JRe eX: Towards Supporting Undergraduate Software-Devebpment Team
Projects

Eleni Stroulia Warren Blanchet Ying Liu Curtis Scho eld Kieyn\Wong
Zhenchang Xing
Department of Computing Science
University of Alberta
stroulia,blanchet,yingl,scho el,kenw,xin@cs.ualberta.ca

Abstract they have to face the challenges of elucidating the require-

In most engineering disciplines, it is assumed that the ments, designing an application to meet them, assigning the
education of their professionals involves an apprentiqgesh various development tasks among them, developing, testing
component, in addition to their formal training. This is why and integrating the various pieces of software and document
most undegraduate software-engineering programs invlve ing their work, while all along they have to make sure that
capstone project course, where students, in preparation fo they stay on schedule.
becoming software professionals, work in teams to design, In this context, instructors have the dual role of the man-
develop and document a substantial software system. Oulager and the mentor for all the teams; on one hand, they
experience with such a course has been that the success of Bave to evaluate the team's process and products and, on the
such a team project depends, on one hand, on the technicabther, they have to provide speci ¢ and timely feedback on
competency of the students, the quality of the tools they usewhat the team is doing well and what needs to be corrected
and the project-management decisions they make during theor improved. Unfortunately, high student-to-instructatios
project lifecycle, and, on the other, the speci c and timely make ful lling these roles a challenge. In our experience,
feedback of the instructor is invaluable. However, instruc involving roughly 30 small teams in a course of over 120
tors of such courses are, more often than not, overwhelmedstudents, there are often major variations among the team
with the task of closely monitoring the progress of multiple projects and the skills of team members, making the detec-
teams, and problems in a team's process and product maytion of individual problems too subtle. Students may get
go unnoticed until it is too late to be addressed. This pa- mired in the complexity of the product or their individual
per introduces theJRerLEX environment, which we devel- components, and not recognize signs of problems in their
oped upon the Eclipse framework, to support the re ection overall design or development process early enough to ef-
on small software teams. fectively involve the instructor.

1. Introduction This experience was the main motivation behind aiRe-

The software-engineering research literature aboundsFLEX project, whose goal is to develop a tool to monitor the
with information on how to develop high-quality software, collaboration process of software teams and to aid the under
on time and on budget. This knowledge has also madestanding of how software designs and codes evolve through
its way to the textbooks used in undergraduate software-the project life-cycle. The primary objective of theRe-
engineering courses. However, textbook learning alone isFLEX tool is to infer high-level information about how a team
not enough to train competent software professionals; stu-Project progresses, including the team's organizatiore sty
dents need to practice and apply their textbook knowledgethe impact of each member's contribution or lack thereof,
and to acquire “hands-on” experience with realistic sofewa and the evolution of the product's design and code, in order
development projects. to enable instructors to quickly perceive when and how they

Recognizing this need, most undergraduate software-need to intervene to support this team. The data to support
engineering programs have included a capstone projecthese needs is gathered unobtrusively as developers work on
course in their curriculum. The intent behind such coursestheir code. Visualizations are created and delivered to the
is to provide the students the opportunity to work in a realis instructor so that he can always have an up-to-date view of
tic software-development context. Most often, they areerg their progress and make comparisons across teams.
nized in small teams, they are given a, possibly incomplete, As a secondary objective, we are considering producing
set of requirements. Then, in the course of an academic termteam-speci ¢ views and making them available to the stu-

dents to monitor themselves and to see how their teams mighpoint of view, however, Eclipse is computationally intesesi
rank against others in the course. We hypothesize that teamand in cases where the hardware infrastructure is not suf -
who are aware of their own collaborative process, re ect ciently current - such as the case for most of the students'
upon their progress, and make adjustments as needed afeome computers - its adoption may not be immediate. The
more likely to make the right project-management decisions JREFLEX architecture enables, even teams that do not adopt
when new challenges arrive. Eclipse as their development IDE to gain much of its bene-
Inthe longer term, thegRerFLEX environmentis to provide ts as long as they use a web browser and CVS: although the
an experience repository for the collaborative develogmen analysis components are developed as Eclipse plugins, thei
processes of a series of projects. Such a repository could beesults are stored in the database and their visualizagiens
data mined to discover interesting correlations between ob also served by WikiDev.
jectively collected process and product data, subjectere d 2.2. The repository

veloper perceptions of their own work, and their perfornenc) ,
as assessed in their project marks. The repository consists of a CVS, where all develop-

The JRerLEX environment currently uses CVS (Concur- ment work products are stored, and a database, where work-

rent Versioning System) to support collaborative softvere product meta-data and analysis information about the soft-
velopment. The environment accesses the CVS history of aVaré process and its products are maintained. The database
team's software development work on a project. The anal- Provides the core underlying structure for storing thie-

ysis modules are implemented as Eclipse plugins. As well, FLEX products and re_sults, around the following basic con-
JREFLEX provides a Wiki-based user interface to deliver the CEPts:CourseTermProject Team DeveloperWorkProduct
results of analyses in a web-based format. History, Version Activity andQuality. .

