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Abstract

Predictions for climate change include movement of temperature isoclines up to
1000 meters per year, and this is supported by recent empirical studies. This pa-
per considers effects of a rapidly changing environment on competitive outcomes
between species. The model is formulated as a system of nonlinear partial differ-
ential equations in a moving domain. Terms in the equations decribe competition
interactions and random movement by individuals. Here the critical patch size and
travelling wave speed for each species, calculated in the absence of competition and
in a stationary habitat, play a role in determining the outcome of the process with
competition and in a moving habitat. We demonstrate how habitat movement, cou-
pled with edge effects, can open up a new niche for invaders that would be otherwise
excluded.
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1 Introduction

Investigating the potential impact of climate change on biota is one of the important
tasks for quantitative modellers. Whereas detailed studies require large complex
models, a lot of information and powerful computers, many basic effects can be
studied with the help of rather simple models which take into account only a few
important factors.

At present one of the important problems is the impact of climate change on the
biosphere, and in particular on the distribution and interaction of biological species.
Observations show that during several past decades isotherms of year-average tem-
peratures has moved toward poles (Malcolm and Markham, 2000; Parmesan and
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Yohe, 2003). While computer models for global warming vary with respect to as-
sumptions and outcomes, they commonly predict that in northern Canada, Fennoscan-
dinavia and Russia the speed of isotherm motion will be on the order of 100–1000
meters per year (Malcolm and Markham, 2000), which is near or beyond the ob-
served historical spread rates for species such as trees (Clark et al., 1998). Such
species may be unable to catch up with the isoterms and thus it is reasonable to
expect changes in the composition and structure of northern biota.

One of the first steps in studying the consequences of global warming is to see
what effects can arise in simple models describing growth, dispersal and competi-
tion of biological species. In this paper we use reaction-diffusion models to analyze
the effect of moving range boundaries on spatial competition. Such models have
been successfully applied to modelling spatially distributed populations and can be
used to predict the speed of species invasion, or the critical patch size needed for
persistence of a species (Shigesada and Kawasaki, 1997; Okubo, 1980).

We consider competition of two species and denote their population densities by
ui(x, t). It is assumed that the suitable habitat for both species is a moving domain,
inside of which species disperse, grow and compete, and outside of which the species
die at a given rate, with no reproduction or competition.

The equations are

u1t =D1u1xx + (r1 − α11u1 − α12u2)u1, (1)

u2t =D2u2xx + (r2 − α21u1 − α22u2)u2 (2)

on x1(t) ≤ x ≤ x2(t) and

u1t =D1u1xx − κ1u1, (3)

u2t =D2u2xx − κ2u2 (4)

on x < x1(t) and x > x2(t). At the points x1(t) and x2(t) the densities ui and the
fluxes Diuix are assumed to be continuous. Here Di are the diffusion coefficients, ri
are the intrinsic growth rates for the species, αij are the interspecies competition
coefficients, and κi characterize the degree of outside environment hostility. For the
simplicity we set the same diffusion coefficients within and outside the patch. We
use the natural boundary condition ui → 0 as x→ ±∞.

For this model we are interested in the problem of conditions for species coexistence.
In the absence of diffusion, the condition α12 < α11, α21 < α22 is given by phase
plane analysis of the Volterra ordinary differential equations, see e.g. (Shigesada
and Kawasaki, 1997). Spatial dependence and habitat motion, as we shall show,
bring new features: (i) Boundaries can work as additional sinks, which can change
the outcome of competition, see also (Cantrell et al., 1998; Fagan et al., 1999);
(ii) Habitat motion also acts as an effective sink for populations; and (iii) Spatial
dependence creates new opportunities: species that cannot coexist at one point in
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space can form spatially distinct colonies, each of them containing mainly one of
the species (see also (Levin, 1974)).

One classic approach to analyzing competition is in terms of invasibility (Durrett,
2002). Suppose that the the patch is occupied by a single species. Will a second,
introduced species, survive and grow, or become extinct? This problem has been
considered by a number of authors, see e.g. (Shigesada and Kawasaki, 1997). We
consider this problem in the context of the spatial distribution of species in the
moving patch.

As far as we know, this is the first attempt to analyze the influence of climate
change on interspecies competition within the framework of the model (1), (2). At
the same time we must note that models with advection, which leads to the effects
close to patch motion have been used in ecological models for rivers, see e.g. (Speirs
and Gurney, 2001). However, (i) the problem of interspecific competition has not
been thoroughly analyzed in this context, and (ii) the speed of advection in rivers is
many orders of magnitude greater than speed of isotherms due to climate change,
hence the basic effects must be essentially different.

2 The model equations: transformation to standard form

2.1 Habitat motion as advection of biota

When the domain is fixed (say, x1 = 0, x2 = L) persistence of species in this model
can be thought of as a critical domain size problem with competition (Fagan et al.,
1999). Here we consider the case when the patch size x2(t)−x1(t) = L is fixed, and
the rate of the movement of the patch [x1(t), x2(t)] is constant, that is ẋ1 = ẋ2 = c.
A change of variables x → x− ct allows us to analyze this as a problem on a fixed
spatial domain 0 ≤ x ≤ L with advection. The speed of advection is c, and positive
values of c correspond to the motion from right to left. The model now is

u1t =D1u1xx + cu1x + (r1 − α11u1 − α12u2)u1, (5)

u2t =D2u2xx + cu2x + (r2 − α21u1 − α22u2)u2 (6)

for 0 < x < L. Outside the patch the equations are

u1t =D1u1xx + cu1x − κ1u1, (7)

u2t =D2u2xx + cu2x − κ1u2, (8)

for x < 0 and x > L. At the patch edges (x = 0 and x = L) ui and the fluxes Diuix
are assumed to be continuous.
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2.2 Nondimensionalization

The problem has twelve parameters: 2 Di, 2 ri, 4 αij , c, L, and 2 κi. By rescaling
x, t, u1, u2, we can exclude four of these leaving 6 free parameters for equations in
the patch, and the two κi which are used in the equations outside the patch.

Let x→ x0x, t→ t0t, ui → u0iui, then

u1t =
t0D1

x20
u1xx +

ct0
x0
u1x + (t0r1 − α11t0u01u1 − α12t0u02u2)u1, (9)

u2t =
t0D2

x20
u2xx +

ct0
x0
u2x + (t0r2 − α21t0u01u1 − α22t0u02u2)u2. (10)

The choice of

t0 =
1

r1
, x0 =

√
D1

r1
, u01 =

r1
α11

, u02 =
r1
α22

, (11)

and denoting

c
′
=

c√
D1r1

, D =
D2

D1
, r =

r2
r1
, L′ =

L

x0
, α

′
ij =

αij

αjj
, κ

′
i =

κi
r1
, (12)

yields

u1t = u1xx + cu1x + (1− u1 − α12u2)u1, (13)

u2t =Du2xx + cu2x + (r − α21u1 − u2)u2 (14)

inside the patch (x ∈ [0, L]) and

u1t = u1xx + cu1x − κ1u1, (15)

u2t =Du2xx + cu2x − κ2u2 (16)

outside the patch, where the strokes have been omitted for notational simplicity.
For the remainder of this paper we shall focus on the case when the mortality rates
outside the patch for each species are identical (κ1 = κ2 = κ).

