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Abstract

This dissertation has two main contributions, a modular design of a mobile manipulator

and a set of tele-operation performance experiments using this platform. To experimen-

tally evaluate system performance and operator preferences, several tests were designed: 1)

Which robot camera placement provides the best operator information. 2) A comparison

of alternative master-slave motion coordination schemes. 3) A comparison of some semi-

autonomous ”software helper” routines to see if they improve manipulation and reduce task

load on the operators. Additionally two case studies show how the system was successful in

performing complete mobile manipulation tasks, in particular, large-displacement pick-and-

place and opening a door to exit a room. A goal of the project was to show how a high-end

mobile manipulator can be integrated from off the shelf hardware parts and open-source

software libraries.
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Chapter 1

Introduction

Robots can deliver accurate, strong, and nimble solutions to many problems. One of these

problems is to enable to operate in remote, hazardous, or hostile environments. This inter-

action with the environment can be done by teleoperation. The basic idea is to remotely

issue commands to a robot by means of a user interface.

There are several ways to implement teleoperation [68]. The implementation and the ca-

pabilities of the system depend on the sensors, features, and capacities of the robot, as well

as on the available interaction devices an operator can use to issue commands and receive

feedback from the remote environment. Command devices range from a classic keyboard

and mouse to full six degrees of freedom haptic devices or even exact full scale phantom

replicas of the robot used. Feedback can range from text-based readings of sensors, up to

visualizations, remote image display, and force feedback.

Having a variety of different user input/output platforms with different capabilities of-

fers a wide spectrum of possible implementations ranging from very rudimentary (mouse

and keyboard with numeric displays) to full immersive (Teledisplay with augmented reality,

gesture recognition and haptic feedback). However the latter might seem more appealing,

it is more expensive to implement and it is only desirable when teleoperating a robot which

will function as a surrogate teleoperator. If a setting that will feature some level of auton-

omy is desired, this telepresence is not crucial. If the user of a system wants to “tell” the

robot to perform an action in a more descriptive way rather than in an exact replicated man-

ner, it is preferable to improve the user interface to ease issuing commands and relieving

the operator from unnecessary task load.

Figure 1.1 shows a classic setting for teleoperation. Teleoperation architectures have

three important components:

Master Device Provides the commands for the system. This device will also render the

1
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Figure 1.1: This is a classical teleoperation seeting with haptic feedback consisting of a
master device (left), the controller/communication module (center), and the slave side. The
master side is usually where the operator issues commands and the slave side is the one in
contact with the environment

feedback to the operator.

Slave Device Is the remote robot which is performing the commanded movements. This

node is likely to have colision, force, and torque sensors to provide the feedback

information to the master.

Network and control This is the means of communication and together with a set of algo-

rithms that pair the Master and the Slave.

In a normal setting for teleoperation it is natural to include cameras for visual feedback.

This allows the operator to see what is happening in the remote environment. Including

vision sensors provides the operator access to a large amount of information. Not only

it is possible to retrieve high fidelity images from the remote environment, but it is even

possible to reconstruct a model of the remote site by using the information from the visual

sensor [64].

Teleoperation has several shortcomings. One of these is the delay [67] that is inherent

to the system because of the master and slave stations being afar. One way to deal with

the delay is by using Predictive Display (PD). PD uses a reconstructed virtual environment

which is generated based on the visual information received. Then, this information is

presented to the operator in a “predicted” model of the remote environment. This feature

allows the operator to become oblivious to the delay in the system.

Another approach is to use control theory and make the system passive by giving up

some transparency. The technique consists of making the communication network passive

(dampening and not producing any energy). This renders the system usable and stable, at

the cost of dampened motions.

One of the goals of robotics is to achieve full autonomy1 but this is yet in exploratory

1Autonomy comparable to that of human skills (communication, physical strength, etc.

2



state. A way to approach this promised robotic autonomous behavior is to build basic

modules that could be used as building blocks to gradually achieve more complex super-

modules. These basic routines automate a very particular behavior, thus, they need to be

defined in the most simple ways to improve their future usability. Defining and designing

software helper routines or “helpers“ would provide a base towards gradually developing

more autonomous and less explicit teleoperation. These aiding software routines would en-

code commonly used behaviors such as repetitions or restrictions which delimit and define

a task. For example, sequencing such tasks and letting the robot execute a playlist of those

helpers, the operator can complete a full activity with minimal specification from the user,

thus removing task load.

Due to the interdisciplinary nature of robotics, this work has some overlap, not only in

several topics of computing science (e.g., parallel and distributed systems, software engi-

neering and computer architecture) but also in several areas of engineering. In fact Robotics

itself is of a mechatronic nature, meaning that it overlaps computing science, control theory,

mechanics, and electronics. Although the focus of this work is set on computing science, at

times it becomes necessary to include a full mechatronic focus to gain a better perspective

of the issues that concern this study. Figure 1.2 shows a mindmap of the related areas to

this work.

1.1 Motivation

Nowadays teleoperated systems are to some extent real and deployed. Example is the

Da Vinci [28, 31] Surgical System for tele-surgery applications and the Mars Exploration

Rovers [54]. These systems have different degrees of autonomy. The former has a less

“autonomous” approach and the latter exhibits a more supervisory control approach. This

difference resides in their application.

The Da Vinci Surgical System is meant to perform laparoscopic surgery with delays no

more than the latency of the system in order to allow the operator to make fast decisions.

The operator, a surgeon, performs a risky task, an operation in a human. If the system

becomes unresponsive or too delayed, this may cause the patient’s life.

On the other hand, the Mars Exploration Rovers are designed to operate with supervi-

sory/autonomous control by specifying the task in a more abstract way. The delay that this

system faces is too large that it is necessary to plan the activities and send abstract messages

to tell the robot what to do. In this case, the decisions are not taken at the time of operation

3
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but before relaying the commands to the robot. Although an error might have a high cost,

the loss is only material.

However, none of the current approaches consider an intermediate solution less taxing

on the operator2 and more closely supervised while relying less in the robot’s autonomy.

The major motivation to consider a bottom-up approach towards attaining autonomy is that

in larger kinematic chains (mobile manipulators for instance), autonomous behavior is still

in its early stages of development and the complexity of the problems to solve makes them

difficult to tackle [26].

Teleoperation can be “reliable” because there is a human in the loop but the onus put on

the operator due to delay [9, 10] and interfaces put makes it sometimes difficult to use. On

the other hand, autonomy although difficult to attain, it provides ease of command. Neither

teleoperation or autonomy alone seem to provide a robust solution to general manipulation.

By using the best of both approaches, and finding some middle ground between them it

is possible to obtain more reliable and robust supervised semi-autonomous behaviors. By

developing a teleoperation framework that sets the bases to perform teleoperation

tasks, it is possible build a set of building blocks. Later, these building blocks can be

used to develop more complex routines and behaviors. This will be detailed in a chapter to

follow.

Teleoperated systems have to be designed with a mechatronic systems methodology

rather than focusing on a single approach (mechanics, electronics, control, or computing

systems). As part of this work, another contribution is presented: a methodology that will

benefit the development of teleoperated mobile manipulator systems.

Up to now, in robotics it is particularly common to see two scenarios:

• Ad hoc settings to deploy the proof of concept, but failing to operate robustly

• Custom Engineered Systems that take years to develop using too many resources

which sometimes become outdated in terms of computational power by the time they

are ready to deploy.

Although these two scenarios are becoming less common in practicum, they are still the

basic approaches taken by the robotics community to developing a system.

A favorable design has not only to be a test-bed for a single demonstration of a proof of

concept, but also provide a framework that allows several other proofs to be performed, and

2In terms of issuing commands or planning ahead
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Figure 1.3: Roadmap/Outline of the Thesis

can even be used as a prototyping scenario. It follows that the possibility of upgrade has to

be considered, as the system will need to be updated and customized.

1.2 Thesis Outline

Figure 1.3 shows an explicit roadmap of this document. It provides a guide on how to read

this dissertation.

In Chapter 2 the findings from the literature review, which informed and motivated this

research, are presented along with some related theoretical background. This is immedi-

ately followed by two chapter which can be independently read:

• A methodology for designing teleoperated mobile manipulation systems is presented

in Chapter 3, along with the implemented system used for the experiments. This

6



implementation and the methodology were presented as a conference paper [40].

• A framework to generate the teleoperation software helper routines is described in

Chapter 4. The implementation of the software helper routines is explained in this

chapter as well.

Although it might seem unnatural to first implement the system rather than developing

the proof of the concept at hand, it is a better course of action to develop a working system

and then continue to add modules as further studies require. This allows developing a more

generic testbed that can be used later for other studies. It is better to solve the inherent chal-

lenges of designing and building a complex multi-module system earlier in the development

and leave the issues of adding application-specific modules for later.

Experimental results, being the main contribution of this work, will be presented in

Chapter 5. These results serve as an integration point for the ideas presented in Chapters3

and 4. The experiments studied some detailed aspects: 1) Which camera positioning pro-

vide best information to perform a task. 2) The use of alternative master-slave motion

coordination schemes. 3) A comparison of some semi-autonomous ”software helper” rou-

tines to see if they improve manipulation and reduce task load on the operators. Two case

studies show how the system was successful in performing complete mobile manipulation

tasks, in particular, large-displacement pick-and-place and opening a door to exit a room.

Finally, a summary and a discussion of future work are presented in Chapter 6 to con-

clude.
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Chapter 2

Background and Related Work

This chapter will review some concepts and the most relevant related work. It will also pro-

vide a comparison including some of the robotic systems for teleoperation and telepresence

as well as haptics and the techniques for dealing with time-delay. First, a survey over the

main related problems of controlling robots is detailed in Section 2.1. Then, an overview

some background work on haptics related to teleoperation is presented in Section 2.2. Sec-

tion 2.3 surveys some of the existent systems for mobile manipulation and teleoperation. A

short discussion concludes this chapter in Section 2.4.

2.1 Robotics: From Teleoperation to Autonomy

For some time now, teleoperation has been around as a means of controlling robots. Every-

one to some extent has been in contact with such an approach when operating something

from afar, e.g., a radio control toy. However, in most of these cases teleoperation has no

particular purpose other than entertaining or providing a comfortable way to perform an

action1.

The uses of teleoperated systems are plenty because such a system isolates the operator

by putting some physical distance between the device and the person thus physically de-

coupling and protecting him or her. Teleoperated systems can be useful when interacting

with some dangerous and/or otherwise unreachable environments or things, e.g., defusing a

bomb, performing extra-vehicular-activities in space, exploring other planets, or dive to the

bottom of the sea.

However, there is an important trade-off when putting distance between the operator

and the teleoperated device: time delay [34]. Having distances of no more than a couple of

tens of meters and low latency systems, time delay might appear negligible. The problem

1If one considers the remote starter for a car or the remote for the TV set like a teleoperation device.
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arises when larger distances are introduced and the communication channel between the

operator and the device is not transparent due to latencies in the system and the communi-

cation channel. Whoever has played on-line or networked games has experimented in some

extent the effects of time delay or lag which sometimes renders the game unplayable and

frustrating.

If time-delay and the need of a more “intelligent”2 interaction with the devices are

considered, then the true need of semi-autonomous supervisory control arises. The level

of autonomy of a device can be described as the amount of interaction and description a

system needs to successfully perform a task. The more description/interaction it needs, the

less autonomous the device is. Figure 2.1 shows the basic configurations of teleoperation

and autonomous systems.

This work focuses in teleoperated mobile manipulators. These may or may not have

certain low level autonomy already implemented. For simplicity, those cases where auton-

omy is needed as a direct interaction asset, i.e., when communicating and operating with a

robot as if it were a peer, are left undiscussed; these latter are the ultimate target of future

works along this line of research. Given these considerations, some concepts used through

this work can be defined.

2.1.1 Teleoperation, Telemanipulation, and Telepresence

As mentioned in Chapter 1, there are several ways to issue commands to a remotely operated

robot, several ways in which the robot’s sensors can be displayed to the operator, and several

possible actions the robot can perform in the environment. Depending on the different

characteristics of a system and its capabilities, a system can be classified as being generally

teleoperated, capable of telemanipulation, and/or capable of telepresence.

• Teleoperation A system is teleoperated when the operator issues commands to a

remote device far away from the control station. Teleoperation may include a re-

mote display which provides the operator with the readings taken by the sensors in

the remote device. In plain teleoperation explicit orders are issued to the device’s

actuators and remote sensor readings are displayed to the operator. In the case of

Manual Control, the operator is closing all the control loops. In Supervisory Control

some/most of the lower level, and even some higher level, control loops are closed

by a processing unit on board the teleoperated robot, leaving the most abstract con-

trol loops for the user. Full Autonomy leaves the user as a witness and only abstract
2Do more with less explicit descriptions or explanations
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Figure 2.1: This figure shows the basic three configurations ranging from plain teleopera-
tion (left) to full autonomy (right). (a) For teleoperation the control loop is closed by the
operator. (b) Supervisory control relies in both the operator and a computer to close control
loops. It is usual to leave the lower level control loops for the computers while the operator
controls the higher level, more abstract control loops. (c) Under full autonomy, the onboard
computer (and in a few cases an off-board computer) is responsible for doing this, while the
operator is only given the information and a high level interface to monitor the system.

10



commands/objectives/goals are passed to the system. In this latter case the system

takes care of closing the control loops and performing several tasks without supervi-

sion [67, 68, 69].

• Telemanipulation Teleoperated robots which can manipulate objects on the remote

environment are telemanipulators. Any teleoperated robot capable of dexterously

interacting with the remote environment can be considered a telemanipulation device.

A explicit differentiation between Teleoperation and Telemanipulation is necessary

as the former encompasses a broader variety of systems, while the latter specifically

refers to those capable of manipulation.

• Telepresence A teleoperated system having a transparent communication channel

and an interface that allows the user to “feel” in the place of the robot at the remote

scene, is a telepresence system. Such systems enable the operator to seamlessly in-

teract with the remote environment. This feature is one of the most desired on pure

teleoperation settings as it allows for an immersive experience for the user. When no

significant delays are present, it can be obtained by using augmented reality and nat-

ural ergonomic control interfaces. When time delay is present, this can be achieved

by Predictive Display and Virtual-Reality models. Telepresence needs an increase

of the remote sensory information to generate a more complete reconstruction of the

remote scene.

2.1.2 Relaying Information from the Remote Scene to the Operator

Most of the times in robotics applications it is necessary to develop a way to represent the

environment. In teleoperation, the main concern of environment modeling is not focused on

how to abstract the world and process the sensor readings, but how to synthesize data and

construct a condensed model to ease the job of the operator. Which sensors, what and how

much information can these sensors provide needs to be taken into consideration to design

the preprocessing and the relay of information. The communication channel, being a finite

resource, needs to be used efficiently while still providing the most relevant information3.

For example, if modeled correctly, the information received by a camera can be used first to

generate a coarse geometry of the environment [47] and then used to generate visual goals

to do visual servo control over the robot. Although environment modeling is not a crucial

3This is particularly necessary when including vision sensors as they provide rich information but the band-
width needed to transmit it could be too large
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aspect in teleoperation, it should not be disregarded as it determines how difficult to use is

the user interface.

Motion mapping and data display are most of the times obviated and defaulted as the

operator is assumed to be very adaptable to whatever information is given to process. Al-

though true, teleoperation is largely facilitated if the information is formatted and coded

into various types of feedback, e.g., changing colors of the display, stiffening the input de-

vice, sound warnings, etc. This improves the performance of the teleoperator [69] by using

other available channels of interaction between the machine and the human.