The rest of this paper is organized as follows. Section 2 More speci cally, aCourseTernmrepresents a particular
introduces the architecture afRerLEX. Section 3 discusses ~ 9roup ofProjectsthat are being developed for a class project
our experience withJRerLEX to date and the results of our during an academic term. Rrojectrepresents a particular
initial evaluation of the tool. Section 4 places ourworkiiet ~ module or portion of a module within a CVS area, and is
context of the related literature and Section 5 brie y sum- associated with th&eamdeveloping it. In turn, eamis
marizes the lessons we have learned to date and our plans fgt 9roup ofDevelopersvho are working together on one or

future work. moreProjects A WorkProducis part of aProject i.e., a le
2. The JrerLex Architecture within the Project's CVS area, that requires constructive e
The JREFLEX environment consists of ve components: fort by aDeveloper The actual information regarding what a
the development environment (based on Eclipse), Developeihas produced is stored a¥arsionof aWorkProd-
a repository, in which a set of facts regarding software uct, essentially, a/ersionparallels the notion of a CVS le
products is stored, revision. TheHistory contains records of all performed CVS

the analysis components that process the repository coneperations of all types, during the project life cycle. Taes
tents to infer high-level information about the progress operations may have been performed to a spegiorkProd-

of the development, uct or to aProject An Activity describes a particular type
a browser-accessible wiki server, WikiDev, that delivers of work thatDevelopersnay do while working orProjects
and visualizes the analysis results, and such as for example, planning, design, coding, testing,-doc

a project-assessment component, through which develmentation, etc. AQuality describes a particular kind of non-
opers and instructors can explicitly provide their own fynctional requirement that is of interest foPeoject which
information regarding the project. instructors use for product evaluation, such as learrgpili

2.1. The development environment usability, and extensibility, for example.

With respect to development toolgRerFLEX assumes, at 2.3. Collaboration- and evolution- analysis

the very least, the existence of CVS, as the repository where jpcciex pas two analysis components. The
all software assets are stored. Information abqutthe 0B1te collaboration-analysis component [16] aims at inferring
and the operations'’ history of CVS populates its database ofinformation regarding how the team members collaborate
“facts” related to théProjects In addition to CVS,JREFLEX i the context of their project development by analyzing
is tightly integrated with Eclipse as the development@mir he Cv/S repository history of member actions and software
ment: the analysis components are implemented as EClipSghanges. The evolution-analysis component, on the other
plugins and the visualizations of the data-analysis resit nang aims at discovering interesting patterns in the dieiu
available as Eclipse views, in addition to being accessible ¢ the project design and code, by analyzing the differences
through WikiDev. . . . between subsequent versions of the project class hieeschi
The architecture oRerLEX relies on Eclipse as the main ggth these analysis components are implemented as Eclipse
development tool, to provide a seamless integration of soft ,gins Visualizations of their results are accessibleugh
ware construction and analysis activities. From a praktica specialized Eclipse perspectives and through the WikiDev.

Collaboration Analysis The primary data source for the tual implementation. On the other hand, comparison of a
collaboration-analysis component is tHestory table of the sequence of reverse-engineered designs, corresponding to
repository database, i.e., information regarding the ldeve sequence of software-system versions, could recover tie ev
opers' operations on the project les and modules. The lution pro le of individual application classes, identifsans-
collaboration-analysis daemon examines CVS on a daily ba-formations brought about by refactoring, and charactehize
sis and populates the datab##istory. Based on this data, it nature of evolution of the application design.
then proceeds to calculate arich set of derived metricghwhi The main input for the evolution-analysis plugin is a se-
are also stored in the repository database. These metiécs re quence of design models, represented in UML (XMI 1.3),
(a) to the team, as a whole, or (b) to a speci c team-member,corresponding to a sequence of snapshots of an object-
or (c) to a particular work product or (d) to a particular type oriented application, generated by regular checkouts from
of CVS operation. the CVS repository for a project. These UML models are
Examination of these metrics can provide interesting in- currently reverse engineered from the application codagus
sights to the dynamics of a team's collaboration style. For a round-trip engineering tool. The core of the plugin relies
example, it can reveal team members who do not contributeon recovering the structural design changes from one versio
to the evolution of any work product throughout the project to the next. That s, the plugin implements a UML differenc-
life-cycle, or sudden changes to the pro le of a member's de- ing algorithm that can surface structural modi cationshe t
velopment behavior. Furthermore, comparative examinatio application classes and interfaces, their attributeg, tineth-
of corresponding metrics of different teams may reveal in- ods, and their specialization-generalization relatiorteims
teresting trends and exceptions in the way most of the teamof the additions, deletions, moves, and renamings of object

collaborate. oriented entities. The algorithm produagsgange treeghat
For the rst two terms of developing and usintREFLEX, report the deltas of the compared versions.
visualizations of these metrics were available only torinst Aggregate information is then extracted from a sequence

tors and teaching assistants, through an instructor-tedm w of such change trees. By examining and analyzing the
on WikiDev. We have in the mean time developed a set of change trees and the aggregate data, we can obtain a quick
team-accessible Wiki pages, where team-speci ¢ metrins ca overview of the whole application evolution history. In par

be accessed by the students. Furthermore, we have also déicular, we can recover the overall software evolutiondrigt
veloped an Eclipse plugin that can be invoked directly from at three different levels:

the development environment to display the same visualiza- At the system level, we can identify different evolution
tions, shown in Figure 1. phases, such as functionality extensions vs. refactor-

ings, and through the application evolution history.
At'the class level, we can recognize different types of

classes according to their evolution pro les, such as
continuously modi ed classes vs. legacy classes.