3 Reduction to bounded domain for stationary solutions

In this section we reduce the model (13)–(16) on an infinite domain to a related
problem with Robin’s boundary conditions on a bounded domain. We show that
steady state solutions to the equations and the stability of these solutions is equiv-
alent on the original and reduced systems.
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3.1 Stationary solutions: reduction to a bounded domain

We consider stationary solutions for the system (13)–(16); that is uit = 0. Then,
following (Ludwig et al., 1979), we can transform the problem on the unbounded
domain to a boundary value problem on the domain [0, L]. Outside the patch, a
stationary solution has the form ui(x) ∼ exp (kix), i = 1, 2, where k1, k2 are roots
of the characteristic equations

k21 + ck1 − κ=0,

Dk22 + ck2 − κ=0.

There are two roots for each equation, positive k+i , corresponding to the solution ui
for x < 0 and negative k−i , corresponding to the solution ui for x > L,

k±1 =
−c±

√
c2 + 4κ

2
, k±2 =

−c±
√
c2 + 4Dκ

2D
. (17)

These roots satisfy the constraint that ui approaches zero as |x| → ∞. Note, that

ek
±
i x satisfies the first order equation uix−k±i ui = 0. This equation holds outside the

patch with corresponding k+i or k−i , and, due to the continuity of both ui and uix, at
the points x = 0 and x = L as well. Therefore, it is possible to consider stationary
problem only inside the patch with the following Robin’s boundary conditions

u1xx + cu1x + (1− u1 − α12u2)u1 =0, 0 < x < L, (18)

Du2xx + cu2x + (r − α21u1 − u2)u2 =0, 0 < x < L, (19)

uix − k+i ui =0, x = 0, i = 1, 2, (20)

uix − k−i ui =0, x = L, i = 1, 2. (21)

The case κ = ∞ (extreme hostility) corresponds to Dirichlet boundary conditions
ui = 0 at x = 0, L. Note that the case of neutral conditions outside the patch
(κ = 0) does not lead to Neumann boundary conditions unless c = 0 (no poleward
shift in habitat due to climate change).

3.2 Equivalence of the models for unbounded and bounded domains for small
perturbations of stationary solutions

Let us introduce a new dynamical problem, associated with the steady state one
(18)–(21):

u1t = u1xx + cu1x + (1− u1 − α12u2)u1, (22)

u2t =Du2xx + cu2x + (r − α21u1 − u2)u2, (23)

uix − k+i ui =0, x = 0, i = 1, 2, (24)

uix − k−i ui =0, x = L, i = 1, 2. (25)
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Note, that nonstationary solutions of (22)–(25) are not equivalent to those of the
original problem in unbounded domain (5)–(8). Nonetheless, this associated sys-
tem enables us to make conclusions about the dynamics of small perturbations of
stationary solutions of both systems.

Theorem 3.1 (Stability) When at least one of κ or |c| are positive, stationary
solutions of (22)–(25) and (5)–(8) are either both linearly stable or unstable.

Proof. For the sake of simplicity let us consider only the case c = 0. The case of
nonzero advection speed has a similar proof with the help of the change of variables.
Stationary solutions u01(x), u02(x) of both original and associated problems coincide
inside the patch, hence linearized equations for vi = ui − u0i also coincide.

1) Suppose that the eigenvalue problem corresponding to the associated linearized
system

v1xx + g11(x)v1 + g12(x)v2 = λv1, 0 < x < L

Dv2xx + g21(x)v1 + g22(x)v2 = λv2, 0 < x < L (26)

vix − k+i vi =0, x = 0, i = 1, 2,

vix − k−i vi =0, x = L, i = 1, 2;

where k±i are given by equation (17), has its dominant eigenvalue λA > 0. For the
unbounded domain the corresponding eigenvalue problem has the form

v1xx + g11(x)v1 + g12(x)v2 = λv1,, 0 < x < L,

Dv2xx + g21(x)v1 + g22(x)v2 = λv2, 0 < x < L, (27)

v1xx − κv1 = λv1, x < 0, x > L,

Dv2xx − κv2 = λv1, x < 0, x > L.

Let us show that this problem has at least one positive eigenvalue by constructing
the corresponding eigenfunction.

Let us consider an auxiliary quasi-eigenvalue problem

v1xx + g11(x)v1 + g12(x)v2 = λv1,, 0 < x < L,

Dv2xx + g21(x)v1 + g22(x)v2 = λv2, 0 < x < L, (28)

v1xx − κv1 = lv1, x < 0, x > L,

Dv2xx − κv2 = lv1, x < 0, x > L.

with l > −κ. Repeating arguments from Section 3.1, this problem can be reduced
to an eigenvalue problem on the bounded domain. Introducing k±1 (l) = ±

√
κ+ l,

k±2 (l) = ±
√

(κ+ l) /D, we get
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v1xx + g11(x)v1 + g12(x)v2 = λv1, 0 < x < L,

Dv2xx + g21(x)v1 + g22(x)v2 = λv2, 0 < x < L, (29)

vix − k+i (l)vi =0, x = 0, i = 1, 2,

vix − k−i (l)vi =0, x = L, i = 1, 2;

Here the dominant eigenvalue λ = λ(l) depends on l. According to (Smoller, 1994;
Cantrell et al., 1998) λ is a continuous and decreasing function of

∣∣k±i ∣∣, and hence
of l. Consider σ(l) = λ(l)− l, which is a decreasing function of l. We will show that
there exists a lB, 0 < lB < λA such that σ(lB) = 0.

For l = 0 we have system (26), and therefore σ(0) = λA > 0. For l = λA we have
σ(λA) = λ(λA) − λA < λ(0) − λA = 0. Thus σ(0) > 0 and σ(λA) < 0. Due to
continuity of σ there must exist an intermediate value lB, 0 < lB < λA such that
0 = σ(lB) = λ(lB) − lB. This means that for l = lB (28) is identical to (27), and
hence (27) has at least one positive eigenvalue λ = lB, and therefore its dominant
eigenvalue is also positive.

2) Suppose that (27) has its dominant eigenvalue λ = λB > 0. Then for l = λB (29)
has at least one positive eigenvalue λ = λB, and hence its dominant eigenvalue λ(l)
must be positive too. Now let us decrease l in (29) from l = λB to l = 0. Since λ(l)
is a continuously decreasing function, λA = λ(0) > λ(lB) ≥ λB > 0. At l = 0 (29)
coincides with (26), and hence the latter has a positive dominant eigenvalue.

3) In case |c| > 0 the equations (18), (19) has a nonselfadjoint operator, and we
cannot directly apply the proof above. Nonetheless, it is possible to use the change
of variables u1(x, t) = ũ1(x, t) exp

(
− cx

2

)
, u2(x, t) = ũ2(x, t) exp

(
− cx

2D

)
(see the

details in the next section), which makes the operator self-adjoint and hence the
technique of the proof becomes applicable.

Therefore both systems (26) and (27) are simultaneously unstable, and hence si-
multaneously stable too. 2

We can conclude, that the associated system (26) can be used for testing the problem
for invasibility in (27): if the species can invade the patch in the original model, the
same is true for the associated model and vice-versa.