Since sensors cannot provide full exhaustive information of the remote scene, it is cru-

cial to take advantage of any available information, filtering or combining it to generate new

useful information. Although having more information might yield better decisions, oper-

ators can only pay attention to a handful of gages and readings. Thus, designing “clever”

new features is necessary to ease making sense of what is happening in the remote scene.

2.2 Haptics

Haptic feedback is, in a strict definition, feedback through touch and contact. Anything that

is perceived through touch and expressed as forces, vibrations, movements, etc., is haptic

feedback. If the definition is extended to truly include everything that can be perceived

through touch, then it is necessary to include temperature, textures, stiffness, and hardness.

These are all properties that could be modeled and output by a haptic device yet not all of

them are as easy to implement.

Haptics has been around for quite a time. The first uses were for handling radioactive

materials. Nowadays haptics is used widely in several applications other than just for tele-

operation as they are used extensively in Virtual Reality, Video Games, Simulators, and

Mobile Consumer technologies. In teleoperation, most of the times, the setting is designed

such that the position is sent from the master side to control the torque exerted by the ac-

tuators on the slave device. The position on the slave device, in turn is used to control the

torque output on the master side.

2.2.1 Common Uses of Haptics

Haptic devices are usually used in research and applications on telesurgery [48, 49], manip-

ulators, mobile robots [80], mechanical and graphic design, and virtual reality [61]. Efforts

are divided into those applications dealing with virtual and real worlds. In the former, most

of the times there is no significant delay in the issue-execution of a command or in the
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interaction-feedback provided by the environment. However, there have been some consid-

erations of working with delay in Virtual Reality scenarios [37]. Real world applications

deal with more complex configurations where haptic feedback is done with respect of actual

readings from a robot. In this scenario latency is unavoidable due to the of complexity of

such systems and the physical distance between the command center and the teleoperation

device.

Most systems dealing with real world applications of teleoperation with haptic feedback

privilege the use of two very similar architectures and geometries for the haptic interface

and the manipulator. This reduces the design burden and the need for motion coordination.

An important downside of this approach is the cost of such a configuration.

2.2.2 Problems With Current Approaches

As mentioned before, having two similar devices for the master and slave sides might be

costly but convenient. On the other hand, having a (smaller) master with different geometry

than the slave’s might be cheaper but introduces some complications which have to be dealt

with:

Motion Coordination The differences of the kinematic chains of the master and the slave,

demand that a mapping between the motions of the master and the slave is found.

This problem is present unless the master is a scaled replica of the slave.

Scale of Motion It is desirable to have different scales available to command movement

from the master to the slave. This feature allows fine and coarse manipulation.

Scale of Force Related to the scale of motion, scaling the forces is another quandary that

has to be taken into consideration. Forces from the slave side might not be within the

capabilities of the master. Moreover, when remotely manipulating fragile objects it

would be desirable to have enhanced force reflection.

Differences in the scale of motion and force could potentially expand the capabilities of

the teleoperated robot. Having a system which can operate both roughly or softly and in big

or small scale movements could very well improve the types of tasks that can be performed.

A number of interfaces have been proposed for teleoperation and telepresence. The

main goal of all the works is to make the interaction as natural as possible, either by pro-

viding a natural way to interact or command the robot [57, 58], or to make the control an

immersive experience [80, 25, 24]. Although these works have outstanding user interfaces,
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one lacks tactile feedback for the user and assumes some degree of autonomy while the

other was developed using a large budget.

The Control point of view of Teleoperation

The major goal of most of the approaches is guarantee that the network is transparent and

passive. These two concepts are very related and widely used as parameters to characterize

a teleoperation system. As in every application, there are some issues that the designer has

to deal with. Tuning the system to work with time delays demands trading off transparency

for passivity. A system that is very transparent might be very unstable, thus non-passive,

while a very passive system might not be transparent [75, 76].

Passivity is the condition of the communications channel of a teleoperation system to damp

and not add any energy into the system. In more concrete terms, a system is passive

when the communication network dissipates the energy entering the communication

channels.

Transparency is the property of the system to provide exact feedback to the user while exe-

cuting a command on the slave device as close as possible to the way it is commanded

in the master device. A transparent system allows for some degree of telepresence.

An operator should be able to feel exactly what is happening in the slave side without

any fuzziness[13].

For bilateral teleoperation, two of the most important architectures are wave variables

and the 4-channel architecture. A nice comparison between these two approaches is pre-

sented by Christiansson in [27]. Some improvements, like the one presented by Ott and

Nakamura in [56], have been presented for distributed control robots, such as mobile ma-

nipulators. In this latter case the paper presents how the four channel architecture can be

used to communicate between “collaborating” distributed robots.

A control diagram of a teleoperation system implementing the 4-channel architecture

can be seen in Figure 2.2. Note the many parameters that have to be tuned for the controllers

on each side and the communication channel itself. Each darkened box (Cm, Cs,C1to6) stands

for a filter which has to be selected in such a way to guarantee passivity of the controller.

Moreover, the operator’s (Zh) and environment’s (Ze) impedances are difficult to obtain and

vary from different operators and environments.

Most of the control approaches focus on improving the passivity of the network. They

are formulated considering that the delay between the master and the slave is constant.
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Figure 2.2: The 4-Channel Architecture. C1to6, Cm, and Cs are filters which have to be
tunned. Zh is the operator’s impedance. Ze is the impedance of the environment. Zm and
Zs represent the master’s and slave’s characteristics. fh and fe are the forces input to the
system by the operator and by the environment respectively. xm and xs are the master’s and
slave’s rates.

In theory the delay can be infinite yet in practice it cannot be longer than a couple of

seconds [47]. When the delay is in the order of tens of seconds, the system becomes so stiff

due to the dampening in the communication channel, that the operator cannot effectively

command the system to move. Apart from the system becoming gradually difficult to move,

the operator also starts feeling the degradation of the feedback [79]. When dealing with

variable delay [20, 83], such as in the case of telemanipulation over internet, the chances of

the system becoming unstable increase [83]. This is because variable delays are difficult to

model.

Most of the works done up to date focus either on the control point of view of the

teleoperation problem, or on the task load posed to the operator, particularly in how time

delay affects teleoperation [9, 10]. Some other amount of works focus on how to effectively

use haptic and visual feedback, like in the case of Yip et al. [82]. Although time delay

and haptics are perhaps the most important problems to address, some other topics need to

be treated in parallel: asymmetric interfaces for mobile manipulation, system design and

prototyping, and intuitive/ergonomic controller schemes.
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2.3 Existing Robotic Systems for Teleoperation

Having a suitable test-bed can be a great help to test concepts, design new algorithms,

and perform experiments. Sometimes it is enough to have a simulator, but most of the

times a real device helps roboticists gain insight towards the adjacent problems: Hardware-

Software interaction, System Integration, System Complexity, Robustness, etc.

Mobile robots, research and low-end arm manipulators have become, to some extent,

inexpensive. The availability of such resources allows a greater audience to get involved in

research of manipulation, mobile robotics, and mobile manipulation. Previously, most of

the mobile and static manipulation systems had to be custom engineered because of certain

limitations such as payload, mobility, dimensions and capabilities. Such complex systems

benefit from a more integral design where all variables are taken into consideration at the

same time but the paradigm is resource-expensive. Even nowadays it can be argued that the

performance of a system is better when custom engineered, but the commercially available

options allow to produce systems which are not too far behind. A problem with using

custom engineered platforms is that it limits the community to participate as the platform is

not as accessible as a commercial out-of-the-box or a modular system.

Through the literature, mobile and static manipulators are described in works about

humanoid robots, human-robot interaction, rehabilitation, assistance and space exploration.

The next few subsections overview some of the relevant works. The following classification

is based upon the type of approach taken to developing each of the systems. The included

projects are not an exhaustive list of all the mobile manipulators as it only includes the most

relevant and well-known works in the field.

2.3.1 Ad Hoc Systems

Most of the mobile telemanipulation systems being deployed currently fall into this cate-

gory. These systems have the advantages of a long refining process and a low-level tunning

capability. These advantages come at the cost of a resource-expensive development and

low-audience accessibility. Moreover, they do not offer the alternative of seamless inte-

gration with already developed algorithms because these systems have some characteristics

that make it hard to import any software which was not explicitly developed for the plat-

form. The same holds true for exporting software.

This cageory includes NASA’s Robonaut [8, 15, 16, 33, 52, 65] which is already De-

ployed in the International Space Station [2], Georgia Tech’s Golem Krang [72], University
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of Massachusetts, Amherst’s UBot-5 [29, 30, 77], Karlsruhe Institue of Technology’s Ar-

mar [3, 4, 5, 6, 7, 11, 12], DLR’s Rolin Justin [17, 18, 44, 55], and Waseda University’s

Twendy [53, 74]. All these systems have taken at least a decade to develope from the first

prototypes to the stage in which they currently are. They feature interesting integration and

outstanding mechanical capabilities, but in most cases the control is still in the low- and

mid-level range of abstraction. Most of the tasks should be described to the robot with very

explicit instructions.

Most of these platforms, although flexible by nature, are application specific. For exam-

ple, although Robonaut is capable of using human-scale tools, it would not be cost efective

to deploy it in a house setting. Despite being very promising platforms for developing

algorithms, their setting is too specific to be able to port the generated software. A soft-

ware generalization process would be needed to enable the software to be generic enough

to be used in other platforms. Therefore, not that many researchers can benefit from the

developed code.

2.3.2 Hybrid Systems

Given the fact that most of the enthusiasts interested in doing research in telemanipulation

are not specialists on every technology needed to develop a full-scale telemanipulator, a

good option is to rely on commercially available parts to build up a system. Although the

components are available, there’s still a need to engineer the system in such a way that it

meets certain specification related to the application. Moreover, in some cases available

components cannot provide what is needed which has led some research groups to design

hybrid systems. These still rely in a custom engineering development of the system but also

in the use of commercially available modules. Such systems take less time to develop than

their Ad Hoc counterparts, but most of the times they still have the problems of software

portability. Particular hardware configuration and application specific configurations make

importing and exporting difficult. A great example in this category is University of Mas-

sachusetts Amherst’s UMan [42]. This mobile manipulator features a custom-made mobile

base and a Barrett WAM for manipulation.

Despite there is available software for the commercially available parts, there might be

little or no software usable for custom-engineered parts. Although possible to overcome the

need of designing and implementing software and hardware for parts of the robot, there is

still some parts that have to be developed.

Another example is MIT’s Cardea [51, 21]. Which uses the well-known Segway RMP
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mobile base and a custom made arm manipulator. As UMAN and Cardea, there are several

other examples which fall in this category. It is even arguable that all systems fall within

this category as all systems rely on previously developed modules which are commercially

available.

2.3.3 Commercial-Off-The-Shelf Component Integration

Nowadays less expensive, bulky and accurate sensors are available making it easier to select

modules to integrate into a robot; it is possible to find inexpensive industrial grade fast cam-

eras, very accurate range sensors using laser technology, IMUs, high-payload mobile bases,

nimble robotic manipulators without a separate amplifier cabinet, and commercial haptic

interfaces to prototype a telemanipulation system without spending ten years of develop-

ment. The various available modules makes designing and integrating a mobile manipulator

(and robots in general) a much easier task if the requirements are not tight or demanding.

Given that there are many modules commercially available, it becomes less cumbersome to

prototype a test-bed to develop algorithms for robotics. Available sensor, actuator, compu-

tational, and robotic modules enable rapid and agile prototyping of teleoperation systems.

Having commercially available products means that a community is potentially using

and developing software for such modules. This is beneficial as there are better chances to

benefit from and even use already developed software. Not only the software is available but

it has been potentially tested several times. The existence of a user/developer community

distributes the overall workload and resources needed for developing complex systems. Off

the Shelf Component Integration allows researchers to focus in the high-level algorithms as

the paradigm reduces the time spent developing low-level interfaces and drivers. However,

the advantages of having a supporting community and a ready to use modules come at the

price of partial ability to modify these modules. The main risks are lack of support for

certain configurations, incompatibility and inconvenient integration/interaction.

Up to date, there are only a few teleoperation and mobile manipulation systems which

are integrated from Commercial Off The Shelf components. It was only recently that robotic

manipulators became available in more compact settings and also offering open-software

architecture. There are a few examples of robots using this paradigm: University of Mas-

sachusetts Amherst’s Dexter [78], Intel Research’s HERB [71, 55] and the arm developed

at the Royal Institute of Technology in Stockholm [70].
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2.3.4 Ready-out-of-the-box Systems

Lately some mobile manipulators have become commercially available as ready to use sys-

tems. These robots present a good alternative to start doing research without major prob-

lems of designing a system. Despite appearing attractive, their price is substantial and

usually a certain amount of time is needed to learn the basics of their operation. Most these

systems have been around for a little more than half a decade [1], while there are some other

cases which are very recent such as Willow Garage’s PR2 [81].

These systems provide proven test-beds, fully integrated systems, and working soft-

ware on the platform. Users only have to allocate time to learn the higher level interfaces.

Although good options to start with, these platforms cannot be upgraded that easily. In-

corporating or updating with new hardware becomes cumbersome or expensive. Moreover,

special attention has to be put towards the implications of doing these upgrades and how

will they affect the overall system’s performance.

2.4 Discussion

Robotics promises to provide answers to repetitive, cumbersome, and dangerous tasks.

While full automation is still work in progress, plain teleoperation and explicit program-

ming are sometimes too unfeasible because of the onus put on the operator. Supervisory

control is an option to these two alternatives as it takes the best of both worlds. Moreover

the supervisory control paradigm can be used to build up on gradually more autonomous

behaviors for general purpose robots.

An important aspect of teleoperation is how to command and retrieve information from

the remote robot. Haptic feedback can be effectively used to provide the user with better

and more information of the remote scene. Teleoperation, from the point of view of control,

focuses on the development of transparent and passive interfaces, yet other aspects need to

be taken care of, such as the ergonomics of the input devices and the control schemes used

to command robots.

Designing and building a telemanipulation system can become difficult and complex

due to the large number of modules involved. It is also a challenging project because of

the inherent complexity of such systems. The high number of variables involved due to

the robot, the time delay between the issue and execution of commands as well as limited

sensory information availability make it an interesting and complex problem to study as its

applications can serve largely in several tasks deemed dangerous and risky for a human to
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perform.

Several systems have been developed. Ad Hoc, Hybrid, Off The Shelf Component

Integrated, and Ready Out of the Box systems have been built yet the latter two seem to

be the best options nowadays for the community interested in mobile manipulation. They

provide ways to focus on developing the algorithms and portability of the software because

they provide proven and supported technologies.
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Chapter 3

Off-The-Shelf-Component System
Design and Integration

Throughout the robotics literature one can identify several mobile manipulators which have

been custom designed and engineered in labs worldwide. These “one-of-a-kind” have very

particular configurations and applications which makes the research produced by these labs

very difficult to port and test by others. The algorithms proven to be successful for a particu-

lar kind of robot will have to be tunned and adapted before they can be used in another plat-

form. Mobile manipulators could become more prevalent if designed and assembled from

commercially available components instead of being locally engineered and built [40]. This

chapter presents the methodology and the integration steps taken while putting together a

mobile manipulator.

The main ideas kept through the development of the system were modularity, flexibil-

ity, and expandability.

Modularity A system is modular when the parts of a system have defined inputs, outputs,

and functions. Modularity makes it possible to substitute a part by another doing

the same function and having the same inputs and outputs (only varying the way the

module performs its function). The system therefore remains as “able” as before the

substitution as the whole system’s behavior is not modified on the general outcome.