At the change-tree level we can identify various change
patterns, such as co-evolution and refactorings.

Finally, the collected design-evolution information can b
visualized to present different views of the application-ev
lution to the interested developers. The students or iostru
tors using the evolution-analysis plugin start with a set of
XMI models of a software system. They can analyze any
two versions, or run the plugin incrementally. The plugin
reads in the XMI models, parses their class-hierarchy trees
applies the UMLD:Iff algorithm against these trees and saves
the deltas into change trees, and nally extracts and aealyz
the aggregate information. The results of the analysis are
Evolution Analysis The evolution-analysis component of then visualized in the various views of the plugin organized
JREFLEX comprises a suite of methods for analyzing the in an Eclipse perspective, shown in Figure 2.
modi cations on the software design from one version to The change trees are shown in a tree view in the top-left
the other, through comparison of class hierarchies. Furthe corner, theChange Treeview. This view works similarly
analysis of the recovered design-level modi cations resul to the navigator pane of many IDEs. The different icons
in interesting insights regarding the evolution historythod represent the different object-oriented entities, thertgpt
software system under analysis. Comparison of original de-adornments show the modi ers of the object, for example,
signs against designs reverse-engineered from code auld r “abstract”, “static” etc. The bottom-right adornmentsneep
veal discrepancies between the designer's intent and the acsent the different types of changes of particular objeathsu

Figure 1. Collaboration-analysis perspective

be obtained from the change-tree and the change-summary
= views. An editable comment view can be toggled to let the
users input any information they may want to note about the
evolution of system or individual classes.

Furthermore, the plugin core analyzes the change pro les
of individual classes, classi es them into one or more of the
2 L evolution types that are shown in the class evolution view's
titte, and add the default comments on evolution types as
shown in the right-hand side editable comment window. The
query mechanism is implemented to allow the users to select
and show the classes of evolution types they are interested
in. The plugin also identify co-evolving classes of individ
ual classes. The users can select one of them from the drop
down menu of the class evolution view to show the evolution

Figure 2. Evolution-analysis perspective information of that class, if any.

The refactoring view shown in Figure 11 side a list of all
as plus sign for “insert”, minus sign for “delete”, lled tri ~ the identi ed refactorings that have been made in a particu-
angle for “rename”, empty triangle for “change signature”, lar version. The right-hand side is a tree view that displays
arrow with minus sign for “move source”, arrow with plus the snippet of the change trees corresponding to the selecte
sign for “move target”. The tree view presents the develop- refactoring.
ers the detailed structural modi cations to the class madel 2.4. The Wiki server
software system. The user can expand or collapse tree to see

more information. To look into the source codes of a spe- o howiki ¢ « f e
ci ¢ element, one can double click on the element to bring SOUrce software, phpwiki, as a framework for maintaining

out the java-source editor, shown in the top-left corner. To and exchanging information about the projects in a free-

inspect previous or next change trees, one has to click thd®M. exible manner. WikiDev is a collection of plugins and
arrow button to move backward or forward. modi cations to the phpwiki, which extend the original func

The bottom-left corner, thehange summaryiew, shows tionality of the WikiwikiWeb concept as pioneered by Ward

a pie chart that summarizes the amount of different typeSCunnllngham (§ebttp.//www.02.com/cg|IW|k| for
: . . more information).
of changes and their ratios from one version to the next. It

) . . . The WikiDev extensions are primarily concerned with
complements the matrix and the histogram views with actual . re primartly :
number and ratio of changes. group based security and cvs integration. Each team is asso-

) i ciated with a speci ¢ Wiki. There is also a special Wiki for
The bottom-right corner stacks three views, gystem

- DY cLR : the instructor team, i.e., the course instructor and the. TAs
evolutionview, theclass evolutiorview, and theefactoring Each Wiki is accessible only by members of the team associ-

view. The system-evolution and.the clags—evolutiqn VIEWS 4tad with this Wiki. Once logged in, team members i
can be toggled to show the e_/oll_m_on matrix or the histogram project information change passwordsr simply collabo-
of the software system or individual application classes. e in a Wikiwikiweb fashion by constructing new pages of
Each column in the evolution matrix, shown to the bottom hejr gwn, to maintain and exchange information about their

right of the Figure 2, represen_ts a version of the software, york with their team members. Through tReojectView
while each row represents the different types of changes. Th Elugin' team members have access to all their projects. Spe-

area of the bubble represents the amount of such types of; ¢ work products and their versions can be inspected for

changes. Thus, a bubble of size s at the (x,y) point in the gach of these projects through special wiki pages, automat-
matrix indicates that s number of changes of type y hap-jca|ly constructed by the WikiDev based on the contents of

pened between version x-1 and x. The histogram - one isyhe cvs repository. This gives users the ability to edit and

reported in Figure 10 - depicts the change pro le of a sys- atach concepts or documentation to their work products, in

tem or individual classes. It is a color stacking bar chart. ,anner that enables change and re nement through the ver-
The horizontal axis of the histogram represents the vession sioning capabilities of the Wiki.