4 Exclusion of advection, inhomogeneous habitat model, and char-
acteristic scales

In this section we consider characteristic spatial and temporal scales for the model,
nondimensionalize the model, and deduce the habitat movement speed that yields
species extinction.
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4.1 Exclusion of advection and inhomogeneous habitat model

The advection term can be excluded from the (13)–(16) by change of variables:

u1(x, t) = ũ1(x, t) exp
(
−cx

2

)
, u2(x, t) = ũ2(x, t) exp

(
− cx

2D

)
. (30)

Substituting this into (13)–(16) leads to the spatially inhomogeneous system

ũ1t = ũ1xx + (r̃1 − e−
cx
2 ũ1 − α12e

− cx
2D ũ2)ũ1, (31)

ũ2t =Dũ2xx + (r̃2 − α21e
− cx

2 ũ1 − e−
cx
2D ũ2)ũ2 (32)

within the patch and

ũ1t = ũ1xx −
(
κ+

c2

4

)
ũ1, (33)

ũ2t =Dũ2xx −
(
κ+

c2

4D

)
ũ2 (34)

outside the patch, where

r̃1 =1− c2

4
= 1−

(
c

c1∗

)2

(35)

r̃2 = r

(
1− c2

4Dr

)
= r

(
1−

(
c

c2∗

)2
)
. (36)

Here
c1∗ = 2, c2∗ = 2

√
Dr (37)

are the well known asymptotic rate of population spread for the single-species
models (equations (13), (14) with c = α12 = α21 = 0 on the infinite domain
−∞ < x <∞, (Aronson and Weinberger, 1975)).

4.2 Sufficient speed for species extinction

This change of variables allow us to draw two important conclusions. Let us turn
to the equations without the advection term (31), (32).

Proposition 4.1 For |c| > ci∗ the i-th species cannot survive.

It can be easily seen that in this case r̃i < 0, and the equation for ui has no sources,
only sinks, and hence ui must approach zero (Smoller, 1994). In other words, the i-th
species will go extinct if the habitat movement speed exceeds the species asymptotic
spread rate in the absence of competition.
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Another way to characterize the ability of a single species to survive is through its
critical patch size L∗ (Okubo, 1980; Ludwig et al., 1979; Shigesada and Kawasaki,
1997). The value of L∗ depends on the boundary conditions. In case of Dirichlet
boundary condition (κ = ∞ for our model (13), (14) with c = α12 = α21 = 0) the
critical patch sizes are

L1∗ = π, L2∗ = π

√
D

r
. (38)

In case of general κ values the values of Li∗ are smaller, but are still proportional
to (38).

This is interpreted as the smallest possible size of a patch that will allow for persis-
tence of a single species. As L increases through L∗ the trivial equilibrium solution
u = 0 becomes unstable and an introduced population will grow. In presence of
competition and patch motion (c nonzero), we define the critical patch sizes L̃i as
the smallest values of L for which species i will grow, under the assumption that
both species 1 and 2 are rare, that is nonlinear terms in (13), (14) are negligible.

Proposition 4.2 With the increase of |c| the critical patch size for i-th species
increases and goes to infinity as c approaches ci∗.

The size of critical patch is obtained from the linear stability of zero solution ũ1(x) =
ũ2(x) = 0. As shown in Section 3, analysis of the stability of this zero solution can
be facilitated by transformating (31) — (34) to a problem on the finite domain:
equations (31), (32) and boundary conditions

ũix − k̃+i ũi =0, x = 0,

ũix − k̃−i ũi =0, x = L,

where

k̃±1 = ±
√
c2 + 4κ

2
, k̃±2 = ±

√
c2 + 4Dκ

2D
. (39)

Here, the terms with explicit dependence on x in (31), (32) are nonlinear terms
of higher order which do not affect the linear stability. Each linearized equation
decouples from the other. For Dirichlet problem (the case κ = ∞) the boundary
conditions do not depend on c, hence the estimate for the critical length has the
same form (38) with r̃i instead of ri. Therefore, the critical patch size is

L̃i∗ =
Li∗√

1−
(

c
ci∗

)2 , (40)

which approaches infinity as |c| approaches ci∗.

When the hostility of the exterior κ is finite, the single species critical domain
lengths become

L̃i∗ =
Li∗√

1−
(

c
ci∗

)2 2

π
arctan

(
k+i√
r̃i

)
.
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One can see that for κ→ ∞ we obtain (40).

Below we shall use the values Li∗ regardless of the boundary conditions, as a pa-
rameter characterizing properties of species i. In such a context it may be preferable
to use more general term “characteristic length” for species i instead of “critical
domain size”.

5 Numerical experiments: basic effects observed

5.1 Single species at moving patch: extinction at critical speed

Let us suppose that the second species is absent, so u2 = 0. Then equation (13) for
stationary solution takes the form

uxx + cux + (1− u)u=0, (41)

ux − k±u=0, x = 0, L,

or

ũxx +

(
1− c2

4
− e−

cx
2 ũ

)
ũ=0, (42)

ũx − k̃ũ=0, x = 0, L.

Here the index for u was omitted for brevity. For the case c = 0 the detailed
analysis is presented e.g. in (Ludwig et al., 1979), including an analytically derived
solution. For the case c ̸= 0 the equation cannot be solved analytically. Only the
bounds for the solution can be obtained analytically (see Appendix). The examples
of numerically calculated profiles for c > 0 are shown in Fig. 1. As c approaches the
speed of front propagation c∗ = 2, the profile becomes more and more asymmetric,
then at the right boundary there appears a domain where u almost turns to zero.
For greater c values this domain expands, and finally at c ≥ 2 only the zero solution
exists.

5.2 Two species at moving patch: preliminary analysis and choice of param-
eters

5.2.1 The Volterra competition model

It is well-known, that important preliminary information about species competi-
tion and invasibility can be obtained from the model for spatially uniform species
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distribution, i.e. from equations (13) and (14) without terms containing spatial
derivatives

u̇1 = (1− u1 − α12u2)u1, (43)

u̇2 = (r − α21u1 − u2)u2.

This is the Volterra competition model, and depending on the coefficients α, the
asymptotic behavior can belong to one of the four kinds, listed in Table 5.2.1.

Table 5.2.1. Outcomes of competition in Volterra model (43)

name u1, u2 outcome conditions

A u1 → 0, u2 → u02 > 0 2 wins α21 < r, 1/α12 < r

B u1 → u01 > 0, u2 → u02 > 0 coexistence α21 < r, 1/α12 > r

C u1 → u01 > 0, u2 → 0 1 wins α21 > r, 1/α12 > r

D A or C, depending on ui(0) 1 or 2 wins α21 > r, 1/α12 < r

We will focus on the case where the success of invasion of a species depends upon
the spatial interaction terms. Specifically, we consider case C, where the nonspatial
model denies the possibility of species coexistence, and investigate the possibility of
invasion by species 2 in a spatial context.

5.2.2 The simplest accounting for the speed: the Volterra model with r̃ instead
of r.

In case of a single equation with advection we have shown that the effect of advection
speed c can be described by adjusting the species growth rate: using r̃ instead of r. It
is natural to analyze, what will happen in Volterra model after similar substitution.
Though nonrigorous, such analysis may be helpful for understanding the effects
observed in numerical experiments.

Let us consider the following system

u̇1 = (r̃1 − u1 − α12u2)u1, (44)

u̇2 = (r̃2 − α21u1 − u2)u2.

Assuming 0 ≤ c < min{c1∗, c2∗}, the outcome of competition in (44) depends now
on the ratio

R(c) =
r − c2

4D

1− c2

4

= r
1− c2

4Dr

1− c2

4

= r
1− (c/c2∗)

2

1− (c/c1∗)
2 . (45)

which plays the role of r in (43) and in Table 5.2.1. As we change c, R may pass
through the values α21 and 1/α12, which results in changing the outcome of com-
petition. For example, for c = 0 we may have case A from Table 5.2.1, then case B,
and eventually case C. In other words, we may expect speed-induced mode switching,
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and consequently switches in competitive dominance induced by different rates of
climatic change.

Actual sequence of competition modes depends on three factors:

(1) The value R(0) = r. In the mentioned example swithching from A to B and
C means decreasing of R. To observe the whole sequence we must have big
enough r. On the other hand, if r is small there is always case C for any speed
c and no mode switching.