The substitution of modules has the purpose of improving the efficiency and/or the

performance of the system in general.

Flexibility A system is flexible when it can be used for multiple purposes while keeping

reconfiguration minimal. Flexibility is a main characteristic of multipurpose systems

such as mobile manipulators. This feature makes a system capable of hosting var-

ious projects without having to incur in major changes to its architecture or overall
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configuration.

Expandability If a system is expandable then it can be updated and modified to satisfy

future improvements and functionalities. When new functions can be added into a

system, its productive life increases. New useful components can be added to satisfy

new research goals.

A system featuring these three characteristics can host many future research projects be-

cause it is not bound to a particular application and it can be updated and extended as

needed.

Off-The-Shelf-Component integration provides an alternative to the classic approaches

of system development. The designer trades off some of the ability to control details in the

development, capabilities of the resulting system, and understanding of the low-level pro-

cesses to gain agility in the overall design process. Another benefit of this paradigm is that

expertise on every area related to the project is no longer required. Moreover, the developer

becomes an active member of a community developing and testing the components.

The paradigm has some risks:

Technical Refers to the ability of adopting the knowledge of the technology and under-

standing a component. It also includes the limitations imposed to the design because

of the lack of an exact component that fulfills a particular function.

Operational This risk refers to the operation of the full system being within specification

or not. Sometimes, particular behaviors of the system are obviated which could dec-

imate the overall performance of the system in particular scenarios. It also refers to

the unforeseen need of including interfaces for module interconnection.

Programmatic This final type of risk has more to do with the resource management and

planning. A Designer has to identify the critical path for the development of the

project. Contingency plans are needed to be able to execute according to planed

without going over the budget should a unforeseeable situation happen.

An overview of the challenges of developing a mobile manipulator are presented in

Section 3.1. The methodology used to propose a design that satisfies goals and limitations

while marginalizing the challenges is outlined in (Section 3.2). Section 3.3 presents the De-

sign Objectives defined for the developed system. Afterwards, hardware (Section 3.4) and

software (Section3.5) design and implementation are presented. A discussion concludes the

chapter in Section 3.6.
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3.1 Limitations and Challenges

Hardware development is usually the most obviated part when developing a robotics plat-

form to prove a concept for an algorithm. It usually happens when the focus is totally set

on the algorithm. In some cases, there are prototype platforms put together only to pro-

vide proof of concept. These solutions are anything but robust because they lack a design

methodology. When the focus is set on the development of the hardware, the problem of

developing a platform grows and the software and higher level controllers are left for future

works as the project matures. Although the chances of achieving more robust solutions

increase, problems, such as portability of the solutions, arise. Solutions are particular and

optimized to and for that specific hardware which in turn translates to having to develop

adaptations or new implementations to port it to another platform.

Building a mobile manipulator, i.e., a mobile robot with one or two manipulator arms,

has been traditionally a major engineering project. The complexity of designing such a

robot (system characteristics and capabilities) makes it a difficult task.

To gain more perspective, let us take the case of mobile robotics. It is common to buy

a ready-out-of-the-box mobile base, equip it with some sensors (if not already included

in the mobile base), and a laptop for control and sensor processing. This setting yields a

fully functional system that can be used for several projects. This paradigm is also used in

manipulation robotic settings.

Although it might seem straight forward to follow the same approach towards a mobile

manipulation setting, there are many pitfalls. The complexity of such a system increases

considerably when adding degrees of freedom and mobility to the system, let alone sensors.

Most of the challenges when designing a system are directly related to the available ex-

pertise, facilities and technology. In most cases, groups and labs do not possess a full range

of all the needed resources to engineer a high-performance/high-end mobile manipulator.

However, it is highly likely that there would be one specific area of expertise (planning,

grasping, control, dynamics, etc.) in which the lab/group excels at, the lack of the other

resources is what discourages them from conducting research on mobile manipulation.

In software engineering [59, 60], as well as in other engineering disciplines [41, 73], a

common alternative to overcome the lack of expertise is to deal with a modular approach

and using off-the-shelf components. The functionalities that are difficult or cumbersome

to develop are acquired as black boxes and used only considering their inputs, outputs,

and functions. The approach is not new and there have been some substantial work done
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towards Off-The-Shelf component integration for robotics software [14, 22]. Until now, the

approach has not fully reached the hardware nor the integral mechatronic areas of the field.

The modular off-the-shelf component integration approach has some limitations such

as scarcity of candidate systems to integrate, complicated interfaces, and potential over-

heads in learning and/or modifying the module. Moreover, unlike software engineering

methodologies such as XP, Agile, Scrum, etc., the development/design methodologies have

significantly different approaches when there is a mechanical part to the project. Having

mechanical parts involved makes the development stiffer and less flexible as the main out-

come is not modifiable 1, thus the methodologies need to consider more time for planning

and developing. For mechatronic design methodologies, it is paramount to consider all pos-

sible bottlenecks and issues before they arise and define a robust contingency plan to deal

with them.

Among the advantages of using Off-The-Shelf components are time-saving, us of state

of the art components without possessing the engineering expertise, and well defined per-

formance at the outset of integration. Some drawbacks are that the subsystems might not

combine in an optimal way, the detailed information and source code could be proprietary

and non-accessible, the opportunities to develop new state of the art parts is missed, and po-

tential difficulties exist in maintaining complex parts while lacking the detailed knowledge

of their functioning.

3.2 How to Design a Mobile Manipulator

Most of the mobile manipulators currently used in research are custom-designed and -

engineered. The major advantages of a custom approach are the overall control on the

development process and the obtainable capabilities of the resulting system. The approach

also provides better understanding of the system. However, custom engineering/design is

expensive. Most of these custom systems take a long time to develop, need expertise on

several fields, and cost a significant amount of money.

In several occasions that the lack of engineering facilities and access to proper tools

plays an important role in taking the decision of building a mobile manipulator. A team

taking a custom engineering approach needs access to specific and appropriate resources to

design and build the robot. Therefore, a custom design is most of the times unfeasible for

1Unlike hardware, software is modifiable in a very agile way as it only needs a couple of hours to be changed
without major costs of resources other than time. The main advantage of software over hardware is the fact that
software is non-tangible and can be aggregated or clipped seamlessly
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most research groups while an Off-The-Shelf approach would likely be a better option.

To plan, design, and build a mobile manipulator, it is necessary to consider the following

sub-systems:

Mobile Base This might be, together with the manipulators, one of the most challenging

modules to decide upon. Its main function is to move the whole system. The critical

minimal payload has to be selected in order to achieve full mobility according to

specifications. It is necessary to consider the weight of the whole robot and the

maximum payload the robot is to be able to manipulate. It is also important to define

the type of terrain that the mobile base is supposed to overcome and decide about the

geometry of the robot. The mobile base usually defines how to mount the manipulator

and therefore the reachable workspace and the dynamic stability of the robot while

operating.

Manipulator(s) The most important features to consider for a manipulator are the pay-

load, the weight of the manipulator and the integration of the power and control

electronics. Ideally a manipulator should have a very high payload, low mass and

no external components yet this setting is somewhat rare even now. While for small-

sized robots no external components is quite conventional, for human scale and large

manipulators this is still rare. It is also convenient to consider the control software

openness, availability, compatibility, and the communication ports. It is standard to

take into consideration industrial benchmarking characteristics: repeatability, tooling

interface, dynamics, accuracy, and backdrivability. This latter is important for direct

human interaction with the manipulator. When an arm is backdrivable, the joints do

not lock even when powered down.

Computing The on-board computers of a robot often define its control autonomy. The

variables to consider are its processing to consumption ratio, minimum processing

needed, expandability, available ports and interfaces, software compatibility, mem-

ory, and available of custom BIOS settings. There are several options: from compact

embedded computers (PC-104, SBCs) to full range compact motherboards (µ-ATX,

mini-ATX, Blade Servers, etc.). If most of the processing power is needed on-board

two specific constraints over the selection have to be considered: total power con-

sumption and mechanical size. It is desirable to maximize the running time and make

good use of the space in the hull of the robot.

Sensing The desired remote readings define the type of sensor that should be used. It is
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crucial to set a specification of what needs to be measured early in the design stages

as this will define the appropriate candidate sensors. Some general considerations are

the sensor’s “intelligence“2, if it is active or passive, digital or analog, the interface,

and the power requirement. Usually, cameras and proximity sensors are standard

selections as they provide non-contact measurements.

Power Selecting the power source for a mobile manipulator can turn into an issue as the

total amount of power consumption increases. Some of the things that come into play

to select the power source are: how are different subsystems powered up, need of con-

ditioning adapter, number of modules, and overall power demand (peak, idle, normal

load.). There exist two options for selecting the power source: Either designing a

general powering source or individually powering each subsystem. Moreover, the

decision whether the system is to be tethered or use batteries. Having a unique power

source has the advantage of equalizing the running time of the overall system and

homogenizes the power interfaces over all the modules in the system. The downside

is that some power conditioning interfaces will be needed for some modules.

User Interaction The user interaction is taken for granted or obviated depending on the

applications of the system. Autonomous tasks do not require more than a mouse

and a keyboard. On the other hand, teleoperation settings have to consider controller

interfaces such as replicas of the remote robot, game pads, haptic devices, displays,

wearable sensors, vision-based tracking, gesture recognition, etc. Moreover, inter-

faces should be selected from both an operator’s and a developer’s point of view. In

most cases, a multi-modal input/output interaction should be considered.

Until now, only the main characteristics and features to keep in mind when selecting the

different modules for the subsystems have been described. Then, how to integrate a system?

This is a design question for which no exact answer can be given. However, a very effective

approach is to follow the guidelines and always take into consideration the particular design

requirements. The latter will define how to instantiate particular steps of the guidelines and

produce a method to integrate the system. Procedure 1 shows the guidelines to produce a

Mobile Manipulator.

The guidelines state that the Design Objectives should be defined first. The common

practice in large projects is to define the goals and objectives. These define, in the most gen-

2An intelligent sensor is one which usually contains a microprocessor and can be configured and/ or pro-
grammed to give preprocessed data, modify the refresh rate, etc.

26



Procedure 1 Guidelines for designing a Mobile Manipulator
1: Define the Design Objectives
2: Review the Design Objectives and modify if necessary
3: Set critical minimum accepted values for principal variables
4: Define the system’s architecture
5: Define Candidate lists for all subsystems
6: Select Most Critical Device (Usually Manipulator) and elaborate a tree of op-

tions
7: Evaluate the leafs’ costs considering all limited resources
8: Prune the tree accordingly to remove non-viable options and select a candidate.

If no candidate, redefine Design Objectives and follow this procedure again

eral sense, the steps to follow. Stating a clear and complete specification can pay-off later

in the development process: less problems are likely to arise and the focus will remain on

achieving the final outcome. After defining the Design Objectives, a through review should

follow to detect possible pitfalls and conflicting objectives. Moreover, some problems are

likely to arise if the design objectives are too lax or too tight: there will be too many or none

implementation options, respectively. Reviewing the design objectives will yield consistent

definition of the minimum requirements and will help elaborate the necessary contingency

plans.

As the specification becomes solid, the designer has to decide on the critical minimum

accepted values for the design variables. These variables are those which are set with tight

requirements and tolerances to define the capabilities of the final product. Examples of

design variables could be: mobile base payload, reachable workspace, and arm payload.

After the design parameters are set, the system’s architecture should be decided. Defi-

nition of all the subsystems, inputs, outputs, and their functionalities have to be stated. At

this stage, it is recommended to implement a design methodology to produce a well-defined

architecture addressing all the design objectives and requirements. The most convenient

methodologies to consider are Theory of Inventive Problem Solving (TIPS or TRIZ), Qual-

ity Function Deployment (QFD), and Failure Mode Effect and Critical Analysis (FMECA).

Once the architecture is defined, candidate off-the-shelf components have to be found

for each subsystem. A complete (sometimes exhaustive) list of potential candidate compo-

nents should be integrated. At this point, some specifications might have to be relaxed if no

candidate component is found. For the most important modules, some selection criteria or

methodology can be defined. Procedure 1 shows a method to select the mobile base for a

human sized mobile manipulator.

Now that the architecture, functions, and candidate components are defined, the next
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Procedure 2 Selecting a mobile base
1: Define FactorSa f ety to account for non-observable weights such as bolts, screws,

harnesses, dynamic capabilities, etc.
2: Define LoadOperational to include the weights of major subsystems such as Sen-

sors, Computing, Manipulator and Power Source
3: Select a compliant mobile base with a payload of:

PayloadMobileBase ≥ FactorSa f ety× (PayloadNominal +LoadOperational)
{FactorSa f ety should be set according to the uncertainty of the extra weight. From
empirical observation, it is a good practice to set 1.5 ≤ FactorSa f ety < 2.0. Setting
this parameter too low can yield a non-moving mobile manipulator; setting it too high
would result in underusing of the mobile base’s payload. Mobile bases with a higher
PayloadMobileBase are usually more expensive.}

step is to organize and evaluate the alternatives for the subsystems. A straight forward

approach is to use a tree structure. Each path is a particular configuration. The root (or roots

if more than one candidate exists) is the most important critical component3. The next level

gets as many branches as there are options for the second most important critical component

and so on. Usually, some subsystems might be comprised of several components, in this

case it is recommended to build a tree for the particular subsystem considering it as a system

in itself and consider each version/option, as an alternative in the major tree.

Each path from the root to a leaf is an implementation alternative. At this point in the

process, the critical variables from the specification have to be brought into consideration to

detect those unfeasible alternatives. The discrimination process should be done looking out

for general problems with completion times, budget, availability of resources, availability

of tools, tooling requirement, interface design, etc.

The designer can now decide which is the best implementation for the project. Although

there is never an optimal course of action, some options will be better than others depending

on how they are evaluated.

3.3 Design Objectives and Requirements

Human interaction and the ability to solve human-scale tasks requires nimble human-scale

arms suitable for contact manipulation. Moreover most of the interesting tasks require the

robot to be mobile as the usual range of a manipulator is not enough for completing a mobile

manipulation task.

The majority of mobile manipulators for human scale tasks are custom built and en-

3Usually those components with a particular functionality or those which are the most tightly defined in the
specification
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Requirement Value
Data Connections Wired and Wireless
Power Connections Wired and Wireless
Power Source Tether and On-board Power Source

Up-time
3 Hours Full Load (1 Hour Periods), 2 Hours Idle or
Partial-Load

System Powering
Central power source (equalizing running time for sub-
systems)

Weight of Manipulators ≤ 60kg

Manipulators Features
Nimble, Human-like Workspace, No external compo-
nents, agile manipulation, backdrivable

Computing Power
Running resource intensive algorithms, inter-process
communication

Computing Features
Expandable, Hardware for Video capture/interface,
small geometric footprint and form-factor

Sensors
at least 2 cameras and 4 mounts, 2 on arms and 2 on
body

System latency
network introduced delay ≤ 10ms and between pro-
cessing nodes less than ≤ 50ms

User/Control Interaction
Teleoperation Haptics, Debugging Joystick, keyboard,
dual haptic feedback 3D device.

Table 3.1: Table of minimum requirements for the Mobile Manipulation System

gineered towards specific applications. The procedures followed to develop those systems

are expensive in terms of time, money, engineering resources, and knowledge. Moreover,

they fail to provide a generic platform for research as they are only available to a few (the

developers) and replicating them is practically impossible.