of the software system, While the vertical axis represd’r&_st 2.5. The project-assessment component
amount of change. The different colors represent the differ
ent types of changes. “Delete”-type changes have negative The primary objective of theJRerLEX tool is to unobtru-
values and all others positive values. Both the matrix apd th sively collect and analyze data from the tools that students
histogram provide a good way to visualize the high-levelevo use in their software development, in order to infer infor-
lution information of a software system, while the detailed mation that can help the instructor and the developers them-
information about what happened in a particular version canselves to effectively monitor the development process- Cur

Overview of Change Activities

Changes Summary

WikiDev, the JRerFLEX Wiki server, leverages open-

rently, the main source of such input data is CVS with its to the instructors, so that they can provide timely and rele-
operation history and its contents. In the longer run, we in- vant feedback to the students. The content of the study and
tend to exploit the upcoming Eclipse instrumentation API to the results of the analysis components are described in the
unobtrusively record the ne-grained tool actions of devel subsequent section.
opers working upon their code and documentation. 3.1. Team and Project-deliverable structure

However informative such information, implicitly in-
ferred from tool-usage data, may be, it is also interesting
to compare it with “objective” data, explicitly provided by

Our case study involved 85 students organized in 23
teams. 51 students (including the team members of 5 teams)

the developers and the instructor team. THREFLEX as- gave us permission to use their data; henceforth we will re-

sessment component addresses exactly the need to enable tf-,%l’ to these teams as tez_%mB, C, D andE. Students in this
collection of such “objective” data. course have a substantial background of program develop-

In the past, students of our project-based software-mem in-the-small, and are knowledgeable in programming

: . . with Java in the object-oriented design style. However, for
engineering courses, were required to answer a set of ques-

. : most of them, the course project is their rst experience in
tions at speci c points during their project developmenteT .

: . : %ollaboratlve software development.
guestionnaire was implemented as a stand-alone web-base The total duration of the proiect was 55 davs. oraanized in
application with a specic list of questions. The answers three cycles, each cuIminatFi)n Jin adeliverabl):a ’Atgtlhe end o
were collected as HTML documents, which made automaticthe rstyc clé 2 low- delit ager rototybe and the obiect
analysis of this data dif cult, and limited the kinds of irfo ycle, Y paper prototyp)

mation that could be obtained. For this reason, diRerFLEX oriented design of the project, represented in a UML class

assessment component has been designed to be con gurabfjelagram’ were due. Atthe end of the second cycle, a work-

with respect to the types and amounts of data requested a!?ng horizontal prototype was due, exhibiting the intenaeti
part of these questionnaires. unctionalities of the project but not necessarily the unde

: . . - . lying support functions. Finally, the whole working profec
Currently, questionnaires are created in an administratio ying supp Y 9 prof

. .)) was delivered at the end of the third cycle.
tool implemented as a set of Eclipse views. Data, i.e., an- .
o . On each due date, each team member had to submit an
swers, are collected through a WikiDev plugin. Team mem-

bers who can loa in their team wiki see the uestionnaireseleCtronic evaluation form to assess the contribution bf al
: gin] q team members, including themselves. Note that, at the time
that require completion, and Il them out. When a lled

) e . . of our study, the data of these self-assessment forms wére no
guestionnaire is submitted, the component validates the pr y

ided dat inst th red i ¢ integrated in theJReFLEX repository; in the mean time, we
vided data against the expecled question-answer types ar]Have reverse engineered the content of the collected forms

stores the data in the repository database. Since the WikiDe and we have populated the assessment aspect of the reposi-

fu\rl\rlgr?trle ttr?:r;:srvélrlnfilfo?rr?::\fi:\ t\,r\],ﬁ::;ﬁ (t)cl)l?r?olﬁgoant;cfgtlscéf tory, in order to correlate this data with the information in
y q ferred by the analysis components.

laboration. Finally, in addition to enabling self assessme 3.2 Collaboration Analvsis
of team members, questionnaires can also be used by the in="“" y
structor team to evaluate the project deliverables. We used the collaboration-analysis component to extract

In this manner, data regarding the developers' own view information regarding the following CVS operations in the
of the project progress, such as PSP/TSP-related infasmati databasedistory.

for example [14], and instructor-provided “objective pcy Out: a record type from operation “checkout”; A CVS

evaluation” data can become part of the database, and can le is checked out from the CV'S repository to a working

provide an external validation instrument for the inferesc directory.

of the analysis components. DRel: A directory in CVS is released. It has the same
3. Evaluation effect as direct working-directory deletion, but DRel

avoids the risk of losing changes, which users may have

~ JREFLEX was partially deployed during a single-term, forgotten. Three types of records resulting from the op-
third-year undergraduate course in software engineeAng. eration “commit™

that time, students were required to use CVS and they were aqqd: A le is added to CVS, and the rst revision for
also given the rst version of WikiDev; at the same time, the this le is created.

analysis components were under development. At the end Mod: A le is modi ed and a new revision appears.

of the term, the collected data was analyzed by researchers, Rem: A le is removed from the CVS repository. Three

largely independent with the course delivery. The objectiv types of records resulting from the operation “update™:
of this case study was to examine, to what extent the analysis ~ Col: More than one user checked out and modi ed the
components ofJREFLEX can provide insightful information same le version, so a collision occurred when a second
. o _ update was attempted and a manual merge is required.
1The repository and the WikiDev components were availabitudents, Mrg: Two versions need to be merged and the merge is

they did not use Eclipse though. .
Y P 9 successful automatically.