(2) The relation between c1∗ and c2∗. For c1∗ > c2∗ R(c) is a decreasing function
while for c1∗ < c2∗ it is an increasing one.

(3) The relation between α21 and 1/α12. This determines which of the inequalities
in Table 5.2.1 changes first, and hence the details of the mode swithing.

Therefore, assuming r big or small enough to observe the whole sequence of modes,
we come to the following four scenarios of mode switching, which we shall denote
S1 through S4.

S1: c1∗ > c2∗, α21 > 1/α12, r corresponds to case A. For 0 ≤ c < c2∗ R(c) de-
creases from r to 0 giving the sequence of competition modes A → D → C or
”2”→”1/2”→”1”.

S2: c1∗ < c2∗, α21 > 1/α12, r corresponds to case C. For 0 ≤ c < c1∗ R(c) increases
from r to ∞ through C → D → A or ”1”→”1/2”→”2”.

S3: c1∗ > c2∗, α21 < 1/α12, r corresponds to case A. For 0 ≤ c < c2∗ R(c) decreases
from r to 0 through A → B → C or ”2”→”1+2”→”1”.

S4: c1∗ < c2∗, α21 < 1/α12 r corresponds to case C. For 0 ≤ c < c1∗ R(c) increases
from r to ∞ through C → B → A or ”1”→”1+2”→”2”.

Since the model (44) is only an approximation, these scenarios are not by any means
rigorous predictions, they may be used only as a guidance helping to understand
numerical data, presented below.

5.3 Numerical data: comparison with conjectures

Numerical experiments were performed for the system (22)–(25). The parameters r
and αij of the equations we have chosen such that in the Volterra model (43) there
is case C: the second species goes extinct and the first one persists for any initial
data where the second species is nonzero. This choice allows us to detect new effects
that can be related with the patch motion and spatial distribution.
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During the calculations we set up nonzero initial data for both species, allowed all
transitions to decay and then analyzed the resulting stationary profiles. This proce-
dure has been performed for c from 0 to max{c1∗, c2∗}. Some results are presented
in Fig. 2, 3, 4. The values of ui(x) for every c are shown by the shades of gray: from
0 (white) to maximal uimax (black).

We cannot physically present all the results, instead we shall describe main effects
observed. We focus on what seems to be the most important observation, the role
of the ratio L2∗/L1∗ and the four scenarios of the previous section.

• For L2∗/L1∗ > 1 usually the numerical results correspond the predictions of the
scenarios S1–S4, Fig. 2.

• Scenarios S1, S2 correspond to abrupt replacement of the species; scenarios S3,
S4 give soft replacement — there is a range of c values for which species coexist.

• For L2∗/L1∗ < 1 usually the outcome of the experiments was essentially different
from those predictions, Fig. 3, 4.

There are two basic effects observed mainly for L2∗/L1∗ < 1. (i) Species 2 instead
of going extinct, occupies part of the patch near one or both edges, Fig. 3a-c, 4d.
Most pronounced this effect is for nonzero c, though sometimes it can be found for
c = 0. (ii) Species 2 not only survives near the boundary, but occupies the whole
domain and replaces the species 1, Fig. 3d, 4a-c. We observed this effect only for
nonzero patch speed.

6 Invasion analysis and basic effects

Let us suppose that the species 1 has established and the corresponding stationary
profile u1 = u(x) is formed. After that we introduce a small amount of the sec-
ond species. Will it go extinct or survive and grow? What will be the two-species
stationary profile?

6.1 The problem of invasion

The invasion problem is well-known, and is considered, for example, in (Shigesada
and Kawasaki, 1997). To solve it, one must evaluate the stability of the solution
u1 = u(x), u2 = 0 for the system (22)–(25). Substitutions of δu1e

λt = u1 − u(x),
δu2e

λt = u2, |δui| ≪ 1 leads to the linearized problem

Dδu2xx + cδu2x + (r − α21u)δu2 = λδu2 (46)

δu2x − k+2 δu2 =0, x = 0,

δu2x − k−2 δu2 =0, x = L.
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Applying the change of variables δu2 = exp
(
− cx

2D

)
v transforms this system to

Dvxx + (r − c2

4D
− α21u)v= λv (47)

vx − k̃+2 v=0, x = 0,

vx − k̃−2 v=0, x = L.

where u(x) is the solution of

uxx + cux + (1− u)u=0.

ux − k+1 u=0, x = 0,

ux − k−1 u=0, x = L.

If the greatest eigenvalue is positive then invasion by the second species is possible,
if it is negative, the second species cannot invade.

Similarly, the conditions for the invasion of the first species when the second one
has established, are determined by another eigenvalue problem

vxx + (1− c2

4
− α12u)v= λv (48)

vx − k̃+1 v=0, x = 0,

vx − k̃−1 v=0, x = L.

Duxx + cux + (r − u)u=0

ux − k+2 u=0, x = 0,

ux − k−2 u=0, x = L.

Numerical calculations show that the invasibility essentially depends on the ratio of
characteristic lengths of the species L2∗/L1∗. The importance of this ratio is shown
by the following theorems.

6.2 Noninvasion and coexistence theorems for the case with a stationary hos-
tile boundary (c = 0, κ → ∞)

6.2.1 Equations in stationary case

This section can be considered as a sequel or complementary to the analysis in
(Cantrell et al., 1998). We shall consider the same questions — which species wins
the competition, which is going to be extinct, and which can invade the habitat
occupied by the other. However we shall primarily analyze how the situation depends
on D and r rather than boundary conditions. For the sake of simplicity we shall
consider the system with c = 0 and a completely hostile environment
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u1t = u1xx + (1− u1 − α12u2)u1,

u2t =Du2xx + (r − α21u1 − u2)u2, (49)

ui =0, x = 0, L.

The systems (47) and (48) now take the form

Dvxx + (r − α21u1)v= λv,

u1xx + (1− u1)u1 =0, (50)

u1, v=0, x = 0, L,

and

vxx + (1− α12u2)v= λv,

Du2xx + (r − u2)u2 =0, (51)

u2, v=0, x = 0, L.

In the proofs of the theorems we shall use the following theorems from (Smoller,
1994; Cantrell et al., 1998):

(T1) Upper and lower solutions. Let u be a solution of Duxx + F (u, x) = 0, x ∈ Ω,
u|∂Ω = h(x). If v satisfy Dvxx + F (v, x) ≤ 0, v|∂Ω ≥ h(x), then v ≥ u in Ω and is
called an upper solution. If v satisfy Dvxx + F (v, x) ≥ 0, v|∂Ω ≤ h(x), then v ≤ u
in Ω and is called a lower solution. This is the consequence of maximum principle
and comparison theorems for elliptic and parabolic differential equations.

(T2) The dominant eigenvalue λmax of a problem Dvxx − k(x)v = λv, x ∈ [0, L],
v|0,L = 0 is a continuous and decreasing function of k(x), that is if k1 > k2, λmax 1 <
λmax 2.

The first result is given by the following theorem.

6.2.2 Noninvasion theorem

Theorem 6.1 (Noninvasion of species with longer characteristic length
in stationary environment). Let c = 0, κ = ∞ (Dirichlet boundary conditions).
Consider the case C in the Volterra model (1-st species wins), and L2∗ > L1∗.
Suppose that the species 1 has established and reached its stationary distribution
u1(x), then the species 2 cannot invade.