In this case, the main design objective is to develop a mobile manipulation platform

capable of performing human-scale tasks. The system should be built without the need

of particular engineering facilities. The robot should be suitable to use for different ap-

plications such as algorithm development for visual servoing, teleoperation, human scale

interaction, and parallel processing. In the general sense, the platform will be used for task

prototyping with a particular focus on space robotics. The system is intended to be uses

for diverse applications spanning a wide range of research areas. Therefore, the developed

system should be flexible, modular, expandable, and robust to reconfiguration.

Because the Design Objectives of the system are broad, the requirements cannot be

defined tightly. Instead, there is a minimum boundary for each requirement. The objective

was to design an untethered system that could run for at least 5 continuous hours under

60% (normal) load. Preferably, the system should run on a central power source to equalize

the running time. It is also desirable to have the option to run tethered from a wall plug.
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The arms weight should be around 60kg in total. The manipulators should be capable of

nimble and agile manipulation in a workspace similar to that of a human. The overall robot

requires to be nimble, lightweight 4 and comparable in size to a small person. Computer

vision algorithms have to be run on-board together with the motor-control, data fusion,

and safety daemons. A connection for monitoring or doing remote computations should be

available. These requirements are summarized in table 3.1

We define a nimble and agile manipulator as one featuring small moving masses (low

inertia) an capable of high accelerations. Usually industrial grade manipulators have heavy

links and embedded gearboxes and motors which yields an overall heavy and high-inertia

configuration. Low-inertial arms do not require large motors which in turn reduces the

overall weight of the arm.

One other parameter that is important to set in teleoperated systems is its latency. This

characteristic is sometimes not considered in the system’s description as is not crucial to

include it. The latency of the system is the critical time between a command is issued and

then executed. For teleoperation, latency becomes a very important factor; it is desirable

that the system responds as fast as possible (low latency). In a teleoperation system with

Low latency, communication delay can be studied independently.

3.4 Hardware Design

The robot was thought to have a configuration compatible with a variety of human scale

tasks. This objective was translated into some design requirements of geometry and hard-

ware integration. The selected configuration should allow to perform several tasks, simu-

lating a person sitting on a rolling chair. The setting provides a reachable space suitable for

picking up objects from the floor and for manipulating objects over a table-top. The sys-

tem was designed to be reconfigurable in the number of manipulators: one or two. Either

configuration considers putting the arm in such a way that the workspace reaches heights

between 25 and 175cm. The workspace of the two-arm configuration should resemble that

of a human’s.

3.4.1 Rationale

The list of candidate hardware submodules was integrated and evaluated. Table 3.2 presents

all the candidate components for each subsystem. In some cases, there are sub-assemblies

4A lightweight system is that which is comparable to a large person’s weight, say around 200kg
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Subsystem Candidates
Manipulators Barrett WAMr

Mobile Base
Segway RMP 200, Segway RMP 100, Segway RMP
400

Computing
Laptop Computers, Server Blades, Headless µAT X
Mother Boards

Sensing Multiple models from PointGrey, Webcams

Power
Batteries (Lead-Acid, NiCd, MiMH, Li-ION), Wall
connected tether.

User Interface
Game Pads, Joysticks, Mouse, Keyboard, Haptic Feed-
back Controllers (Omni Phantom, Omni 6DOF).

Table 3.2: Table of the candidates for each subsystem of the Mobile Manipulation System

which were pre-designed. The explanation for these cases is omitted (e.g., computer hard-

ware).

Although there are various options of manipulators and mobile platforms available com-

mercially, only a few seem suitable to combine. Robot arms are usually thought for indus-

trial environments; they might be bulky and feature a heavy external amplifier cabinet. The

later should be avoided when possible because having modules with external components

reduces the available space and payload on-board. Moreover, most arms have proprietary

control software which cannot be modified. On the other end, mobile bases usually have

payload capacities which can barely accommodate an arm. Two Barrett WAM arms atop

of a Segway RMP mobile platform were selected as the major modules to integrate. Both

options are attractive because of their own characteristics.

3.4.2 Manipulators

The Barrett WAM (Whole Arm Manipulator) is attractive due to its low total and mov-

ing mass, backdrivable joints, and high efficiency cable transmission (low friction). Some

drawbacks are the constant need of cable maintenance and the occasional need of connect-

ing an external control computer. Other appealing features of this manipulator are the open

interface and source code availability5. Unlike conventional arms, the WAM is designed to

exert contact forces not only with the end-effector, but also with any link surface. This is

made possible by the efficient, low-loss transmission enabling the use of the motor currents

as sensors for torque. Using the torque it is possible to calculate contact forces without the

need of putting force sensors all over the manipulator’s surfaces.

5provided by the manufacturer
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3.4.3 Integrating The Mobile Base and the Arms

The Segway RMP mobile platforms are appealing in general because of their significant

payload-weight ratio, moderate dimensions, and market proven design. In particular, the

RMP 200 was chosen because of its dimensions and payload. Its geometry allows to place

the arms directly on top. The resulting reachable workspace satisfies the specification. One

issue with the platform is that the manufacturer does not provide open source controlling

software. However, it is possible to design and run a personalized controller. The RMP

was adapted a caster wheel on the front and a couple of safety back-supports because the

dynamic balancing feature was not used. The caster wheel would provide a solid third point

of contact with the floor stabilizing the robot even when manipulating objects with the arms.

For the two arm configuration a custom base was designed. The assembly should main-

tain an overlapping workspace for two-arms. This overlapping configuration provides good

dexterity to manipulate objects in the front of the robot. Some kinematic simulations were

done considering the volume of the workspace of each arm. Optimizing such overlap and

dexterity of a two-arm configuration is a research topic in itself. An empirical human-like

configuration was selected as it satisfies two main constraints: simple mechanical design

and resemblance to the morphology of a human torso [43].

Arms are positioned in a 90◦ angle from one another, with both base-plates perpendic-

ular to the ground tilted sideways. This is better illustrated in Figure 3.1. By empirical

observation, it was assumed that the overlap achieved in this configuration was acceptable

for two-arm manipulation in front of the robot. The configuration resembles the human

torso while keeping the design of a base simple. In fact, the two arm mount was built from

plywood without the use of specialized tooling other than common household carpentry

tools. It is recommended that future iterations of the platform evaluate alternative config-

urations for the arms, e.g., varying the angle between base plates. For this purpose, it is

necessary to design a more rigid and lighter mount that allows fast reconfiguration.

The resulting geometry is compact. The space between the Segway’s wheels, below the

top mounting plate is available to encase computers or sensors. The space behind the base

plates of the the arms is also available. Although compact, a minor drawback of the two-

arm configuration is that the robot is still a couple of centimeters wider than a single-sheet

door frame. The arm-mount should be redesigned if the robot is to be used in common

human environments with single width doorways.
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Figure 3.1: CAD model of the two arm configuration of the integrated system

3.4.4 Computing

Computing hardware found in lab robots ranges from specialized embedded solutions to

standard top-of-the-line laptops and servers. Usually, computing hardware is directly re-

lated to the processing power and mobility needed on-board the robot. Most of the times

on-board computing is needed for filtering, preprocessing, low-level control, communica-

tions, and resource management but this can also be done with a tethered system and an

off-board computer. It is important to evaluate thoroughly the need of on-board computa-

tion as it demands a trade-off between the robot’s running time, on-board available space,

weight, and its mobility.

A popular choice for on-board computing are single board computers (SBC), in partic-

ular, the PC-104 series. They feature a compact size and various expandability options.

These SBCs have the advantage of having x86 architecture6 in a very small board. A

downside of using embedded computers is that the most powerful recent processors are

not available. In fact, PC-104 SBCs are usually a couple of generations behind consumer

6Lately, some other architectures such as ARM, have been gaining popularity
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computers.

Another parameter to considering is the bandwidth of the processed data. Sensors for

touch, proximity, localization, etc., can be be very well managed with an embedded com-

puter. On the other hand, sensor arrays, e.g., cameras or depth-map, provide a large amount

of information, thus the bandwidth to read and pre-process increases significantly. It is then

necessary to use the latest microprocessors, and in some cases, GPUs. Laptop computers

can be used in some cases when only a few high-bandwidth sensors are used. If the system

is using more than a couple of cameras, it is necessary to consider a custom made worksta-

tion. It is possible to find inexpensive workstation motherboards with small-form-factors

like mini-ATX or µATX.

The designer has to consider the possibility of expanding or updating the system by

adding extension boards7. Together with the hardware expansions, considerations have

to be taken on the overall compatibility with other software and other existing modules.

Laptops are a good solution in case of a mobile medium sized robot, although expanding

them might be more expensive than a regular desktop workstations.

For the system, customized workstations were chosen for a variety of reasons. Most of

commercially available motherboards allow personalization on very low levels to optimize

the performance of the computer. Setting and managing the voltages and frequencies on

the motherboard allows to minimize the power consumption while maximizing processing

power. It is also possible to mount different compatible processors and peripherals into the

board, thus keeping the system modular and open for hardware updates. Although laptops

have become as powerful as desktop workstations, the main advantage of the latter is its

modularity and expandability.

Expansion capabilities worth considering are network interface cards, port expansion

cards, data acquisition modules, and the available ports on the mother board. Most com-

mercial active sensors and actuators feature network, USB, and/or Fire Wire connections.

Their In-house-developed, field, industrial, and passive counterparts usually need some sig-

nal conditioning.

A downside of using desktop workstation computers in a mobile robot is that the user

interaction peripherals usually have to be removed (monitors, mouse, and keyboard). This

makes it difficult to debug and monitor the system. Laptops do not suffer from this problem

as they are fully integrated. Setting up and configuring headless computers is somewhat

7Different interfaces are available like PCI-E, PCI, USB, Express-Card or PC104, PC104+ expansion mod-
ules
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cumbersome, but once they are running they can be accessed seamlessly from another node

connected through a network interface.

Currently, the robot features only one of the two quad-core computers planned. This

computer is used for general resource management and processing (video and sensory in-

put, motion planning and teleoperation). This computer also connects the two embedded

computers, each controlling one robot arm. In the future, the robot will incorporate another

computer which will be used for vision processing leaving the current computer to deal

with motion planning, communications, and system management, effectively separating

the processing load on-board the robot.

3.4.5 Sensors

The robot currently uses four cameras when using two arms and three when using only one

arm. These cameras feature high speed Fire Wire (IEEE-1394b) and can work in various

modes. It is possible to use them for fast image acquisition (up to 200Hz on VGA).

In the future, the robot is planned to include a pan-tilt unit (Biclops by TRACLabs)

to position a human inspired camera pair. These cameras will be uses for navigation and

for eye-to-hand visual servoing. One camera is mounted on each arm. These are used in

eye-in-hand visual servoing. These four cameras (three in the case of the one arm setting)

are the major sensory subsystems of the robot8. Including other sensors, such as touch and

force sensors, is left for future improvement of the mobile manipulator.

3.4.6 Power

A mobile manipulator has multiple subsystems which need to be powered. For less complex

systems, buying battery-powered subsystems (e.g., laptops, sensors, mobile base, etc.) is an

acceptable option. For larger systems, such as this, a general power source feeding all the

subsystems is a sounder alternative. Having a unique power source equalizes the running

time for the whole robot while minimizing the number of different batteries that have to be

charged.

The system has a universal AC/DC power supply units (PSU). Such PSUs were selected

because they can work from both AC or DC9. In turn, it is possible to power the whole

8The arms’ encoders, current sensing, or the Segway’s IMU and odometer are not considered as they are
part of other subsystems

9These PSU feature a rectification phase upfront the voltage converter. These power source units are very
attractive as they can work both from AC and DC (provided that the line voltage is above the switching thresh-
old. As these PSUs are not on purposed designed to work from DC, it was necessary to test for warming and/or
loading on the rectification bridge to assure that the integrity of the unit is not compromised and working within
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Feature Required Achieved
Idle Running Time 5 Hours 9 Hours
Loaded Running Time 3 Hours ≈4.5 Hours
Nominal Voltage DC ≥100 V 144 V
Max. Discharge Current 11 A 25 A
Max. Peak Load 1.5 kW 3.6 kW
Weight ≤ 30 kg 24 kg

Table 3.3: Table comparing Required and Achieved Power Source Features

system from a power bus carrying AC (from a tether to a wall electricity outlet) or DC (from

an on-board bank of rechargeable batteries). The use of an AC tether permits the robot

to function continuously without interruption. This is useful when debugging or running

experiments in reduced controlled environments.

Different battery chemistries were evaluated. Capacity, energy density, depth of dis-

charge, inner resistance, recharging cycles, and price were the considered variables. For

the scope of this work, a ”robust” battery is one that can tolerate overcharge, deep dis-

charge, and mechanical shock. Lead Acid, NiCd, NiMH, and Li-ION battery chemistries

were tested as each of them feature attractive characteristics. NiCd was the final selection

because of its combination of high robustness and affordable price. Battery packs of 36V

and 8Ah capacity were used.

Table 3.3 shows the summarized on-board power source unit required and achieved

values. The total nominal capacity of the power suply is 1152 Wh and it has been tested to

be able to run the system until deep discharge of the batteries.

One of the heaviest subsystems in the robot is the power-source. The batteries were

placed as low as possible in the robot’s hull to reduce the effects of having this large mass

affecting the stability of the robot.

3.4.7 User Interaction

Teleoperation requires to provide different ways to issue commands to the robot. An inter-

face better suited than a mouse and a keyboard is recommended but not necessary for this

case. Different interfaces provide advantages for different purposes. From the user’s point

of view, it would be desirable to have an interface to issue commands with ease. A variety

of input devices are available: from a common mouse and a keyboard to a force feedback

enabled devices. The user interfaces can also be implemented using virtual controllers (e.g.,

Gesture Recognition).

specification.

36



Physical World User Inter f ace

Sensors Display

Control User Control

Arms and Wheels Input

Figure 3.2: Diagram for a simple mobile manipulator with minimal setting.

In this case, the system can use multiple different user interaction devices. Haptic Force

feedback for teleoperation is an axial components of this research project. A Sensable Omni

Phantomr was selected as an interface for the mobile manipulation platform. It provides an

acceptable force feedback settings with attractive portability features. In future iterations,

other devices such as game pads or joysticks could also be used. These are suspected to

provide faster “game-like” interfaces while keeping costs low. Such input devices are pr

particular utility when debugging the mobile base or the arms.

3.4.8 Hardware Architecture

The mobile manipulators presented in the previous chapter have small hardware variations

between each other and therefore a generic architecture can be identified. Most variations

occur in the main computing/communications modules, available sensors, on board sys-

tems, and intermodule interfaces. For example, some robots have a general bus used to

communicate all the submodules, while others have local connections organizing the sen-

sors and actuators into semantic groups.

The usual architecture includes a central computer to which the arm(s), mobile base,

sensors, and communications are connected. This configuration may lack robustness and

modularity at times, but it is the most simple to implement.

Another aspect of the system’s architecture is the geometric and spatial arrangement of

the on-board components. A good strategy is to organizing the modules of the system based

on their size or importance. For this system, the first two (or three) modules to consider are
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the mobile base and the arms. Afterwards, the power source was set and the placement

for sensors and their mountings was decided. Sensors are usually set up to maximize their

sensing utility while keeping occlusions minimal. Finally, computers were placed in the

more protected places of the robot. Once all modules are accommodated, it was possible to

harness and connect the modules to one another.

An attractive feature of the Segway RMP 200 which was selected for this implemen-

tation, is the protected space between the wheels and below the top-mounting plate. This

space is placed low and close to the axle of the robot serving to counterweight the arms on

top while keeping the contents protected. Batteries, power supplies, and computers were

placed in this space.

The computers were cased into small lightweight standard miniATX cases to protect the

boards from being directly exposed to the environment. The four wired ports of a standard

wireless router were used to connect the arm’s embedded computers and the processing

workstations into a local network. The wireless connection was used to connect off-board

and monitor computers to the system.