Wdel: A working copy of a le was deleted during the ratio of successful merges over collisioMrd/Col) the
update, because it had already been removed from themore effective the team collaboration is, since eithertthei
repository. sign or their inter-personal communication enables them no
) i to step on each other's work products. The raday/Col
Based on this data, the subsequent metrics about the teamy¢ 1.2 ¢ was the highest, where the same metric for team
the developers, the project les and their versions was in- A was the lowest. The problem of teafnseemed to be
ferred. the small number of les in which they divided their work—
i.e., the small number of classes they have identi ed inrthei
aproject design; if they had further decomposed their classe
into several, simpler and more independent parts, theytmigh
have obtained a much better task assignment, module design
and le-sharing habits. Figure 3 diagrammatically present
the average workloads for the students of the ve teams
through the whole project cycle day by day. It is easy to see

average. Furthermore, they used CVS much more like a stor—tﬂat all tea(Ts sdhohv_v geak§ gf activity arour;]d the same dates in
age area for nished products than as a working repository:t e second and third periods. However, there are some inter-

both in absolute numbers and on the average they modi edesting differences too. Team C began earlier than the other
their CVS les much less frequently than other teams: on €&ms, teanB usually worked in a single day then stopped

the average, every le was modi ed only 5.2 times by the all for the next several days, and te&nfollowed a much more

four team members. Let us now look at some inferences theCONSistent work pro le than the rest. With this gure, the in
instructor might draw by examining the operations that the structor might have noticed that a team has not started-devel

teams performed in their CVS repositories. If a team exsibit opment, when most other teams have, and might have given

“abnormal” numbers of operations of all types — i.e., their the “delayed” team a prompt reminder.

CVS usage or le numbers are distinctly different than most
other teams — then the instructor may examine their collabo-
ration in more detail to evaluate whether they are facing any
problems or not. For example, sparse usage of CVS might be
due to the fact that the team is simply storing and exchanging
les outside the CVS. Alternatively, it may be due to the fact
that the team is not working enough on the project.

As another example, we noticed that teatnand B had
a slightly high number of collisiongCol. A collision oc-
curs when more than one team members attempt modify a Figure 3. Number of operations by date
same le at the same time. A substantially high number of
Col operations could indicate that the design of the software The Individual-Developer aspect This type of analysis is
product and the distribution of tasks among the team mem-intended to support the instructor in assessing the relativ
bers are poor, and the project modularization should be re_ContribUtion of each team member to the prOjeCt and to notice
considered. We also noticed that these two teams have higifluickly imbalances in the workload distribution.
number of collisions over a relatively small number of les.
In principle, enabling team members to always have thetlates
version of each le is a good collaboration habit. The instru
tor, in fact, recommended that students should commit new
versions back to CVS repository promptly after their modi -
cation and should not modify a le heavily without saving it
in CVS so that the other team members can have up-to-date
local copies; if these instructions were followed, the ager
number of modi cationsMod, should not be very small. If
the design of the application is not suf ciently detaileddan
only high-level classes with substantially complex fuanti
alities have been designed, then it becomes more likely that
more than one member will have to touch the same le atthe Figure 4 shows the operation distribution over all types of
same time thus resulting in a higher number of collisions, each member in team. It seems to indicate that Student137
Col. did much more work than the other members of tefarhe-

Integrating the above heuristics, we can say that the highercause he performed many operations in CVS. However, the

The Team aspect A simple, yet potentially telling, metric
of the nature of the collaboration among the members of
team is the number of their CVS operations according to their
type. TeanE performed on the average the smallest number
of operations in CVS — half the number of operations of team
B — but it has many additioddd, and checkoufQut, opera-
tions and the number of les they developed was bigger than

Figure 4. Number of each operation type of
Team A members

number of his modi cation operations was not correspond-
ingly high. A large part of the operations he performed were
the addition and removal of les, and he was also responsible
for many collisions. A plausible inference based on this dia
gram might have been that Student137 is the team leader who
designs the project classes and initially authors the tas f
other members. Compared to the other members of #fsam
Student139 exhibited a better operation pattern: high rarmb
of modi cations, few collisions and high ratio of succedsfu
merges over collisions Mrg/Col.