Proof. Let us consider stationary distributions of both species in absence of the
other, u1 and u2. They satisfy the equations

u1xx + (1− u1)u1 =0, (52)

Du2xx + (r − u2)u2 =0, (53)
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with the boundary conditions ui = 0, x = 0, L. Note that 0 < u1 < 1 for 0 < x < L
and hence (1− u1)u1 > 0. Let us show that ru1 > u2 with the help of the theorem
(T1). Substituting ru1 into the second equation we have

Dru1xx+(r − ru1) ru1 = (r − ru1) ru1−Dr (1− u1)u1 = −r2
(
D

r
− 1

)
(1− u1)u1 < 0

(54)
provided

D

r
=

(
L2∗
L1∗

)2

> 1. (55)

By assumption this condition holds, hence ru1 is the upper solution for u2 and hence
ru1 ≥ u2.

Now let us consider two eigenvalue problems

Dvxx + (r − u2)v= µv, (56)

Dvxx + (r − α21u1)v= λv, (57)

v(0) = v(L) = 0, x = 0, L

We are interested in the dominant eigenvalues λmax and µmax and the corresponding
eigenvectors. Since α21 > r (case C), α21u1 ≥ u2 and hence λmax ≤ µmax (Smoller,
1994; Cantrell et al., 1998). In case µ = 0 we know one of the solutions of (56): if
we substitute v = u2 it turns into (52) for which u2 is a solution. This means that
v = u2 is an eigenfunction corresponding to the eigenvalue µ = 0. Since u2 > 0,
this is the dominant eigenvalue, µmax = 0, and we can conclude that λmax ≤ 0.
Therefore population of the second species cannot grow in presence of the established
population of the first one. 2

Note 1. The theorem can be extended to the case of more general boundary con-
ditions if the “hostility parameters” κ outside the patch are proportional to the
diffusion coefficients, that is κ1/κ2 = D1/D2. In case c = 0 this implies k1 = k2,
that is u01 and u02 satisfy the same boundary conditions. This allows to extend
the proof to the case of finite κi/Di. For the same κ for both species the proof
encounters problems at the boundary: to ensure that u01 is an upper solution we
need to impose condition D < 1 (to make k2 > k1), and this restricts applicability
of the theorem to not very interesting case of small r, such that D/r is still greater
than 1.

Note 2. If parameters correspond to the case A of the Volterra model (second
species wins) and L2∗ < L1∗ then, after the interchanging the species 1 ↔ 2 the
theorem states that the first species cannot invade if there exists established popu-
lation of the second one.

6.2.3 Coexistence theorem

The noninvasion theorem is based upon the observation, that under certain con-
ditions the second species cannot grow in presence of the established population
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of the first one. Now suppose there is another situation: both species can grow in
presence of the established population of the other, in other words, both 1-species
solutions u1 = u1(x), u2 = 0 and u1 = 0, u2 = u2(x) are unstable. Then we can
conclude that the steady state of the system must be a coexistence of both species.
This is the idea of the coexistence theorem.

Recall that we are again considering parameter values corresponding to the case C:
α12r < 1, α21 > r. Here, invasibility of the first species depends on the principal
eigenvalue of the problem (51). It can be shown that u2 ≤ r (Smoller, 1994),
therefore α12u2 < α12r < 1. Let us consider the eigenvalue problem

vxx + (1− α12r)v = µv, v(0) = v(L) = 0. (58)

According to the (T2), λmax > µmax, therefore if µmax > 0, λmax is also positive.
The value of µmax can be found explicitly, this gives the condition

µmax = 1− α12r −
(π
L

)2
> 0

or

L >
π√

1− α12r
. (59)

This gives the proof for the following lemma for the invasion of the second species
by the first species.

Lemma 6.1 Consider the case C in the Volterra model. If (59) holds, the species
1 can grow in presence of the species 2.

Invasion of the second species into the first species depends on the principal eigen-
value of the problem (50). Here we cannot just use the estimate u1 < 1 since it
always gives a negative estimate for λmax.

In the appendix it is shown that u1(x) ≤ uA(x) (A.2), where, for c = 0 and k = ∞

uA(x) = 1− 1

1 + e−L

(
e(x−L) + e−x

)
= 1−

cosh
(
x− L

2

)
cosh

(
L
2

) .

Substitution of uA into (50) gives a Mathieu equation, for which there are no good
estimates of λ. For this reason we shall use another estimate which brings more
analytical possibilities. Note that uA is concave upwards and hence lies below its
tangent, in particular the tangent at x = 0, hence

u1(x) ≤ uA(x) = 1−
cosh

(
2x−L

2

)
cosh

(
L
2

) ≤ x
sinh

(
L
2

)
cosh

(
L
2

) ≤ x. (60)

Let us consider the eigenvalue problem

Dvxx + (r − α21x)v= µv, (61)

v(0) = v(L) = 0.
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According to (60) and (T2), λmax > µmax. If, for certain D, r, and α21, this problem
has µmax = 0, then λmax > 0 and the second species can invade. It is convenient to
fix D and α21 and vary r. The value of µmax = 0 corresponds to some r = r0. To
find r0 we need to find conditions under which there is a positive solution of (61)
with µ = 0. Let us use the change of variable

x =

(
D

α21

)1/3

z +
r

α21
,

to transform (61) with µ = 0 to

vzz − zv=0, (62)

v(z1) = v(z2) = 0, (63)

z1 = − r

α
2/3
21 D

1/3
, z2 =

(α21

D

)1/3
L+ z1. (64)

A general solution to this equation can be expressed through the Airy functions,
Ai(z) and Bi(z) (Abramowitz and Stegun, 1965), v(z) = aAi(z) − bBi(z). For z <
0 both of these functions behave like trigonometric ones; in particular they have
infinite number of zeroes and |Ai(z)| < 1, |Bi(z)| < 1 (Fig. 5). For z > 0 they
behave like exponential functions, and for z large there are asymptotic formulas

Ai(z) ≈ 1

2
√
πz1/4

e−ζ , Bi(z) ≈ 1
√
πz1/4

eζ , ζ =
2

3
z3/2.

We consider case C in the Volterra model (1st species wins and hence r < α21,
α12r < 1) and assume that both species can survive in the absence of the other (the
domain length exceeds L1∗ = π and L2∗ = π

√
D/r). Thus

z2 =
(α21

D

)1/3
L+ z1 =

(α21

D

)1/3(
L− r

α21

)
>
(α21

D

)1/3
(π − 1) > 0. (65)

The solution to (62)–(63) satisfies

Γ(z1) = Γ(z2) = A (66)

where Γ(z) = Bi(z)/Ai(z) and A = a/b constant. It is straightforward to show that
for each z2 > 0 there exists a critical value z1c of z1 ∈ (−za,−zb) which satisfies
(66), where za ≈ 2.67 and zb ≈ 2.34 (Figure 6). This gives a critical growth rate for
the cecond species, r, which satisfies z1 = z1c so when

r = rc = z1cα
2/3
21 D

1/3 (67)

µmax = 0 and hence λmax > 0 and the second species can invade. As can be seen
from Figure 6, z1c is a decreasing function of z2 and hence, using (64) and (67) we
observe that rc is a decreasing function of the domain size L.

For equation (61) we observe that u is an increasing function of r. Hence the second
species can invade for any

r ≥ ra = zaα
2/3
21 D

1/3, za = 2.67 (68)
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Substituting D =
(
L2∗
L1∗

)2
r, this relation can be rewritten as

r2 ≥ z3aα
2
21

(
L2∗
L1∗

)2

or
L2∗
L1∗

≤ z−3/2
a

r

α21
, z−3/2

a ≈ 0.22, α21 > r, α12r < 1. (69)

This proves the second lemma.