Figures 3.2 and 3.3 depict the general architecture of a teleoperation system and the

instantiation of the system implemented. Connections of all the subsystems and the general

hardware are shown. Figure 3.4 shows actual pictures of the resulting implementation and

the geometric arrangement in the two settings: one- and two-arm.

In the future, the robot can be equipped with other sensors and also expanded with a

larger bank of batteries to extend the time it can work untethered or include more processing

nodes if needed.

3.5 Software Design

In this section, the definition of the software framework is presented. The design objectives

in this case center in producing controllers, module-, and user- interfaces for the teleop-

eration system. The controllers were defined as the pieces of software providing sensor

preprocessing and correlation, actuator commanding, system stability, and management.

Module interfaces are software modules which provide the messaging layer and provide

higher level processing and information correlation. User interfaces are the software mod-

ules closed to the operator and provide the interfacing layer for command input and display.

In general robotic projects have custom made control software to cover specific func-

tionalities. The software in most cases is monolithic and tightly integrated reducing its
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Figure 3.3: Diagram for the two-arm mobile manipulator setting with all the planned add-
ons

portability and modularity. Functionality is privileged over having a long term consistent

and expandable framework. Moreover, most robotics applications require time-critical re-

sponse and solving particular implementation problems.

Robotics frameworks usually define what languages to use, which operative system to
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(a) One Arm Mobile Manipulator (b) Two Arm Mobile Manipulator(Full Sys-
tem)

Figure 3.4: Pictures of the mobile manipulator: (a) Picture of the one-arm mobile manipu-
lator setting with minimal setting and (b) Picture of the two-arm mobile manipulator setting
with all the planned add-ons

install, and how to achieve inter-process message passing. These aspects can be set early

in a design stage for the software. Later during the implementation phases, specially when

adopting new technologies, the framework is likely to be expanded as new requirements will

arise. Architecture, processing, critical paths of information, and robustness are aspects that

are difficult to detail early and therefore have to be taken care of near the deployment phase.

It is common practice to use scripting languages, e.g., Python, for prototyping, but com-

piled languages, like C/C++ are favored when deploying a final implementation. Scripted

languages can still be used for higher level functionalities while lower-level controllers

(running control loops or hardware message-relaying) have to be implemented in compiled

languages.

Most operative systems used in robotics consider the use of real-time characteristics.

Also, to keep things modular, using interprocess communication is required. Because of

these two reasons, Unix-like operative systems are usually favored. There are some high-

end alternative embedded operative systems such as VxWorksr which can also be used.

The main advantage of a Unix-like OS is the ability to fine-tune and manage the computing

resources, and easing the implementation of parallel and distributed processing.

Message passing and interprocess communication is an attractive tool which enables

modularity in software. Having separate defined nodes keeps functionalities organized an
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Component Candidates
Languages C, C++, Matlab, Octave, Python
Operative System Linux (Fedora, Ubuntu, Slackware)

Message Passing
Message Passing Interface (MPI), Parallel Virtual Ma-
chine (PVM), Robot Operative System (ROS)

Table 3.4: Table of the candidates for the components of the software for the Mobile Ma-
nipulation System

canned. Modules can be spawned or killed during runtime providing robustness to the

system. Faults can be troubleshooted without having to bring the whole system down.

3.5.1 Rationale

For the software that will be deployed in the teleoperated mobile manipulator, no specific

methodology was chosen. The framework was defined to be extended with new modules

providing particular functionalities.

The same approach as for the hardware was followed. A table of candidates for the op-

erative system, message passing interfaces, and languages was integrated. Unlike hardware,

the general architecture is not defined explicitly except for the parts dealing with hardware

interfaces and drivers. The table defines the overall basics of the framework, and although it

provides some constraints, it is by nature lax and should be tightened, extended, and defined

in detail for particular projects. Table 3.4 shows the basic imposed constraints on the soft-

ware development and the overall “playground” for the teleoperated mobile manipulator’s

software.

3.5.2 Building the Framework

There are a couple of approaches towards defining frameworks from the point of view of

software engineering applied to robotics. These works focus on defining reusable code

and ways to guarantee robustness in the applications. Bensalem [14] and Brugali [22, 23]

focus on autonomy, safety, and robustness but fall short in runtime contingencies and delay

between teleoperating nodes. Both try to bring common practices in software engineering

(component based software engineering) to robotics while keeping interest in the control

real-time requirements.

When selecting the languages to develop software, it is desirable to consider those that

are compatible (e.g., Matlab can be interfaced to C/C++ using mex). It is important to define

at least one compiled language which allows low level control and one scripting language

for both prototyping and implementing higher level functionalities.
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An important factor in selecting the language is the available support. A language

having a large user community of is more attractive than a language which promises to

have interesting features but only known by few people. Having community support gives

two immediate advantages: support while developing and larger audience can use, test,

extended, or debug the implementation. A third advantage is the availability of third-party

software.

Selecting an operative system to install in the processing nodes defines the default avail-

able functionalities for them. The most common alternatives are application specific em-

bedded or Linux-based operative systems. Both alternative sometimes feature real-time

capabilities. Linux offers several attractive features which are not common on other op-

erative systems: capability to control the application at any level, message passing and

multiprocessing libraries are optimized and native to the OS, and it is open-source.

Most message passing and interprocess communication libraries are meant for dis-

tributed and parallel processing. They implement the functionalities needed to commu-

nicate processes while leaving the overhead of defining the channels, protocols, handling,

and implementation of higher order functionalities (e.g., services, logging, etc.) to the user.

As the number of message types increases and the architecture expands, it becomes more

difficult to handle the information flowing between modules.

Normal message passing libraries like MPI and PVM do not provide ready to use com-

munications. If using these libraries, it is necessary to define ways to deal with incomplete

messages, blocking interfaces, logging, etc. Fortunately, there has been a strong initia-

tive from Willow Garage [62, 63] to develop a robotics-specific framework/toolbox (ROS)

which takes care of these implementations.

3.5.3 The Software Architecture

An issue with off the shelf components is that the selected modules may use different com-

putational architectures. Moreover, the computation requirement for vision tasks, robotic

control, teleoperation, and system management could be too big for a simple computer to

handle alone. This requires the framework to detach the hardware abstraction layer from the

control and resource management layers. Parallelizing through process intercommunication

allows to run different system modules from different processing nodes while homogeniz-

ing the access to the hardware and processing resources.

In a first approach, Parallel Virtual Machine (PVM) [36] was used to distribute the

processing load across a network of computers. PVM offers to bypass architectural and
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networking issues by setting-up the machines as one single computer. The library is in-

tended for generic parallel processing thus requires some additional customizations in or-

der to provide full functionality for the mobile manipulator. Time-stamping, bagging, and

buffer inversion had to be custom implemented. Moreover, a message protocol had to be

established between each pair of modules. Since pipelines are not supported, some issues

arose for video streaming.

Because of the previously mentioned downsides found when using PVM, it was decided

to use Willow Garage’s Robot Operating System (ROS) for future developments instead of

PVM. ROS provides hardware abstraction, message passing, process intercommunication,

time-stamping, logging, custom message definition, multi-language support, debugging,

and monitoring tools. ROS is robotics oriented and therefore provides these critical func-

tionalities, unlike PVM. From the point of view of a robotics developer, ROS outperforms

PVM. From the implementation point of view ROS has a couple of downsides: runtime

execution and automatically-generated-code overhead. Code developed in ROS might be

slightly slower at runtime because of the overhead introduced by the self compiling rou-

tines to provide the framework services 10. Moreover, some computers were not suitable to

run ROS (the computers controlling the arms) due to conflicts with Real Time aspect and

insufficient processing resources.

In figure 3.5 a generic architecture is presented. It depicts a control loop which takes

into account inputs from the world and from a user (if any, i.e., in teleoperation). Fig-

ure 3.6 shows a refined version of the previous diagram. This architecture representes a

teleoperated mobile manipulator with modules for predictive display and visual servoing.

The main software integration issue to overcome was to effectively modularize the

arms’ control computers. These computers were set up with particular operative systems,

custom hardware, and particular software difficult to updated regularly. These computers

are very different from those used for general processing. Using PVM in these computers

was as difficult as with the processing computers. Migrating to ROS brought some issues

as it was not possible to install on these platforms. It was necessary to make a custom

TCP/IP server for each arm. This server connects to an interface enabling each arm as a

node within ROS. Future implementations assume that both arms and mobile base will be

controlled from a single computer capable of running ROS and real time applications.

10ROS code, in the worst case, can have an execution time overhead up to 10ms, while PVM does not add
significant latency to the code
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Figure 3.5: Basic Software architecture for the mobile manipulator. (a) shows the semantic
point of view of the architecture. (b) depicts the same architecture using a classic control
block diagram.

3.5.4 Notes

Some software tools were used during the development of the platform, and some others

might become useful in future developments. Most of these tools are for computer vision,

control, and simulation. Some of these are already integrated into ROS. Future projects

should privilege the use of those tools that are already integrated into the framework. Some

functionalities are not yet considered into ROS. In this case there are two options: either

integrate them to the framework, or use them as stand-alone libraries. The former should be

preferred to the latter. Although integrating libraries into ROS might be time consuming,

the results are not only useful for the project but for the robotics community as well. A

risk of using stand-alone libraries are the potential technical and operational issues, e.g.,

incompatibilities.

Some of the toolboxes/libraries considered are:

XVision [38] A library for computing vision implementing basic functionalities. Provides

a pipeline for video enabling multi-access to video feed and images.
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OpenCV [19] Currently the most widely used standard library for computer vision. It is

implemented within ROS. It features several standard methods for image acquisition,

image processing, filtering, etc.

ViSP [50] INRIA’s visual servoing toolkit including common standard tools. These tools

feature basic routines for arm control and computer vision.

OpenRAVE [32] An environment used for simulation purposes. Provides a way to safely

test control algorithms and basic correctness of control and teleoperation code. It is

integrated into ROS.

OpenMAN [45] A library developed for general arm manipulator control. Currently sup-

ports: WAM, CRS, IRB, FANUC manipulators.

The controllers of the robot are organized in different hierarchical layers. The layers

closest to the hardware run the innermost control loops. The controllers for high level

processes, such as vision and display, run in the outermost control loops and on top of

the inner layers. Those controllers closest to hardware run faster than those on a higher

abstraction layer. For example, the WAM controllers run between 500Hz and 1kHz, while

the visual servoing loops run maximum at 60Hz.
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In the future, safety features have to be implemented into the robot. Safety daemons

should be implemented as low-level controllers parallel to the normal and user controllers.

These daemons monitor the conditions of operation, troubleshoot module faults, and as-

sess the malfunctions. At the present stage all actuation subsystems have minimal safety

monitors limiting operation and emergency shutdowns.

3.6 Discussion

Designing and building a mobile manipulation system for teleoperation is a complex task

that used to be reserved for those with access to engineering facilities and technical knowl-

edge spanning several disciplines. The availability of lightweight fully integrated “embed-

ded“ robot arms and high-capacity payload mobile bases make it possible to integrate a mo-

bile manipulator using these modules. It is possible to build a system from Off-The-Shelf

components, with minimal ad hoc. design having functionality comparable to a custom

made system.

This chapter explored the Off-The-Shelf Component Integration methodology to build a

mobile manipulation system. The process is less intensive than design from scratch but de-

mands certain ability to identify programmatic, technological, and operational challenges.

Key features to pursue in the design of such system are modularity, flexibility, and expand-

ability. These three characteristics make a system general enough for different applications

and guarantees to provide a platform for teleoperation and mobile manipulation research.

Hardware and software design are both largely benefited from Off- The- Shelf compo-

nent integration. This integration methodology makes the design process more agile and

lets designers focus on the hardware interactions and selecting the appropriate modules the

different subsystems of the mobile manipulator. Mobile base, manipulators, computing,

sensing, power, user interfaces and software tools need to be selected taking into consider-

ation their compatibility.

Application specific projects have tight and fixed objectives which do not leave a lot of

room for expansions. This makes these systems confined to a few applications. Relaxing

the requirements and having generic objectives leave a project unconstrained with various

possible applications. It is important to set solid objectives and define a framework that

guides the development of the project.

Software design is in itself a field of computing science, covered by Software Engineer-

ing. For robotics, software engineering alone is not sufficient to encompass the knowledge
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needed to develop useful software for a robot. Knowledge on hardware interaction, real-

time applications, embedded software, and hardware architectures is primordial. All this

helps select an appropriate operative system, define a software framework, use suitable lan-

guages, and provide a way to communicate different processes considering the hardware

limitations of a robot.

There are multiple things that need consideration when developing a teleoperated mo-

bile manipulation test bed and regardless of the advantages of Off-The-Shelf component in-

tegration, there are several downsides to the methodology, e.g., proneness to failures due to

design unawareness. Yet, methodologies like Off-The-Shelf component integration, make

mobile manipulation more accessible to a larger audience, hence more research can con-

ducted on this field.
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Chapter 4

The Operator-Robot Interface

The previous chapter reviewed the process used to develop the test bed for teleoperation.

Half of the solution is proposing an architecture and a methodology of design specific to

mobile manipulation. The other half is what this chapter reviews: the controllers and pro-

gramming ideas used to get the teleoperation setting to work.

Teleoperation of mobile manipulators is a viable control strategy in mission-critical

applications such as hazardous material handling and space robotics. Most space related

mobile manipulation studies assume semi-automatic control while performing actions in

the remote environment and do not consider tele-operation. This lack of consideration is

due to the potentially large communication delays inherent to inter-planetary settings and

the way the delay affects the operator decimating his/her effectiveness to perform a task.

Some of the main solutions to the time delay problem is making the remote system au-

tonomous, introducing control techniques such as the four channel architecture, and making

the system follow a series of commands by introducing virtual reconstructions of the remote

site with technologies like Predictive Display [47]. In the first case, the setting relies on the

slave to be robust and be able to recover from failures, as well as to deal with a great amount

of uncertainty (not to mention the need of high computation power on the remote site, either

on-board or near the slave system). The second option cannot deal with large delays as the

transparency of the system is decreased as the delay increases. This makes the task com-

pletion too difficult on the operator. Predictive Display takes care of the delay by making a

local model for the operator in which the tasks can be performed, yet again, one has to take

care of the delay by introducing some autonomy and robustness in the slave side because

the virtual model can only be updated after new information, subject to delay, has arrived.

Although delay is an interesting problem, it is being addressed by various researchers.
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Time delay should be tackled in later stages 1 of the development of the teleoperation sys-

tem; first, it is necessary to ensure that the system can work and is suitable for operating

without any delays. Then the main concern is to first provide the operator interface for the

teleoperation system.

Teleoperating a mobile manipulator can be onerous on the operator as the number of

degrees of fredom (DOF) to control is large. Let us take for example a simple 4DOF

manipulator atop of non-holonomic mobile base. This robot features 7 DOF but only six

can be directly controlled. Moreover, the system is likely redundant in some of its degrees of

freedom. The inherent complexity of commanding the system demands to develop methods

and interfaces for natural teleoperation of mobile manipulators.