Figure 6. Number of daily operations of teams
Cand D

Figure 5. Number of team A's daily operations The File aspect Let us now examine how the project work-
To better analyze the frequency and distribution of opera-load was distributed across the les. ThERerFLEX analysis
tions of interest, we have de ned the concept of the interop- component produces two diagrams for each team to show the
eration gap (GAP); it refers to the interval between the ime le-related information: Figure 7 shows the number of the
of two operations of interest. We choose “day” to be the unit different types of operations performed on each le of the
of this measure: it is fairly easy and inexpensive to computeteamA project. From the height of columns, we can have a
GAP in term of days, although not quite as precise as hour.quick idea about which les suffered many operations; the
Figure 5 clearly shows the busy (not busy) periods of the height of each colored section corresponds to the number of
team and enables us to have a quick idea about the typicabperations of a particular type.
GAPs of each member along the time-line. In this manner,
we can identify when is the most important period of activity
for the entire project, or for a particular person, or for g, |
or for a particular operation type.
From Figure 5 we notice large any-type-operation gaps
between the beginning of the projectto February 17 and from
March 18 to March 24. We also notice that the average team
activity is fairly consistent for all the teams: most op@as
occur i_n phase2 and at the_ end of phase3: around the two ma- Figure 7. Numbers of team A's operations on
jor deliverables of the project. All four members of teé@m
appear to have similar operation frequency and distributio
except for student137, who was much more active around Besides providing an overview of the number of modi-
Mar10 and Mar30. This diagram provides counter-evidence cations, Mod, Figure 8 enables a deeper view into this
for our earlier hypothesis regarding the leadership rowf information, presenting the numbers of LOC added to and
dent137, which indicates that more accurate analysisteesul deleted from each le by each team member. The more sub-
come from multilevel data. Student137 did not start earlier bars appear in a single column, the more attention should be
than the other team members, so he is not likely to be theput on the corresponding le, since it might be the locus of
designer/leader. At this point, we can simply assess his ope increased activity, possibly because it is ill-designed idn
ation pro le as “problematic”: in spite of his big number of understood.
operations, it is not clear how he contributed to the team. Focusing on tear, from Figure 7 the instructor might
Figure 6 shows the work pattern of teaf@sandD. It infer that students spent more operations on les 2, 4, 1, 11,
seems that all members of tednonly worked just before 9, 18, and 15 (in that order). Their numbers of modi cations,
the deadlines. On the other hand, te@ns much better; all ~ Mod, differ but their sizes are comparable (see FinalLOC).
its members started earlier than average and worked consisHowever, it is not always the case that a le that is modi ed
tently almost every day. many times is also modi ed substantially. Consider for ex-

each le

Figure 8. Mod _LOC and Mod numbers of each B
lein Team A

ample les 2 and 11: le 2 has had many more modi cations
than le 11, however, the eventual sizes are almost the same,
and Figure 8 tells us that the total number of modi ed lines
of le 2 is much less than that of le 11.

Combining the information from the above gures one
can see that the les with the highest density of modi - C
cations, i.e., high ratio of modi ed lines per total lines of
code, such as les 11, 2 and 4, were touched by multiple

team members. Furthermore, and not surprisingly, most Ies qir project development, mainly between weeks 7 and 10.

that have been modi ed by a single team member have lesstey did not try to implement their project at the last minute
number of collisions, larger ratio of total LOC per modi ca- |ike teamsB andC.

tion number and smaller ratio of modi cations per number of
modi ed LOC. These three pieces of evidence seem to im-
ply that when a team member is the “owner” of a le, i.e.,
he is its only modi er, then he tends to concentrate on their
work mostly outside CVS; updates of the le in CVS are less
frequent and represent more substantial changes.

Both high frequency and large numbers of modi ed lines
may be evidence of an unstable le, i.e., a le that is either
poorly developed or a highly coupled le that is affected by
changes in many other les. Analysis of the modi cation op-
erations correlations might indicate the latter, or resonda o o]
bug database might support the former hypothesis. In any TeamsB and C exhibited similar evolutionary develop-

case, this phenomenon may trigger the instructor to exam-Ment styles. But, since tea@ adopted the MVC model
ine the le in question further and advise the students ac- 85 the application architecture, their work is more orgeahiz

cordingly. So if a team has a large number of collisions, than that of teanB, and their project quality as evaluated
the instructor might suggest to students to inspect the mul-PY the course TA was better. This result validates the intu-
tiply modi ed les and see whether they can be re-designed ition that good architecture enables software qualitynT8a

or whether their maintenance should be assigned to a singl&€®mPined the application and user-interface objects feget
person. As a result, as the various views evolved to meet usability

— . . requirements, the model design was also affected. Further-
3.3. Design-Evolution analysis more, teanB created a giant class “Entry”, shown in Figure
Evolution analysis was performed on weekly snapshots 10, to contain all possible back-end objects of the applica-
of the teams' projects from their CVS repositories, from-Jan tion and the application logic associated with them, likeho
uary 20th, 2003 through April 14th, 2003, resulting in 13 to recognize con icts for example. Note that this observa-

Figure 9. Evolution matrices forteams B, C

The evolution processes of teaBsndC contained two
versions with aggressive growth spurts. Their projectsesta
with a few classes, and did not change a lot until week
7. However, there was a sharp increase in the size of their
projects at week 8, which is followed by small changes until
week 10, in which another growth spurt is observed. These
occasional large modi cations coincide with the deadlines
for project part 2 and part 3. This means that most features
and/or functionalities of their projects were implemerjtesi
before the deadline - a bad but not untypical practice.