Lemma 6.2 Consider the case C in the Volterra model and assume L > max
{
π, π

√
D/r

}
.

If (69) holds, the species 2 can grow in the presence of the species 1.

Combining both lemmas, we obtain

Theorem 6.2 (Coexistence). Let c = 0, κ = ∞. Consider the case C in the
Volterra model. If

L > max

{
π√

1− α12r
, π

√
D

r

}
,

L2∗
L1∗

≤ 0.22
r

α21

both species can coexist in the domain.

Note 1. The appearance of the Airy functions suggests the form of coexistence, Fig.
5. Near the boundary Ai(z) looks qualitatively similar to xe−x function — it goes to
zero at the boundary and in the centre of the domain. Therefore the species which
is to be extinct according to the Volterra model instead settles near the boundary
in the layer of the size ∼ L2∗, where Ai(z) is essentially nonzero, while the other
species occupies the rest of the patch. Examples of the described coexistence are
shown in Fig. 7.

Note 2. Due to the symmetry of the problem, sufficient conditions for coexistence
can be obtained for the case A of the Volterra model (α21 < r, α12r > 1) in the
same way.

6.3 Biological view of edge effects: habitat inhomogeneity as a new opportu-
nity for species

How biologically important is spatial distribution? The simplest generalization of
(43) with accounting for spatial inhomogeneity is a compartment model, where there
are several habitats with spatially uniform species distribution, and there is a flow
from one habitat into another proportional to the difference in individual densities.
This model has been analyzed e.g. in (Levin, 1974), and the main conclusion was
that the species that cannot share the same homogeneous habitat can use the sep-
aration in space: they cannot coexist in the same compartment, but can occupy
different neighboring ones.
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The compartmental approach implies spatial inhomogeneity of the habitat, some
sort of patchiness, and the patch boundaries cannot be set arbitrarily, they should
reflect changes in permeability or local carrying capacity. In other words, inhomo-
geneity of habitat creates opportunities for species coexistence and invasion. This
idea has been stressed in a number of publications, e.g. (Fagan et al., 1999; Shige-
sada and Kawasaki, 1997; Cantrell et al., 1998). It has been shown that conditions
at the habitat boundary can change and even reverse the outcome of competition
compared to the prediction of homogeneous model.

We would like to stress one feature of habitat edges more clearly: under certain
conditions the habitat edge serves to help the invading species. The origin of the
effect can be explained in rather simple terms as follows. As we have mentioned,
each species has a characteristic length Li∗. Besides showing the minimal patch
size where the species can exist, it also characterizes the size of the area where the
species distribution “feels” the presence of the edge. If two species has different
characteristic lengths, say, L1∗ > L2∗, and the habitat size is big compared to Li∗,
then there is a domain where the population of the species 1 is disturbed by the edge
while that of the species 2 almost does not feel it. If the ratio of intrinsic growth
rates r = r2/r1 is big enough, then the species 2 has a good chance to survive in
this domain. Instead of extinction the species 2 retreats to a ring surrounding the
habitat of the species 1. If on the other hand, L1∗ < L2∗, then spatial inhomogeneity
is not of any help for the species 2, and the outcome of competition can be predicted
by the Volterra model.

6.4 Edge effects and competition in general case c ̸= 0, κ ≤ ∞. Boundary
coexistence and replacement front reversal

6.4.1 Boundary coexistence

In general case where c ̸= 0 and κ < ∞ the theoretical analysis becomes much
harder. It is possible to develop an approximate analysis for the invasion of the
second species assuming the other one u(x) to be established. Like in the previous
section it is possible to approximate u(x) near the boundary by a linear function
u(x) ≈ uB0 + uB1x, then to get the eigenvalue problem with the solutions, which
again can be expressed through the Airy functions. The estimates for uBi from
above and below can be obtained (see Appendix), but they are not accurate enough
to give practically useful results. For this reason we shall only make some remarks.

As with chemostat flow (Smith and Waltman, 1995), for the moving patch there is
the effect of “washing out” the species, which changes the shape of the profile for
the established species near the boundary (Fig. 1). At the in-flow boundary (right
for c > 0, left for c < 0) the profile u(x) becomes less steep and slowly retreats as
|c| increases. This may enhance the opportunity for the second species to invade.
At the out-flow boundary the profile of u(x) becomes more steep, and so invasion
becomes harder.
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On the other hand, the invading species also suffers from the washing out effects,
which may prevent invasion. So we have combination of a number of different factors,
and in different cases they can produce different patterns, see Figs. 2–4. The only
general result is that the quotient L2∗/L1∗ remains an important classifying feature:
we observed boundary coexistence for c > 0 only when it was less then 1, even if in
case c = 0 there were no coexistence.

However, for c > 0 numerics showed one more effect, which has no analog in case
c = 0 — replacement of the dominant species, sometimes with another replacement
at greater speed.

6.4.2 Invasion front reversal

Let us consider the following problem. Suppose that in the infinite homogeneous
domain there is a barrier, and on the left of it there is an established population
of species 1, while on the right — that of species 2. Let there be no advection, and
the species parameters correspond to the case C of the Volterra model (rα12 < 1,
α21 > r, species 1 wins in the competition). At some moment the barrier between
species disappear, and after some relatively short transition time a wave of species
replacement will form. Species 1 propagates to the right and replaces the species
2, while the latter retreats. This problem has been thoroughly studied in (Lewis
et al., 2002), and it has been shown that if parameters of the model satisfy two
inequalities,

D < 2, α12α21 − 1 <
(
r−1 − α12

)
(2−D) , (70)

then the speed of the invasion front is equal to

cF = c1∗
√
1− rα12 = 2

√
1− rα12. (71)

If the inequalities are not satisfied, the front speed can be greater than this value.

We now return back to the model with advection. If the speed of advection c < cF ,
in the moving system we shall observe the front moving in the same direction with
the speed cF1 = cF−c. But if c > cF , in the moving system we shall see qualitatively
different situation: the front moving on the left, that is the species 2 becomes the
winner in the competition!

If the domain is finite, but long enough, this effect can be observed in numerical ex-
periments, when appropriate initial data are set. Note that in this case the problem
is not isotropic: if the population of the species 2 has been created at the in-flow
boundary (right for c > 0), then the species 2 can successfully propagate to the left
and make the species 1 extinct, Fig. 8. If on the other hand the population of the
species 2 is created at the out-flow end, it will quickly become extinct itself, Fig. 9.

Now suppose that the species 2 can grow near the boundary up to big enough values.
Then the initial conditions for the propagating front may be satisfied, and hence
instead of quiet coexistence near the boundary the species 2 may become dominant
and take over the whole habitat.

21



In numerical calculations we observed this effect a number of times. Examples can
be seen in Figs. 3, 4. Usually this occurs for the value of c close to the estimate (71),
which suggests that the explanation for the effect is correct.

The profiles for single species (Fig. 1) show that as c grows, the right (in-flow) edge
of the profile becomes less and less steep, which makes invasion simpler. Therefore
the possibility of successful invasion should be different for in-flow and out-flow
edges.

Numerical experiments confirm this assumption and show the resonant character
of such an invasion, Figs. 8, 9. A small perturbation at the in-flow edge grows and
occupies all the domain, while the preexisting species extincts. At the same time a
much bigger perturbation at the other edge quickly dies out.

7 Summary and Conclusions

7.1 Mathematical conclusions

The paper contains a number of rigorous results: (i) proof of equivalence of station-
ary solutions stability for the problem in unbounded domain and the corresponding
boundary value problem; (ii) The noninvasion and coexistence theorems; (iii) The
estimates for stationary solutions presented in Appendix. The first result gives an
efficient instrument for numerical studies of stationary solutions and invasibility.
Other may be useful for theoretical analysis of invasion problems.