This chapter outlines three different ways to command a one-arm mobile manipulator

(4DOF atop of a non-holonomic mobile base) from a six-degrees-of-freedom input device

capable of haptic feedback. This interface has different kinematics and dynamics from the

arm, which makes the system asymmetric. This makes it necessary to solve the issues of

master-slave motion coordination, discussed in section 4.1. Later, the schemes under study

are presented in Section 4.2. Immediately following, in Section 4.4, manipulation and

haptic helpers are introduced as a means of automating and relieving some of the burden of

manipulating remotely. Finally, a discussion is introduced to conclude in section 4.5

4.1 Master-Slave Motion Coordination

When enabling the motions of the master device to command the slave, some issues arise

and have to be solved for all asymmetric teleoperation systems. Unlike with symmetric

systems, a simple as a 1:1 joint to joint correspondence cannot be directly implemented and

at least a scaling factor should be implemented. In most cases, in addition to the scaling

factor (mapping), a way to switch the reference point (anchor) should be implemented to

map the full workspace of the slave to the available space on the master.

Figure 4.1 depicts how a master-slave motion coordination scheme works. The scheme

should define how the motions of the master translate to motions of the slave. It should

also provide a way to map the full workspace of the slave by using scaled inputs from the

master. This inputs should be used to move the anchor and to issue local motions.

Mapping This issue refers to the way in which the motions in the master side are translated

to motions in the slave device and viceversa. Either when using position-to-position
1Although latencies are to be introduced later in the development, the design considers this research area

and controllers are customizable and modifiable
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Figure 4.1: A Master-Slave motion coordination scheme should provide a mapping and a
way to shift the anchor. The anchor and the current position of the master together with
the mapping coefficients should ensure a valid output position is produced for the slave to
move to.

(haptic devices like the Phantom Omni) or rate-to-position (gamepads or joysticks)

devices there are three approaches, each with its own advantages and disadvantages:

Joint space to Joint space This approach maps direct changes in the values of joint

motions of the master to changes in the values of the slave’s joints. In most

cases the motions in master and slave will not correspond due to the mapping.

A Cartesian motion up may not yield the same displacement in the slave side.

This issue becomes more evident when dealing with force-feedback as the re-

sulting forces or torques are non-intuitive for the operator. The simplicity of

this approach is what makes this alternative attractive. There is no processing

needed or inverse kinematics to be solved as in the Cartesian mapping. Another

advantage is that the operator can fully control the motions of the slave since

the mapping enables the direct command over the configuration on the joint

space. This approach gives up intuitive motions in favor of compliant and faster

solutions on the slave. Feedback in this case can be implemented by rendering

the slave’s sensed torques and directly replaying those torques in the master’s

corresponding joints.
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Cartesian to Cartesian Although the previous approach seems attractive, it lacks a

the very important aspect of being intuitive. Having an intuitive mapping is de-

sirable as it translates in less task load and training overhead for the operator.

Using a Cartesian to Cartesian mapping guarantees that a motion in the master

side will be translated to a very similar and corresponding motion on the slave.

Having this feature comes at the cost of having to solve the forward kinematics

for the master device and the inverse kinematics for the slave. The latter, in-

troduces the need of taking care of deciding which solution to use (if multiple

are found) and also dealing with singular configurations. While gaining intu-

itive motion command, the system has to deal effectively with the issues arisen

by including inverse kinematics into the mix. Preferably, feedback should be

implemented using the sensed forces on the slave and rendering forces on the

master. In the case of force-feedback enabled systems, it is also necessary to

calculate the forces that need to be rendered on the master using the torques and

the Jacobian or forces registered by sensors on the slave.

Joint space to Cartesian This approach is mostly used for gampads or joysticks be-

cause is mostly useful when the motions are not commanded by a kinematic

chain. In this case a joint value is mapped to a Cartesian axis or rotation. For

force or haptic feedback the feedback on each axis is mapped to the matching

force received from the slave. The approach is intuitive as far as the operator

learns the mapping. When using gamepads, the feedback should be mapped

from the slave’s sensed forces to torques in the master device. Most of the

times, this mapping is used with gamepads featuring vibration haptic feedback.

Cartesian to Joint space This kind of mapping would result in unnatural mappings and

therefore is not used.

Anchoring Another issue is how to enable the user to reach the full workspace of the slave

with the available workspace of the master. The two most intuitive options are:

Disengaging and warping the anchor As it is implied, in this case the motions of

the master are used to move the slave and also to move the reference point or

anchor. This anchor is used as the reference to calculate the global position to

command the slave. At one given time, while keeping the anchor static, the

motions of the master are used to render local displacements on the slave. If

the reference point needs to be moved, then the direct control over the slave is
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disengaged, and the motions of the master are used to warp (move) the refer-

ence point to a new global position. While disengaged, the anchor is updated

to a new global position. Once the warping has finished, then the master’s mo-

tions are again engaged to the slave. The clutching scheme — Presented in

the following section — corresponds to this class. In the case when the master

device has a bigger workspace than the slave an overall reduction factor can be

used and therefore scaling up the slave’s workspace. In micro-manipulation it

is possible to define an overall scaling 1mm displacement in the master to 1µm.

More elaborate schemes such as using scaling together with the current position

(zooming) are also possible but more difficult to implement2.

Commanding to move the anchor with a rate In this case, the anchor is moved by

issuing rate commands. This rate can be rendered using the master device while

mapping its motions to rate, or issued by another device such as a keyboard. In

the latter, a key-press would add some offset to the anchor. Using schemes that

incorporate rates makes it possible to keep the master and the slave engaged at

all times. Using a game-pad or joystick based schemes fall within this category.

In the following section, two schemes under this class — Differential-End-Zone

and Position/Rate switch — are explained.

In order not to provoke the reference point to become lost, it is necessary to limit or

filter the anchor’s valid values, e.g., enforce the anchor to always rest within the slave’s

reachable workspace. If a command from the user causes the anchor to go outside of the

valid space, then a recover rule should be used to guarantee compliance at all times.

4.2 Intuitively Commanding the Robot

As visual feedback has become an essential part in teleoperation in remote environments

and visual sensors become inexpensive and more accurate, it is natural to include several

of these in teleoperation settings. Although giving rich information, visual feedback lacks

most of the kinesthetic information humans usually use as cues when manipulating. The

gap between teleoperation and telepresence is then evident: it might be better (in terms of

goals, usability and performance) to allow the operator to be fully immersed in the task,

2Instead of fully disengaging the master from the slave, it is possible to star with an arbitrary scaling.
The user can move around and select to zoom-in (lower scaling) or zoom-out(higher scaling). Going to a
higher scaling enables the user to reach previously unreachable points and then zoom into them to perform fine
manipulation.
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not only visually perceiving, but mechanically feeling what is happening in the remote

environment by including haptic/force feedback to the operator performing a task.

However, as in any other physical and mental activity, an operator might become tired

if all commands have to be issued in a very basic form all the time. A way to relieve the

operator from part of the burden is to include some degree of automation and to design a

proper user interface. These should not tax the operator’s performance but help to perform

the task faster and/or with better quality.

For this implementation Cartesian to Cartesian mapping was selected because the pre-

liminary trials using the joint space to joint space mapping did not yield convenient results

and a large amount of training was needed just to become aware of the mapping with no

force-feedback rendering.

4.2.1 Clutching

Clutching is the most widely used approach when using asymmetric interfaces for com-

manding position. This scheme shifts a reference point and then uses a scaled command

relative to this “offset” position to calculate a command for the slave robot in the teleopera-

tion setting. The name makes reference to the way a mechanical transmission is decoupled

from the motor supplying movement to it; in this case the master is decoupled, issuing the

commands, from the slave, reproducing these commands. While the master is disengaged

the movements performed by the operator are used to offset the reference point for the sys-

tem. Procedure 3 gives the pseudo-code for the clutching master-slave motion coordination

scheme.

The clutching master-slave motion coordination scheme is event-driven; clutching and

unclutching are the events that happen when the operator commands the system to decouple

or to recouple the master to the slave. While the master is decoupled from the slave, the

system becomes clutched and no new position calculations are sent to the slave, thus it

does not move. While the system is not clutched, the position commands are issued adding

an offset calculated when the system was re-coupled. Moreover, while using this master-

slave motion coordination scheme, the user only receives force feedback when the slave is

moving.

4.2.2 Differential-End-Zone

Another master-slave motion coordination scheme for asymmetric settings is to let the op-

erator issue both rate and position commands. The position on the master is used both to
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Procedure 3 Clutching Algorithm
Input: positionprevious {the master’s previous position}
Input: positioncurrent {the master’s current position}
Input: o f f setcurrent {The anchor’s current position}
Input: scaling {The scaling factor master-to-slave}
Output: out put {The resulting position sent to the slave}

1: loop
2: if clutching then
3: positionprevious← positioncurrent

4: else
5: if unclutching then
6: o f f setcurrent ← o f f setcurrent + scaling× (positioncurrent − positionprevious)
7: else
8: if ¬clutched then
9: out put← o f f setcurrent + scaling× positioncurrent

10: end if
11: end if
12: end if
13: end loop

command the slave’s position from an offset reference, and to shift this offset reference. At

any given time only one command is issued. A very similar approach is presented in [66]

When presented with a boundary and the point of interest i.e., the point of manipulation,

is beyond reachability, it is natural to push this boundary until the point of interest is within

reach. It can be seen as follows: the robot can operate within a box of a given length, depth,

and width but the point of interest is outside of that box. The operator needs to push and

therefore offset that box until the point of interest is within the volume where he or she can

manipulate. Pushing the box does not change its form nor its dimensions, it just shifts the

space reachable by the local commands.

The differential End-Zone controller works in an analogous way. A fixed volume is

defined such that it is contained within the “reachable” space of the master and leaves some

margin before reaching the limits of the device. This fixed volume is then defined and

centered in all three dimensions within the reachable workspace. The space is then used to

render commands for pure position control. When the control point reaches the boundary

of this defined volume, the position commands of the master are used to move the anchor’s

position. The commanded rate depends on how much penetration is there from the control

point into the outer space or end-zone. This gives the effect of “pushing/shifting the box”.

While pushing on the boundary, the box will keep moving with the same direction as the

normal to the boundary region. Procedure 4 gives the pseudo-code for this master-slave
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Procedure 4 Differential End-Zone Algorithm
Input: Limits← Init Limits {Limits of the current workspace}
Input: positioncurrent {the master’s current position}
Input: o f f setcurrent {The anchor’s current position}
Input: scalingposition {The position scaling factor master-to-slave}
Input: scalingrate {The rate scaling factor master-to-slave}
Output: out put {The resulting position sent to the slave}

1: loop
2: if positioncurrent > Limitssuperior then
3: o f f setcurrent ← o f f setcurrent + scalingrate× (positioncurrent −Limitssuperior)
4: else
5: if positioncurrent < Limitsin f erior then
6: o f f setcurrent ← o f f setcurrent − scalingrate× (Limitsin f erior− positioncurrent)
7: end if
8: end if
9: out put← o f f setcurrent + scalingposition× positioncurrent

10: end loop

motion coordination scheme.

The operator needs to be aware if the boundaries have been breached by the control

point in every time-frame and then shift the control point accordingly . The main advantage

of this controller is that the events are not raised directly by the user but by a natural control

action, simplifying the user interface. Special considerations have to be taken to guarantee

that the full workspace of the slave is reachable.

For this controller to be effective, some feedback should be given to the user about the

proximity to the zone where the commands change from position to rate. An unnoticed

change from position based to rate based control might result in undesired behaviors in the

slave side, e.g., bumping into the environment.

The name of the controller comes from the idea of using the zones closer to the upper

and lower limits of the workspace, or end-zones, to control the differential value of the

position (rate).

4.2.3 Position/Rate Switch

The third master-slave motion coordination scheme uses a switch between issuing position

or rate commands. The user then can trigger the change between issuing relative positions

or a rate to change the reference point. This scheme can be thought of a hybrid between the

two previous schemes (clutching and Differential End-Zone).

Position/Rate Switch works by issuing a relative position control signal in the same way

as in clutching but also switching the controller to give rate commands to shift the anchor.
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Procedure 5 Position Rate Switch Algorithm
Input: positionprevious {the master’s previous position}
Input: positioncurrent {the master’s current position}
Input: o f f setcurrent {The anchor’s current position}
Input: scalingposition {The position scaling factor master-to-slave}
Input: scalingrate {The rate scaling factor master-to-slave}
Output: out put {The resulting position sent to the slave}

1: loop
2: if Rate Control then
3: if SwitchRate then
4: {Current position as offset reference and attraction point for force feedback}
5: positionprevious← positioncurrent

6: end if
7: o f f setcurrent ← o f f setcurrent + scalingrate× (positioncurrent − positionprevious)
8: else
9: {Position Control}

10: end if
11: out put← o f f setcurrent + scalingposition× positioncurrent

12: end loop

The user can raise an event in the same way as in clutching, in this case the event records

the current position and calculates a rate used to shift the reference point. The pseudo-code

for this scheme is outlined in procedure 5.

This controller is also event-driven. When the user commands to switch to rate control,

the current position is recorded to use it as a second reference point to calculate the rates

to shift the anchor. In the same way as the Differential End-Zone approach, the controller

is always engaged and force feedback is always fed to the user. In the same way as in

Differential End-Zone, the user should receive some additional feedback when using the

rate mode as it is very easy to diverge from the point of reference used to calculate the rate.

4.2.4 Segway Rate Control

The previous subsections deal with the control of the manipulator, yet the mobility remains

to be addressed. There are two main approaches to command a mobile manipulator. One

considers the robot as an integrated kinematic chain, while the second approach takes the

mobile base and the arm as two independent systems. The latter approach was selected as

a first approach in this work while the former is left for future work. The operator can only

control the mobile base or the arms but not both at the same time, i.e., while commanding

the arms, the mobile base remains static and vice versa.

The easiest and most simple controller for a mobile base is a car-like commanding ap-
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proach providing a twist (combination of linear and angular velocities). In the case of a

non-holonomic, i.e., car-like, mobile base it is sufficient to provide a longitudinal (front-

back) rate and a turning (left-right attitude) angular velocity orthogonal to the plane. These

two are analogous to the throttle/gearbox and steering wheel in a car. For a holonomic mo-

bile base this motion coordination scheme should be extended to provide the base with three

inputs: rotation (clockwise or counterclockwise), stride (move left or right), and advance

(move forward or backward).

A way to provide this car-like control is to encode or map the position on the master

device to provide a twist. Usually the master device will have more degrees of freedom than

those required to control the mobile base, thus simplifying the interface is not only possible

but necessary.

In our case, the working of this controller is simple. The master’s current 3-D position is

used to form a vector from the origin. The resulting vector is then projected into a horizontal

plane (x-y parallel plane). The component of the vector along the front-back aligned axis

is taken and multiplied by a rate factor which will provide the front-back velocity for the

mobile base. For the turning rate the component aligned with the sideways axis and the

direction of going forward or backward are used. If going forward, the directions of left and

right are taken without modification, but if the user is commanding the robot to go backward

and adding an angular velocity, then the heading is inverted; if the user commands the robot

to go back and to the left, the turning rate added is to the right. Because of the linear

motion backwards, the mobile base effectively backs to the left (same case for the opposite

direction). The pseudo-code for this controller is presented in procedure 6. Roughly, the

sideways aligned component is analogous to the steering wheel in a car while the front-back

aligned component is the gearbox & throtle.

A safety switch is always validated on every control iteration. This is called a Dead

man’s fuse and is used when the control of a device is given in rate. This is a safety

feature that keeps the controller decoupled from the slave unless when needed. Leaving

the controller engaged would increase the chances of issuing commands that could result in

collisions.

4.3 Haptics and Force Feeback

In the current setting force feedback is scaled with the inverse of the factor used for the

positions (Figure 4.2). This way when doing fine manipulation (Figure 4.2(b)) the forces

57



Procedure 6 Twist control for Mobile Base
Input: positioncurrent on xy plane {Only front-back and sideways components are taken.