versions for each project. tion is consistent with the of its high number of collisions,
The evolution matrices - those of teaBandC are shown ~ observed during collaboration analysis.
in Figure 9 - revealed some interesting insights regardiag t TeamD exhibited a very interesting evolution style. The

evolution style of their development. Based on evolution- most changes were made within the rst two consecutive
phase analysis, we discovered that te#@andE de ned a versions when they started the development of their project
few classes in the rst place, and proceeded to develop themin weeks 4 and 5. They may have developed a very good
one step at a time. Their change activities involved continu requirement analysis and high-level system design in the
ous small modi cations. Another characteristic of thesetw rst place. Therefore, they seem to know what architec-

teams was that major changes were made in the middle oture should be adopted, what functionalities should be sup-

ported, and further how to implement them. In that way, they 3.4. WikiDev Usage

were able to put almost everything in place when they started

implementation. Actually, they obtained the best mark for ~ During this case study 2 of the 5 teams utilized WikiDev
the rst deliverable which is essentially a requirementsta In @n interesting manner. Teaused the WikiDev plugins
design document, Their change activities at the class levelMost extensively and teafused the Wiki features primarily
are well-planed and that is just the opposite to those of mostWith only a small focus on the WikiDev plugins. The “ideal”
other teams. Most other teams added many new classes whe#sage scenario that we had hoped for would be the union of
the project deadline was approaching in week 10. T&am these two usage patterns. Te8nsonstructed a TaskLog in
just added a few things, but the most remarkable thing for their wiki and used the ability to assign a task on a le to
teamD at week 10 is that they moved some methods among@ particular member, in order to better coordinate their de-
classes, which means that, at the end, they were trying to im-velopment of their project. They also used the main page
prove the quality of the system structure, when most otheras & reference to the most interesting pieces of code in their

various portions of the design, coding, and documentation o

their system. They also assigned tasks to the team members,
maintained group notes regarding their project, and thay al
created a page to describe their understanding of an applica
tion framework that they utilized during the development of
their project. Finally, they also constructed a page to main
tain contact information for the team members.

To encourage signi cant use of WikiDev, similar to the
behavior of teank, the current WikiDev version has added
the ability to annotate WorkProduct pages (these pages were
originally locked). As well, in the future, Bugzilla integy

Figure 10. Histogram of a “giant” class tion is intended to replace the TaskLog functionality of the
In these ve projects, we were able to nd instances of rst WikiDev version to extend the small feature set provide

all the class-evolution types but die-hard and legacy, suchPY the TaskLog.
as the one reported in Figure 10. We believe that the rea-4- Related Research
son is the nature of the undergraduate term projects. They Ever since Osterweil pointed out the importance of soft-
are relatively small and must be completed within about 3 ware process [18], a substantial body of work was devoted to
months. The structure of system is simple, and thus it doesdeveloping Process-Centered Software Engineering Emviro
not need such maintenance activities that bring about die-ments (PSEEs) to support developers in their tasks. However
hard and legacy classes. On the other hand, due to timénost of them focus on mature developers who are already ex-
constraints students aim at completing a working system andperienced with process models, and focus on enabling them
are usually unwilling to perform such maintenance aceiti to visualize their work products and to communicate with
However, we found evidence of refactoring. For example, asone another [13, 3]. At the same time, there has also been
shown in Figure 11 taken on week 11, teBroreated a util- 3 ot of work on process measurement [17, 2], without how-
ity class named “DateWorker” and date-related functidpali ever, going as far as to provide feedback about how to better
was moved from the pre-existing “Appointment” class to the manage and control the process in response to these measure-
new “DateWorker” class. This is an example of the “class ments.
extraction” refactoring. Our research withJREFLEX aims at integrating results in
software process research within a pedagogical framework:
our objective is to support instructors in their effort tonme
tor novices in their apprenticeship for becoming the future
expert developers. To that endReFLEX enables implicit
and unobtrusive, as well as explicit, data collection ineord
to compile a precise snapshot of the project progress status
The novelty of its collaboration-analysis capability hewe
lies in the fact that, in addition to data collection, it akso-
ploys KDD methods [12] in an effort top discover interesting
correlations, patterns and trends that may enable theigstr
tor to gain further intuitions into the students process.
Figure 11. A snippet of the change tree for a On the other hand)RerLEX's evolution-analysis compo-
“move eld” refactoring nent is designed to produce semantically rich reports on the

project's evolution. There already exists a substantidituf
literature on the subject of “software-evolution undemsta

dents worked. In the future, we plan to work towards better
heuristics for analyzing the data and more intuitive viszal

ing”. A vast majority focuses on analyzing, not the system tions of the inferences.

design, but its code metrics. Eick et al. [7] analyze the

This work was supported by CSER, the Consortium for

change history of the code to derive “Code-Decay Indices”; Software Engineering Research, and an IBM Eclipse Inno-
fault potential and change effort is predicted as a function vation Grant.