7.2 Ecological conclusions

The model described in the paper predicts some new effects:

1. Habitat motion decreases effective growth rates and increases critical length scales
for species persistence

2. Coexistence through edge effects becomes more typical as c increases

3. Habitat motion may result in reversal of invasion process: weaker invaders may
become successful if introduced at the in-flow boundary.

From our point of view the most interesting ecological effect described in our work is
boundary coexistence. Patch motion enhances it and makes it a primary mechanism
for invasion of new species. We would like to note that we present rather simple
criteria, when one can expect that the boundary coexistence may take place.
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7.3 Applications to global change

According to the literature, now the average speed of habitats motion is about
c ≈ 600m/year (Parmesan and Yohe, 2003). On the other hand it is known that for
some species c∗ ≈ 1− 3 km/year. Therefore we may expect:

1. Extinction of species with small dispersal speed c∗ (small Dr) and big critical
domain size (big D/r).

2. Invasion of new species, especially at the poleward habitat edges.

3. Replacement of some species by previously unsuccessful competitors if isotherms
speed approaches cF .

7.4 Conceptually related questions

There are conceptually related questions that are interesting from both biological
and mathematical perspectives. For example, when species are in alpine habitats,
climate change can mean both upwards shifts in habitat zones and shrinkage and
fragmentation of those zones because there is less habitat at higher elevations. Al-
though this could be addressed in the reaction-diffusion framework presented here,
it would require complex spatiotemporal shifts in the domain boundaries—a non-
trivial problem.

Whereas this paper has focused on two species interacting through Lotka-Volterra
competition, competitive interactions are undoubtedly more complex, and may in-
volve a large number of species. The effect of climate change on a a large number
species with different dispersal and competitive abilities may result in new local
mixes of species, which then would have differential effects on any given competi-
tor. Mathematical analysis of this situation would be an important step towards
extending the pairwise competition results of this paper to real ecosystems.
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A Estimates for the solution of (42) and bounds for the coefficients
uB1 and uB1.

We shall apply the method of upper and lower solution of (42), see statement (T1)
in Sect. 6.2.1. It gives a rather simple criterion for obtaining upper and lower bound
for the solution without actually solving the equation.

A.1 Lower solution

For the lower solution the recipe is to try a first eigenfunction of the differential
operator d2/dx2 for the specified domain and the boundary conditions. The solution
of the equation

ψxx +Ω2ψ = 0

is
ψ = A sin (Ωx+ ϑ) = A (sinΩx cos θ + cosΩx sin θ) .

¿From the boundary conditions it follows that

Ω cos θ − k sin θ=0,

Ω(cosΩL cos θ − sinΩL sin θ) + k (sinΩL cos θ + cosΩL sin θ) = 0.

¿From the first equation it follows that

cos θ =
k√

k2 +Ω2
, sin θ =

Ω√
k2 +Ω2

, 0 ≤ θ ≤ π

2
.

Dividing the second equation by
√
k2 +Ω2 we obtain

cosΩL sin 2θ + sinΩL cos 2θ = sin (ΩL+ 2θ) = 0.

The smallest root is ΩL = π − 2θ. This gives an equation for Ω, but it is more
convenient to transform it to

tan
ΩL

2
= tan

(π
2
− θ
)
= cot θ =

k

Ω

or

Ω tan
ΩL

2
= k. (A.1)

Substituting ψ into the right hand side of (42) and taking into account that

max
[0,L]

(
e−

cx
2 sin (Ωx+ ϑ)

)
≤ max

[0,L]
e−

cx
2 max

[0,L]
|sin (Ωx+ ϑ)| = 1

we have

ψxx +
(
r̃ − e−

cx
2 ψ
)
ψ = A sin (Ωx+ ϑ)

(
r̃ − Ω2 −Ae−

cx
2 sin (Ωx+ ϑ)

)
≥ 0
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provided A ≤ r̃ − Ω2. Therefore

ψ =
(
r̃ − Ω2

)
sin (Ωx+ ϑ)

is a lower solution for the stationary problem. This result is used below to obtain
estimates for the approach described in Sect. 6.4.1.

A.2 Upper solution

To construct an upper solution let us first obtain a solution of an auxiliary problem,
and then we shall show that it is the required upper solution. We linearize (42) about
the solution e

cx
2 , ũA = e

cx
2 − ϕ, then

c2

4
e

cx
2 − ϕxx +

(
1− c2

4
− 1 + e−

cx
2 ϕ

)(
e

cx
2 − ϕ

)
= 0,

ϕxx − ω2ϕ = 0, ω2 = 1 +
c2

4
,

ϕ = aeωx + be−ωx.

We require that ũ = e
cx
2 − ϕ satisfy the boundary conditions, that is

(k − ω) a+ (k + ω) b= k,

(k + ω) aeωL + (k − ω) be−ωL = ke
cL
2 .

Solving the system for a and b yeilds

a =
k

k + ω

e−(ω−
c
2)L −Ae−2ωL

1−A2e−2ωL
, b =

k

k + ω

1−Ae−(ω−
c
2)L

1−A2e−2ωL
, A =

k − ω

k + ω

and hence

ũA = e
cx
2 − k

k + ω

1

1−A2e−2ωL

((
e

cL
2 −Ae−ωL

)
eω(x−L) +

(
1−Ae−(ω−

c
2)L
)
e−ωx

)
.

(A.2)
Substituting this into (42) we have a function which satisfies the boundary condi-
tions and

ũAxx+
(
r̃ − e−

cx
2 ũA

)
ũA =

c2

4
e

cx
2 −ϕxx+

(
−c

2

4
+ e−

cx
2 ϕ

)(
e

cx
2 − ϕ

)
= −e−

cx
2 ϕ2 < 0,

therefore ũA (A.2) — is an upper solution. The same is true for uA = e−
cx
2 ũA for the

equation (41). This result is used in Sect. 6.2.3 for the proof of coexistence theorem
and in the next section to obtain estimates for the approach described in Sect. 6.4.1.
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A.3 Solution near the habitat edge: estimate from above

For the estimates it is more convenient to use the estimate for uA = e−
cx
2 ũA, where

ũA is given by (A.2) that is

uA = 1− k

k + ω

((
1−Ae−(ω+

c
2)L
)
e(ω−

c
2)(x−L) +

(
1−Ae−(ω−

c
2)L
)
e−(ω+

c
2)x
)

1−A2e−2ωL
.

(A.3)
We are interested in the estimates for L big enough, when the boundary coexistence

effects are possible, so we assume e−(ω±
c
2)L negligible. Then

uA = 1− k

k + ω

(
e(ω−

c
2)(x−L) + e−(ω+

c
2)x
)

for big enough L. Since uA is an increasing function of L, therefore this estimate
still is an estimate of u from above. Since u

′′
< 0, uA lies below its tangent at any

point, and we shall use tangents at the edges, so near to x = 0

u(x) ≤ ω

ω + k
+

(
ω + c

2

)
kx

ω + k
, x ≥ 0,

and near to x = L

u(x) ≤ ω

ω + k
+

(
ω − c

2

)
k (L− x)

ω + k
, x ≤ L,

A.4 Solution near the habitat edge: estimate from below

To get these estimates we can use the lower solution. There is a little problem — the
equation (A.1) for Ω cannot be solved analytically. So to get an estimate we shall
use the estimates for Ω+ from above and Ω− from below. They can be obtained with
the help of the fact that for monotone increasing and continuous functions f1(x)
and f2(x) if f1(x) ≥ f2(x), then f

−1
1 (k) ≤ f−1

2 (k). Since sinx ≤ x ≤ tanx, then to
get Ω− we can multiply (A.1) by L/2 and replace ΩL

2 by tan ΩL
2 , so(

tan
Ω−L

2

)2

=
kL

2
, Ω− =

2

L
arctan

√
kL

2
.