Height component is ignored.
Input: scalingrate} {The rate scaling factor master-to-slave}
Output: out puttwist {Twist to move the mobile base}

1: loop
2: if Sa f etyON then
3: if Front then
4: Velocityangular← mappingpositive

5: else
6: Velocityangular← mappingnegative

7: end if
8: out puttwist ← scalingrate× positioncurrent on xy plane
9: end if

10: end loop

(a) Rapid Traversing (b) Fine Manipulation

Figure 4.2: The implemented Force Feedback keeping impedance perceived by the operator
unchanged. (a) Small master motions to large slave motions; large slave forces to small
master forces, (b) Large master motions to small slave motions; small slave forces to large
master forces

are exaggerated which in turn aids the operator to gain situation awareness and improve the

overall accuracy of the motions. The latter is achieved because the inertia of the slave is also

scaled by this factor thus the dynamics of the arm are felt in the force-feedback rendering.

The heightened inertial feeling prompts the user to naturally avoid rapid motions. When

doing large space traversing, i.e., when small motions on the master are translated to large

displacements in the slave (Figure 4.2(a)), the forces from the slave are rendered smaller

on the master’s side. These two settings do not change the impedance perceived by the

operator mainly because the ratio of force and motion remains the same as both motion and

forces are scaled up or down equally if seen from the operator’s perspective.

The software haptic helpers, which will be introduced in the following section, and

other haptic cues sit on top of the forces rendered. Forces due to interactions of the arm
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and the remote environment have to be present at all times. Haptic helpers are used as aids

to restrain degrees of freedom or confine the arm to a particular path or workspace; they

should be added on top of any force feedback, as these are not providing information about

the remote environment but only helping the user perform a task.

4.4 Software Helper Control Routines

A way to build some autonomy into a system is to automate gradually the process to do

a task. This gradual automation should be done component-wise while keeping the au-

tomation elements as simple and basic as possible. Usually this means building primitives

which take care of common behaviors, and/or reduce the error or variations introduced by

the human operator while preserving the transparency of the decision making process.

The motions which can be used to build up automatic behaviors which can be classified

under supervisory control rather than automation of the task. The components should be

general enough to be used for any task. Automation of a task has been done several times

in the past. The purpose of these automations are particular to the task rather than building

a tool that can be used for several other activities or be sequenced to achieve a desired

manipulation behavior. The objective is to build tools that can help an operator to perform

different tasks instead of providing a solution for a particular task.

A Software Helper Control Routine (or helper for short) is defined as a tool that helps

an operator perform part of a task by relieving the burden of giving all the explicit orders

to achieve a certain desired output. The tools can either limit the input, remove repetition,

fix some values and/or sequence actions or parameterizations. It is possible to work around

several variables by controlling particular behaviors reflected as positions, velocities, accel-

erations, jerks, or forces.

Helpers can be classified into two categories: The ones that work mainly on the slave’s

side (the robot) and the ones that work on the user input or master’s side. The former are

called manipulation helpers, and the latter haptic helpers.

4.4.1 On the Robot’s Side: Manipulation Helpers

By automating the process of moving from a position to another, these helpers can largely

aid an operator by relieving the duty of teleoperating large displacements and coarse align-

ments. These two stages of manipulation are usually burdensome due to the large time and

attention they demand. When no fine manipulations are performed, attention is used by the

operator in trying to keep the displacements uniform, the velocities steady, accelerations
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within certain limits, etc. When doing coarse alignments, the user might not be getting

close enough to a particular position.

Open loop movements are acceptable when dealing with large displacements only in-

volving the motion of the arm of a mobile manipulator. When large displacements involve

the mobile base as well, a way to close the loop is necessary. Approaches like visual servo-

ing using toolboxes like [50] can be used to overcome the problem.

In the open loop case, the simplest approach is to record a position on the manipulator

(recording the joint values for a particular configuration) and then issue a command to

replay it. This particular configuration should be parameterized or previously recorded

to then replay it. This simple routine was implemented and used in an experiment. The

results are presented in the next chapter. In the implementation used, the operator records

the current place as an anchor point with a long key-press on a computer keyboard. The

recorded position is loaded as the new anchor point when the user replays the recorded

point with a short key-press.

In the case of closed loop repositioning, more elaborate schemes using navigation or

incremental approaches of visual servoing can be used. Since this approaches are more

complex in their nature, they should always be supervised; they do not require the operator

to keep full attention nor issuing commands to achieve the goal.

4.4.2 On the Operator’s Side: Haptic Helpers

Usually when asked to draw a straight line a normal person would think of using a ruler

or any other “straight” aid to guide a pencil or a pen. The stylus leans against this aid to

trace the line. It is natural to use physical restraints to limit the motion in certain degrees of

freedom so that the task can be completed with more accuracy. The same idea is behind the

haptic helpers except that the physical constraints are rendered by a haptic device instead

of using an external body to limit the motions. In most cases, these helpers are used when

doing fine manipulation tasks.

Geometric constraints such as path following or physicaly parameterized actions, e.g.,

constant pressure on a point in a surface, are just two examples that can be obtained with

haptic helpers. These target behaviors might be somewhat difficult to achieve with plain

teleoperation. Haptic helpers relieve the operator by taking care of the controllable variables

while allowing the user to still do the core of the task.
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Line Constraint

Following line trajectories and making an operator operate in the proximity of a line or a

point prevents the slave from interacting with the surrounding environment. Tasks like sol-

dering, glue depositing, or even threading are greatly aided by including a simple primitive

that enforces the operator to follow a line in space. These tasks have in common that the

actions occur along a path. Usually this line can be parameterized. A straigh line only

requires two points, for example. Further extensions are possible if more parameters are

given and therefore more complex trajectories can be defined.

A line path enforcing routine was implemented and used in the drawing experiment

presented in chapter 5. The user records a point A and a point B with key-presses on the

keyboard. These recorded points are then used to fit a line passing through these two points.

The line is used to render forces on the master device. When the user commands a position

away from this line, the forces act like a spring pulling the control point to the closest point

on the defined line.

Plane Constraint

Geometrically and physically constraining an operator not to pass a given plane in space

has some uses when manipulation is supposed to be done over a surface which is not to be

interacted with except for placing objects. This primitive can also be used to interact with a

constant pressure or a constant distance to a plane. Tasks like assembling pieces, electronic

board inspection, or any table-top activity can take advantage of such helper as the operator

will not have to keep constant notice of avoiding collisions with the plane of interest as the

system will be taking care of that avoidance with this plane restriction. This helper can

easily be extended to use a parametric surface.

The plane constraint was also implemented and used for the drawing experiments pre-

sented in the following chapter. The user records three points, A, B, and C which are then

used to define a plane in space. In the same way as the line routine works, a force pro-

portional to the distance of penetration into the plane is rendered. There are three possible

restrictions: Remaining within the plane, Staying above the plane, and Staying below the

plane. All three options were implemented and made available to users. Each restriction

could be turned on by pressing particular keys on the keyboard.
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4.5 Discussion

Through this chapter the rationale behind a user-system interface used for teleoperation

was introduced. When using a symmetric setting for teleoperation the master-slave motion

coordination schemes are largely simplified as no scaling schemes have to be taken into

consideration. Moreover, the large number of degrees of freedom and the likely redundant

configuration increases the onus on the operator.

Since teleoperation is in itself a complex activity, Providing a suitable interface for the

user to command the robot is paramount. It is also important to relieve the operator of

unnecessary burdens by including some features that help automate certain parts of a task.

Since scaling movements becomes necessary when dealing with an asymmetric setting, it

is also necessary to be able to equip the command interface with a master-slave motion

coordination scheme that allows the user to navigate the full workspace of the slave with

ease.

Clutching is one of the most widely used approaches to command and shift the active

workspace mapped from the master to the slave device. This approach engages and disen-

gages the master from the slave and then uses the motions of the master to either command

the local motions on the slave or to shift the anchor used to define the current “active”

workspace.

Another approach is Differential End Zone. This scheme uses virtual limits from which

the control signals are changed from position to rate. The change makes the reference point

change in the same direction as the limit is breached. Special considerations have to be

taken in order to limit the rate at which the reference point can be moved and also on how

the motion near the limits of the slave’s workspace are resolved.

Position/Rate Switch is a third approach combining the idea behind clutching and the

permanent control offered by Differential End Zone. It allows the user to change between

position and rate commands. Differential End Zone conserves the idea to move freely in

an active workspace but it also includes the idea of moving the reference point using rate

commands while keeping the control between master and slave always engaged.

Although the master-slave motion coordination schemes are an important part of the

user interface, some other aids should be given to the operator. Software manipulation and

haptic helper routines provide these aids by automating certain aspects of a task. Manip-

ulation helpers can be as simple as an open loop motion to a previously visited zone in

the workspace or as complicated as servoing to a particular configuration using closed loop
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control (for example visual servoing). Haptic Helpers are usually implemented in the mas-

ter side and serve the purpose of limiting or controlling certain freedoms of a task to to

keep constant pressure, follow a determined trajectory, or restrict the manipulation to occur

above a surface.

The product of the design presented in the previous chapter and the ideas presented in

this one, were put to test with the implementation of some experiments involving user and

case studies. The results for these experiments are presented in the following chapter.
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Chapter 5

Manipulation Experiments

The following experiments have two purposes. 1) To provide proof of concept of the mod-

ularity of the system as a very desirable design characteristic allowing the system to be

multipurpose and flexible. The configuration of the system and the modules to used can be

changed quickly and on-demand. 2) To provide some insight and a preliminary study on

the uses of teleoperation primitives to aid the user accomplish a task with more efficiency

than with plain teleoperation. These experiments were designed to provide information to

improve the vision setting, the control mappings, and the available helpers for the operator.

These three areas are of particular interest as they provide insight into the fine tunning of

the system setting and in general for later research activities.

The following sections overview the results of four experiments and a couple of cases

of studies. First, the rationale on how the experimental setup was selected will be presented

in Section 5.1. Two general tasks served as a sandbox/proxy for manipulation: Towers of

Hanoi and Drawing which are described in Section 5.2. The experimental set up is outlined

in Section A.3. Sections 5.3, 5.4, 5.5 and 5.6 explain the experiments and present the

results obtained. Section 5.7 presents a couple of case studies where the system was used

for mobile manipulation tasks. Section 5.8 concludes with a discussion on the generalities

of the chapter.

5.1 Introduction

The focus for the experiments is set on haptic primitives for manipulation. As the experi-

mental design was developed and some preliminary studies were performed, it was obvious

that some system characterization was needed prior to conducting more elaborate experi-

ments.

The configuration used in the robot is a one-arm mobile manipulator which for the sake
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of simplicity will be used as a static manipulator for the experiments with human subjects

and as a mobile manipulator for the case studies ran by the developer alone. The mobile

manipulator will feature three cameras for most of the experiments.

A one-arm setting was used because it is sufficient to gain insight on teleoperation

and its particularities. One-arm mobile manipulation is in itself a stripped-down version

of a two-arm setting, but without the problems of arm interference, motion coordination,

and redundancy resolution in the multi-robot sense. On-site (fixed) manipulation does not

require to solve for coordinated motion of the mobile base and the arm, and, although this

latter allows for more interesting manipulation options (throwing a ball[29], moving large

loads using the body’s inertia, large displacement pick-and place), it is an extension to an

on-site setting. Tele-manipulation needs to be tackled down in parts; once insight is gained

on how to do pure on-site manipulation, it follows that mobile manipulation is an extension

to it.

Two cameras were placed behind the arm overlooking the scene and the end-effector,

one on the left and the other on the right (See Figure 5.2 Overview Camera Pair). These

cameras see the full scene in front of the robot from a left and a right perspective, resembling

the human sight. No stereo vision setting was used at this time. This configuration keeps the

end-effector and the arms in the field of view in the same way a person would manipulate on

a table. The cameras were mounted to the mobile base so they provide a “static“ overview

of the front of the robot. In fact, they mimic the way humans are constituted with an

“oversight” point of view over the manipulation workspace. The third camera is placed as

an eye in hand and is attached to the arm’s last link (See Figure 5.2 Eye In Hand Camera).

This camera sees the end-effector and the immediate surrounding area of it. This camera

is not static and is intended for visual servoing purposes, yet it can be used as if it were a

plane pilot’s point of view.

A fourth camera (See Figure 5.2 witness camera), independent from the robot, was used

to record the trials from a bird’s eye perspective. This camera is static with respect to the

environment and the robot. It looks over the full testbed and the end-effector of the arm.

This camera was later used to review the timing of the trials as well to identify placement

errors through the trials. These videos can also be used to measure the exact planar offsets

of the discs with respect to the stacks’ centers. Figure 5.1 shows the Operator’s station

monitor with all the camera views displayed in the monitor.

Table 5.1 explains the different configurations of cameras used in the experiments. In

the case of drawing, this camera was only used for the experiment’s documentation.
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Figure 5.1: The Teleoperation station showing the Phantom Omni (on the right), a keyboard
and the monitor. The monitor displays (left to right and top to bottom) the left and right
overview cameras, the eye in hand camera, and the bird’s eye documenting camera. This
minimal setting is used to teleoperate the full robot.

Camera Setting Towers of
Hanoi Drawing Case Studies

eye-in-hand focal length 3.5mm
left focal length 6mm 12mm 6mm
right focal length 6mm
top focal length 6mm 3.5mm
baseline left-right 100cm 50cm
setback from base center 65cm 70cm
height from base 100cm

left/right centerline aim convergent to center of testbed
parallel, 30◦

depression

Table 5.1: Camera configurations used in the different experiments and in the case studies.
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When developing the system and trying to characterize its configuration. Some ques-

tions became evident:

• Where to place the video cameras and which cameras help operators have better

performance?

• How effectively do manipulation helpers aid operators?

• Which motion coordination scheme is the more natural for operators?

• How effective are haptic helpers while performing a fine manipulation task?

• Is the mobile mainpulator suitable to perform tasks?

The questions served as a guideline to design the experiments and case studies contained

in this chapter.

The first experiment (Section 5.3) tests different camera views available to the user

while using the clutching control scheme. The second and fourth experiments, presented

in Sections 5.4 and 5.6, test the uses of manipulation and haptic helpers while feeding the

operator with all camera views and the clutching control scheme. The third experiment

(Section 5.5) compares three different motion coordination schemes to command the arm

movement while providing all camera views to the user.

Since the experimental setup is largely focused on users, most of the design is based

on the ideas presented in [46]. Some training is needed to operate the system thus, all

three experiments were run with the same eight participants to minimize the variability due

to differences in experience. The author/developer participated as a subject in the tests

to provide comparison between new and highly trained users. To minimize the effect of

history and previous training over the experiment, a preliminary phase of general training

was included. Depending on the user, this training could be from 15 minutes to one hour.

The overall experiments were conducted in three separate sessions. The first session

was used for the general training and the experiment concerning the camera views. The

second session, conducted in a separate day, consisted of testing the manipulation helpers

and comparing different motion coordination schemes. The final session was set in a third

day and covered the haptic helpers.

Two settings providing a proxy of common operations (e.g., pick and place, fine ma-

nipulation, and tool operation) of manipulation were used. For pick and place, the towers

of Hanoi served as a proxy combining long and short displacements. For fine manipulation
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and tool operation, a drawing task was used as a proxy for other activities such as welding,

material depositing, inspection and path following.

For the purpose of evaluation the accuracy and time taken to complete a task were

recorded. The users were asked to fill out a NASA-TLX (Task Load Index) [39] survey.

Time was used as the principal metric for the towers of Hanoi experiments and the changes

in presure and length of errors were used to calculate a metric for the drawing accuracy.