of these indices through regression analysis. The same teal
also developed metrics visualization tools [8]. Gall et al.
[11] use information in the release history of a system to un-
cover logical coupling among modules. Their method aims
mainly at understanding module co-evolution. However, un-
fortunately, such documentation is not always readily lavai
able; even worse, even when such documentation exists, it is
seldom kept in sync with the code modi cations, and there-
fore it is an unreliable source of system changes. Demeyer et
[5] de ne four heuristics based on code-size and inher-
itance metrics to hypothesize generic classes of refagfori
activity; unfortunately, no concrete refactorings, ithe ones
described in [10], are identi ed. Lanza [15] describes how
to use a simple two-dimensional graph to convey the implicit
information of software metrics of object-oriented et

There has also been some work on “software design un-
derstanding”. Emden et al. [9] present a tool for detect-
ing and visualizing code smells based on the analysis of ex-
tracted facts of program structure. Egyed [6] has investi-
gated rule, constraint based transformation and compariso
approach for consistency checking between UML diagrams
when developers add new information to system model or
modify existing ones.

UMLDIff is a special case of a tree-matching algorithm.
The general tree-to-tree correction problem has beenestudi
extensively [4], and has been applied to show differences
between XML data [1]. The major difference between these
general algorithms and UMLDiIff is, UMLDiIff takes into ac-
count the structural syntactic information contained ia th

class model of application, and it can identify the “move” of [13]

object-oriented entities, which enable us to identify pe+f
tive changes that cannot be identi ed from documentation
like revision archives.

10] M. Fowler, Refactoring:

(11]

(12]

rRReferences

[1] Mosell EDM Ltd.: http://www.deltaxml.com
[2] StatCvs:http://statcvs.sourceforge.net/
[3] V. Ambriola, R. Conradi, A. Fuggetta, Assessing Proeess

centered Software Engineering Environments, ACM Trans-
actions on Software Engineering and Methodology, 6(3):283

328, 1997.
D. Barnard, G. Clarke and N. Duncan, Tree-to-tree Caorrec

tion for Document Trees, Technical Report 95- 375, Queen's

University, January 1995.
[5] S. Demeyer, S. Ducasse, and O. Nierstrasz, Finding +efac

torings via change metrics, ACM SIGPLAN notices, 2000,
35(10):166-177

[6] A. Egyed, Scalable Consistency Checking between Diagra
- The VIEWINTEGRA Approach, Proceedings of the 16th

IEEE International Diego, USA, 2001, pp. 387.
[7] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.

Mockus, Does Code Decay? Assessing the Evidence from
Change Management Data, IEEE Transactions on Software
Engineering, 2001, 27(1):1-12.

[8] S. G. Eick, T.L. Graves, A.F. Karr, A. Mockus, and P. Schus
ter, Visualizing Software Changes, Software Engineering,

2002, 28(4):396-412.
E. V. Emden and L. Moonen, Java Quality Assurance by De-

tecting Code Smells, Proceedings of 9th Working Conference

on Reverse Engineering, Oct, 2002.
Improving the Design of Exigdi

Code, Addison-Wesley, 1999.
H. Gall, K. Hajek and M. Jazayeri, Detection of Logical

Coupling Based on Product Release History, Proceedings
of the International Conference on Software Maintenance,

Bethesda, Washington DC, November 1998.
J. Han, M. Kamber, Data Mining: Concepts and Technigues

Morgan Kaufmann, 2000.
J. D. HerbdIrb, A. Herbdirb, T. A. Finholt, R. E. Grintekn

Empirical study of Global software development: distance
and speed, 23rd Int. Conference on Software Engineering
(ICSE 2001), Toronto, Canada, May12-19, 2001.

(4]

(9]

5. Conclusion [14] W. Humphrey, PSP/TShttp://www.sei.cmu.edu/
.)) tsp/watts bio.html
In this paper, we describedRerFLEX, a tool for monitor- [15] M. Lanza, The Evolution Matrix: Recovering Softwared=v

ing and analyzing the collaboration process of novice soft-
ware teams and the design of the produced software sys-
tem. JREFLEX's analysis is intended to support instructors of
capstone-project software-engineering courses to batier
derstand the progress of their students, in order to enable
them to provide timely and relevant feedback.

Our work on JRerLEX is still in progress, and much re-

search remains to properly test its effectiveness. Negerth [17]

less, in our rst case study, we have collected some promis-
ing experiences on how such an environment could be de-
ployed. JREFLEX extract a rich amount of data and its vi-
sualizations enabled even people not directly involvethén t
course to quickly obtain a high-level picture of how the stu-

(16]

(18]

lution using Software Visualization Techniques, Procegsli
of International Workshop on Principles of Software Evolu-

tion, 2001.
Y. Liu, E. Stroulia. A Lightweight Project-Managemeivi-

ronment for Small Novice Teams. ACSE 2003: 3rd Int. Work-
shop on Adoption-Centric Software Engineering in the 25th
Int. Conference on Software Engineering, Portland, Orggon

USA, May 9, 2003.
C. Lott, Technology trends survey: Measurement Supipor

Software Engineering Environments. Int. Journal of Sofewa

Engineering and Knowledge Engineering, 4(3), Sep. 1994.
L. Osterwell, Software Processes are Software toocdaa-

ings of the 9th Int. Conference on Software Engineering, pp.
2-13, Monterey, CA, Mar. 1987.