Similarly, replacing ΩL
2 by sin ΩL

2 , we get the equation for Ω+:

sin
Ω+L

2
tan

Ω+L

2
=

(
sin Ω+L

2

)2
cos Ω+L

2

=
1−

(
cos Ω+L

2

)2
cos Ω+L

2

=
kL

2
, (A.4)

hence

cos
Ω+L

2
=

√
1 +

(
kL

4

)2

− kL

4
=

1√
1 +

(
kL
4

)2
+ kL

4
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and, dividing (A.4) by cos Ω+L
2 ,(

tan
Ω+L

2

)2

=
kL

2

√1 +

(
kL

4

)2

+
kL

4



Ω+ =
2

L
arctan

√√√√√kL

2

√1 +

(
kL

4

)2

+
kL

4

.
For k → ∞ (Dirichlet boundary conditions) both Ω− and Ω+ tend to π/L.

Now let us get the estimates of the solution u(x).

u(x) ≥ e−
cx
2 ψ(x) =

(
r̃ − Ω2

)
e−

cx
2 sin (Ωx+ ϑ) .

Near x = 0 it is convenient to use the formula of the sine of sum:

u(x)≥ r̃ − Ω2

√
k2 +Ω2

e−
cx
2 (k sinΩx+ΩcosΩx)

≥ r̃ − (Ω+)
2√

k2 + (Ω+)2
e−

cx
2
(
k sinΩ−x+Ω− cosΩ+x

)
.

Leaving only terms linear in x we have

u(x) ≥ r̃ − (Ω+)
2√

k2 + (Ω+)2
Ω−
(
1 +

(
k − c

2

)
x
)
.

Near to x = L it is convenient to make a change y = L−x, then, taking into account
that ΩL = π − 2θ,

sin (Ωx+ θ) = sin(ΩL+ θ − Ωy) = sin (π − θ − Ωy) = sin (Ωy + θ) ,

exp
(
−cx

2

)
=exp

(
−cL

2

)
exp

(cy
2

)
,

and hence up to linear terms in y

u(y) ≥ r̃ − (Ω+)
2√

k2 + (Ω+)2
Ω−e−

cL
2

(
1 +

(
k +

c

2

)
y
)
.

Due to the factor e−
cL
2 , this estimate may be not very useful for big values of cL as

it may become very small.

The obtained estimates can be used for approximate theory of boundary coexistence
in case |c| > 0, when the coexistence theorem does not apply. The technique is the
same as in the proof of the coexistence theorem in Sect. 6.2.3 — see Sect. 6.4.1 for
more comments.
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Fig. 1. Stationary profiles for a single species for various κ and c. In panels (a)-(d)
c = 0., 0.1, 0.2, ..., 1.8. Panel (e) shows shrinking of the profile as c approaches 2.
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Fig. 2. Dependence of stationary profiles ui(x) on the patch speed c. Gray shade
shows the value of u from 0 (white) to umax (black, the value shown above the
plot). Shown are examples of good agreement with predictions of S1–S4 scenarios.
Note that in all cases L2∗/L1∗ > 1. Parameters κ = 1, L = 20.00, (a) D = 5.00,
r = 1.40, α12 = 0.30, α21 = 1.50, c2/c1 = 2.65, L2∗/L1∗ = 1.89, Predicted scenario:
1 → 1+2 → 2; (b) D = 2.50, r = 2.00, α12 = 0.10, α21 = 3.00, c2/c1 = 2.24,
L2∗/L1∗ = 1.12, Scenario:1 → 1+2 → 2; (c) D = 1.00, r = 3.50, α12 = 0.10,
α21 = 5.00, c2/c1 = 1.87, L2∗/L1∗ = 0.53, Scenario:1 → 1+2 → 2; (d) D = 1.30,
r = 1.30, α12 = 0.70, α21 = 1.50, c2/c1 = 1.30, L2∗/L1∗ = 1.00, Scenario:1 → 1/2
→ 2.
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Fig. 3. Examples of bad agreement with predicted scenarios — in all cases predicted
is extinction of species 2 and existence of species 1 for the shown range of c values.
Instead the species 2 sometimes appear at the boundary (Panels a–c) and in some
cases even out-competes species 1 and occupies the whole patch (Panels c, d). Note
that in all cases L2∗/L1∗ < 1. Parameters κ = 1, L = 20.00, (a) D = 0.14, r = 1.30,
α12 = 0.70, α21 = 1.50, c2/c1 = 0.43, L2∗/L1∗ = 0.33; (b) D = 0.26, r = 1.30,
α12 = 0.70, α21 = 1.50, c2/c1 = 0.58, L2∗/L1∗ = 0.45; (c) D = 0.20, r = 5.00,
α12 = 0.10, α21 = 7.00, c2/c1 = 1.00, L2∗/L1∗ = 0.20; (d) D = 0.70, r = 1.30,
α12 = 0.70, α21 = 1.50, c2/c1 = 0.95, L2∗/L1∗ = 0.73.
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Fig. 4. Examples of bad agreement with predicted scenarios — in all cases predicted
is extinction of species 2 and existence of species 1 for the shown range of c values.
Instead the species 2 sometimes appear at the boundary (all panels) and in some
cases even out-competes species 1 and occupies the whole patch (Panels b, c). Note
that in all cases L2∗/L1∗ < 1. Parameters κ = 106, L = 20.00, (a) D = 0.20,
r = 5.00, α12 = 0.10, α21 = 7.00, c2/c1 = 1.00, L2∗/L1∗ = 0.20; (b) D = 0.26,
r = 1.30, α12 = 0.70, α21 = 1.50, c2/c1 = 0.58, L2∗/L1∗ = 0.45; (c) D = 0.30,
r = 1.30, α12 = 0.70, α21 = 1.50, c2/c1 = 0.62, L2∗/L1∗ = 0.48; (d) D = 0.50,
r = 1.30, α12 = 0.50, α21 = 1.50, c2/c1 = 0.81, L2∗/L1∗ = 0.62.
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Fig. 5. Appearance of the Airy functions.
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Fig. 6. For every z2 > 0 there is a value of z1 ∈ (−za,−zb) satisfying Γ(z1) = Γ(z2)
where Γ(z) = Bi(z)/Ai(z). The number −zb satisfies Γ(−za) = Γ(0) =

√
3 and

the number −zb is a vertical asimptote for Γ (Ai(−zb) = 0). Their values are
−za ≈ −2.67 and −zb ≈ −2.34.
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Fig. 7. Examples of boundary coexistence for L2∗ < L1∗. Solid line — species 1,
dashed — species 2.
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Fig. 8. Invasion of a very small amount of the species 2 (dashed line) at the prop-
agating (in-flow) boundary leads first to boundary coexistence, then turns into a
moving front and then replacement of the dominant species 1 (solid line). Parame-
ters κ = 106, D = 0.7, r = 1.3, α12 = 0.7, α21 = 1.5, L = 20, c = 1.
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Fig. 9. Resonant character of the speed-induced invasion. Compared to the previous
figure, much bigger initial invasion of the species 2 at the other edge dies out very
quickly to zero.
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