ / "
M
e \R1 \R1 R“ / ETZB Et

Scheme 1.10Synthesis of germoleS3-62. Mechanism of Wrackmeyer
transformation.
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1.4.2. Anionic germoles and the question of their aromaticity

The synthesis, structures, physical and chemical properties of
mono and dianions of germoles were extensively studied by Saito, West
and BoudjouK? Dianionic germoles are considered aromatic, while in
contrast to the monoanionic siloles, there is no evidence of aromaticity
within monoanionic germoles with the pynidal geometries at the

germanium atom (Figure 1.6).

Ph Ph Ph Ph Ph Ph
xS Li
/Z_g\Ph_> Mph * lgS\Ph
Ph Ge Ph /Ge: Ph Ge
rR” e R” © |

R' R'=cl Ph

Figure 1.6. Synthesis of mnaanionic germoles

Reduction of 1,idichloro-derivatives 19 and 31 with excess
lithium in THF gave the dianionic germolesGeCGRs with d>-a n &/ ¥
coordination modes of lithium and equalGCdistances within the germole
ring (.e, d el o-system),asdétermined byrdy crystallography*

The related dilithioplumbole EiPbGPh] (63) was prepared by Saito and
co-workers through the reduction of hexaphenylplumbole, and is the
heaviest congener dfhe cyclopentadienyldianion. This species was
shown to have aromatiype bonding in the PbCring by Xray
crystallography, NMR spectroscopy and theoretical calculaffons.
Moreover, Dysard and Tilley studied the coordination of the

tetramethylgermole dianion [@@Mes]?, and demonstrated binding of

20



this dianionto one metald.g, Hf an d>f&hion> dor o twa d
metals (e.g., Hf/Rh and Hf/Ir) to yield bimetalicomplexes with metals in
0 ,-binding mode$* West and ceworkers used [Gefh]? in the

reductive coupling of aldehydes to obtain-li@ls as the sole organic

product?®
1.4.3. Molecular diaza -, dinaphto -, dithieno -, and
diselenoger moles, and polymers of germoles, and their

optoelectronic applications

The Heincke group prepared various digeamoles §4-66;
Figure 1.7) which can beviewed as heavier homologues of
diaminocarbene®¥ Dinaphthoheteroles are of interest for their
optoelectronic properties, thus Kurita andveorkers synthesized the first
examples of optically active group IdinaphthogermolegFigure 1.7).
These species were prepared byoadensation reactiobetween?2,2-
dilithio-1,1-binaphtyl and dichlorogermang (Equation 1.5) Compounds
67 and68 are fluxional m the NMR time scale at elevated temperatures
(50-80 °C)and theestimatecenergy batier for racemizationn 68is 80 +

2 kJ moit.?”

Figure 1.7.Selected examples of diaznd dinaphthogermoles.
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