The NASA-TLX was used as a tool to understand how demanding was each task perceived

by the users.

Important Remarks on the Experiments and Data Analysis

Appendix A shows the details about the experimental setup used through this chapter. Fur-

ther details on how were the users trained, what they were asked to do and what were the

variables which were recorded are contained in this appendix.

Through the chapter the results from the experiments are presented in error-bar charts.

The graphs present the results per user. The data for the developer (highly trained oper-

ator) and the overall mean considering all test subjects are only included for the purpose

of comparison. The decision on not using a standard statistical approach like a t-test or

ANOVA to analyze the data was based on the limitation given by the amount on information

gathered for the tests. For every condition, there is only three data points per user, having

seven users yields 21 data points. Yet, different users showed different skill level when

performing the teleoperation tasks. While some users used a very conservative approaches,

others preferred to use the system more audaciously. This attitude was also reflected in the

results for each individual. In turn, individuals were not having consistent timings between

subjects. To overcome the effect of the attitude and exploit the few data points that were

possible to recorded for each individual it was decided to make the comparisons user-wise

and their data points were taken as a population (normal).

The data analysis was performed by first calculating the mean (µ) and standard devia-

tion (σ ) of a user’s data “population” (size n) using:

σ =

√
1
n

n

∑
i=1

(Xi−µ)2 where µ =
1
n

n

∑
i=1

Xi

We defined an alpha α = 0.1 which is equivalent to a 90% confidence interval. Using

this alpha we can look up for extreme values that delimit the area under the normal curve

corresponding to 90%: 1.645.

The two extremes of the error bars are calculated by solving:
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limits = µ±1.645(
σ√

n
)

This was done per user per testing condition.

It is important to note that because only 3 points were taken per user, in most cases their

times were not that uniform. Each user’s “population” is likely to have a large variance.

This effect is expected to disappear if the number of test points per user and the number of

test subjects were larger.

5.2 The Sandbox: Towers of Hanoi and Drawing

This section is dedicated to describe the two major settings used in the experiments. These

settings could seem at first not related to real world applications, but by taking a closer look,

they both use actions such as coarse and fine alignment, pick-and-place, path-following,

etc., which are widely used in any kind of manipulation. Teleoperation tasks are largely

specific to the application addressed; in a bomb defusing robot one would use lock opening

and fine manipulation to cut wires or perform “delicate“ pick and place. These same fine

manipulation and delicate grasping could be used/learned/evaluated by a proxy task such as

threading a needle.

The rationale to use a proxy instead of a real world application is that it provides a more

generic setting than the application itself. This means that if one were to demonstrate pick

and place, it is safe to say that the setting allows for flexibility and the robot can be used to

pick-and-place any kind of object, or using any tool along a given path. Also, a sandbox case

allows to discover general pitfalls which could be overlooked if taking a specific application

instead. Even more, it makes it easier to discover conditions that must be taken into account

regardless of the application at hand. Since the proxy can be constrained and defined at will,

it is possible to remove/add restrictions without having to change the general setting.

Using a game, puzzle, or simplified task, such as the towers of Hanoi or doing a simple

drawing, works in the same way as children learn through playing. It is possible to gradually

increment the difficulty, constraints, and requirements of a given task while generating a

more complete and generic solution which can be instantiated and improved for particular

situations. A more detailed description of the two settings of the proxy tasks is presented in

Appendix A. The towers of Hanoi focus on coarse and fine alignment, and pick and place;

a picture of the test bed is depicted in Figure 5.2. Drawing focuses on tool-using and path

planning; Figure 5.3 depicts of the setting used.
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Figure 5.2: The picture shows the robot with all three cameras (two overlooking, left and
right, and the eye-in-hand) and the testbed with the three places and the discs in the center
stack. Additionally a top-viewing camera is shown. This camera was used to record the
experiments in order to evaluate the precision of the placements. A 100cm ruler is shown
to demonstrate proportions.
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(a) Detail of the drawing area (b) Detail of the drawing tool

Figure 5.3: (a) shows the detailed view of the location of the drawing area and the end-
effector holding the drawing tool. (b) shows a detailed view of the drawing tool used,
which holds for a thick felt tip marker.

Setting Value
Variable to test Camera Feeds
Gold Standard All three Camera views

Video Feed Eye-In-Hand, Overview Camera Pair, and All three
camera feeds.

Arm Control Scheme Clutching (Fixed Scaling 1 : 2.5)
Helpers None

Mobile Base Disabled
Activity Towers of Hanoi

Table 5.2: The configuration for “Selecting Video Camera Feeds” Experiment.

5.3 Selecting Video Camera Feeds

This experiment evaluated which video feeds from the cameras on the mobile manipulator

provide better information for the operator. The hypothesis to test is: the cameras on an

overview camera pair configuration allow the operator to finish the task faster than with

the eye in hand for in-site pick and place task. Both approaches were compared to a third

case, which will be taken as the gold standard: Providing the user with all 3 camera feeds:

eye-in-hand and the overview camera pair. Table 5.2 summarizes the settings used in the

experiment.

The time taken to perform a full instance of the towers of Hanoi was recorded. It was

expected that the users would perform the task in more time when using the eye in hand or
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Figure 5.4: Times with 90% confidence intervals for the camera configurations experiment.
Note that except for the subject (3), the rest of the users seem to have a preference either
for the overview camera pair or the eye in hand configuration.

the overview camera pair configurations than when using all three video feeds because the

available information to the user in these cases is less than when observing the scene using

all three views. However, It was expected that the overview configuration would allow users

to perform better than the eye in hand configuration.

5.3.1 Results

Observing the times the users took to perform the full activity (Figure 5.4), the overview

camera pair was the configuration allowing the best times for almost all the subjects except

for the case of the developer (Dev in the graphs). The preference of using the all-three-

camera feeds was divided. In some cases the subjects were able to perform almost as fast

as with the overview camera pair. Only one subject appeared not to have preference on the

video feed.

Only for one subject, using all three cameras was the least preferred configuration. This

could be because the amount of information to process is more when having more than one

video feed. Presenting the user with more than two possible feeds to look at at any given

time, and therefore more information to process, could not always be the best option.
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Figure 5.5: NASA-TLX raw scores for the different camera configurations tested in the
Selecting Video Camera Feeds experiment. These raw scores were used to calculate the
unweighed NASA-TLX score for each subject.

For all the other subjects, the times using the three camera configuration either resemble

the times for the oversight pair or the eye in hand configurations. This could mean that the

configuration at hand is used in the same way as the preferred configuration for each subject.

Also, except for the subject (3), the rest of the users seem to have a preference either for the

overview camera pair or the eye in hand configurations.

Looking at the NASA-TLX scores for the subjects (Figures 5.5 and 5.6) it is easily ob-
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Figure 5.6: Unweighted NASA-TLX scores for the different camera configurations tested
in the Selecting Video Camera Feeds experiment. For most of the participants the most
demanding configuration is the eye in hand (except for the developer (DEV) and the person
who did not have particular preference(3))
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servable that for most of the participants the most demanding configuration is the eye in

hand (except for the developer (DEV) and the person who did not have particular prefer-

ence(3)). The main problem with this configuration is the lack of depth perception (lost

due to the single point of view). The second most demanding configuration is the overview

camera pair. Half of the participants said this configuration was less demanding than the eye

in hand configuration because they could recover depth perception from combining infor-

mation from the two video feeds. These same participants perceived the all three cameras

configuration as the least demanding due to the amount of information they were able to get

from that configuration.

Some users commented that the overview configuration, although natural, was too

“stiff”. In the future it would be interesting to reevaluate the use of the overview camera

pair equipped with a pan-tilt unit to provide an “active vision” setting.

Participants 5 and 6 felt that all-three-cameras were more demanding than using the

overview camera pair. This perception could be because the eye in hand view would dis-

tract them more than help them. The developer had a very particular classification. the

overview camera pair was perceived as the most taxing, and this is because there are par-

ticular configurations for which there is incomplete information (when the arm is aligned

with the principal axis of a camera). When using the eye in hand feed, some depth percep-

tion can be recovered by using the force feedback and the shadows that are projected in the

environment.

As a general conclusion of this experiment, it is desirable to provide the operator with

all the available information but it is necessary to train the operator to be able to use the

information efficiently. This efficiency can be attained by training and by guiding the person

on how to pay attention at different camera feeds depending on the task and the events

happening. It would seem that the overview camera pair would give the better setting,

yet because the lack of detail of the on-site fine-manipulation (given by the eye-in-hand

feed), this setting might fall short of being the most useful. One of the main objectives in

teleoperation is to be able to command the slave robot with the best possible decision. This

is possible only if the most relevant information is given to the operator.

5.4 Using Manipulation Helpers

The objective of the experiment was to evaluate the usefulness of the place recording ma-

nipulation helper. This helper is used to record and replay set-points in the workspace of
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Setting Value
Variable to test Manipulation Helpers
Gold Standard Plain Manipulation

Video Feed All three camera feeds.
Arm Control Scheme Clutching (Fixed Scaling 1 : 2.5)

Helpers Place Recording/Replaying, None
Mobile Base Disabled

Activity Towers of Hanoi

Table 5.3: The configuration for “Using Manipulation Helpers” Experiment.

the robot’s arm. It can be used while performing repetition tasks or to keep configurations

of interest/reset that could be useful while doing a manipulation activity.

The general settings for this experiment are presented in Table 5.3

From this experiment it was expected that the participants would be able to perform

faster manipulation using the helper. The overall time needed to finish the activity is ex-

pected to be lower and the accuracy of the placements to be higher when using the helper.

The time taken to complete an instance of the towers of Hanoi was recorded and then com-

pared against the control conditions gathered before.

5.4.1 Results

In general, the manipulation helpers improved the overall times of completion for the users.

As Figure 5.7 shows, in every case the times were shorter when using the helpers than when

not using them. Only in one case, participant 4, the times show no difference (statistical

significance). In every case, the times show less variance when using the helpers than when

not using them. This is mainly because when not using the helpers, participants were prone

to drop the disks while transporting them between stacking places or when depositing the

disks provoking an incorrect stacking position.

When analyzing the data from the task load index (Figures 5.8 and 5.9), six out of

eight participants felt that the task load was lower when using the helpers. Participant 3

pointed out that the load was higher because of mental demand, effort, and physical demand

associated with remembering and replaying the recorded places. Participant 6 felt that the

overall use of the helpers added load to the task as one had to remember settings and to set

up the memory banks, record the places, and replay them to achieve the task. For these two

participants is evident that the trade-off between controller complexity and task ease was

not convenient.
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Figure 5.7: Times with 90% confidence intervals for the manipulation helpers experiments.
The times were shorter when using the helpers than when not using them.

Most of the participants felt that the trade-off between complexity in the controller and

the gained performance was advantageous. All participants regardless of their perception

of the task’s load, achieved better times by using the manipulation helpers. It is important

to mention that none of the subjects knew there times before responding to the NASA-TLX

questionnaire.

5.5 Evaluating Different Control Schemes

The experiment’s purpose was to compare the different motion coordination schemes to

command the manipulator. It was expected that Position/Rate Switch and Differential End

Zone would allow the participants to complete an instance of the towers of Hanoi faster

than with Clutching. Moreover, Differential-End-Zone would allow the users to finish faster

than with Position/Rate Switch. The settings used for this experiment are summarized in

Table 5.4.

The time for the trials was recorded and compared against each other and also to the

already gathered control conditions. The expectation was that users would perform the

fastest with the Differential End-Zone Scheme, slower with the Position/Rate Switch and
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Figure 5.8: NASA-TLX raw scores comparing the use of Helpers and plain manipulation
for the Manipulation Helpers experiment.
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Figure 5.9: Unweighted NASA-TLX scores comparing the use of Helpers and plain ma-
nipulation for the Manipulation Helpers experiment. Six out of eight participants felt that
the task load was lower when using the helpers. Participant 3 pointed out that the load was
higher because of mental demand, effort, and physical demand associated with remember-
ing and replaying the recorded places. Participant 6 felt that the overall use of the helpers
added load to the task as one had to remember settings and to set up the memory banks,
record the places, and replay them to achieve the task

Setting Value
Variable to test Control Scheme
Gold Standard Clutching

Video Feed All three camera feeds.

Arm Control Scheme Clutching, P/R Switch, and Differential E-Z.
(Fixed Scaling 1 : 2.5 for position)

Helpers None
Mobile Base Disabled

Activity Towers of Hanoi

Table 5.4: The configuration for the experiment comparing the three motion coordination
schemes.
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Figure 5.10: Times with 90% confidence intervals for the motion coordination schemes
experiment. The best times overall were achived using Differential End Zone. Still, the
results suggest that the preference of a scheme is user dependent.

finally the slowest with the Clutching Scheme.

5.5.1 Results

Figure 5.10 shows the times for participants and the different motion coordination schemes

used. Except for subjects 1 and the Developer, all users achieved their best times using the

Differential-End-Zone scheme; the exceptions achieved their best times with the Clutching

scheme. For some subjects the schemes proved to be not significantly different (subjects

2, 7, and the Developer). In some way this lack of difference could be due to insufficient

training (7), or to relative confidence and adaptation to the motion coordination schemes (2

and Developer).

Overall, users perceived the different controller schemes having a different load. Six of

the operators perceived the Position/Rate Switch scheme to be the most onerous while the

other two perceived clutching and Differential-End-Zone as the most taxing. It is interesting

to see that while almost all users felt comfortable with the clutching scheme, some users

preferred either the Differential-End-Zone while others the Position/Rate Switch schemes.

Most users felt the physical demand, frustration posed by the Position/Rate Switch scheme
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Figure 5.11: NASA-TLX raw scores comparing the different motion coordination schemes
used.
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Figure 5.12: Unweighted NASA-TLX scores comparing the different motion coordination
schemes used. as we can see from the unweighted NASA-TLX, clutching is the least taxing
scheme, yet all of the schemes are almost the same from the point of view of task load.
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Figure 5.13: Error Rates for The different motion coordination schemes studies. Clutching
and differential end zone have less errors overall. Moreover, differential end zone had the
least errors provoke by user faults.

was higher than any other scheme.

Most of the users pointed out that the Differential-End-Zone scheme felt like the most

natural approach, but it lacked the disengagement feature of the clutching scheme. The

Position/Rate Switch was deemed the middle ground between the other two schemes, but all

users felt that this scheme was non-intuitive and sometimes difficult to operate and predict

in behavior. The clutching scheme is still regarded as the most stable scheme but it was

tiring to shift the anchor when doing large motions. Several clutching events have to be

performed to offset the slave from a start to a goal positions.

Clutching is still the most generic scheme, while the Differential-End-Zone seems the

most natural approach. The latter is a promising avenue to develop more “natural” or er-

gonomic controller schemes for operators. It would even be necessary to test different tasks

to evaluate the different controllers against different tasks, and prove if different schemes

provide advantages for different kinds of tasks or activities.

The number of times the controllers became unstable, inoperable, difficult to use due to

some force-feedback being rendered incorrectly, or when user errors occurred was recorded

for comparison of the motion coordination schemes. Figure 5.13 shows the general error
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rates for the three controllers. The bars depict the failure rates for system-based errors

(instability or interoperability), user based errors (non-recoverable errors during the trials

such as dropping pieces from the table), and the total failure rate.

It is evident that Position/Rate Switch has the most errors in any case. Users tended

to make more mistakes because the change between position and rate, although voluntary,

was sometimes not controllable or even provoked them to drop the stacking pieces outside

of the table. Overall Differential-End-Zone had the lowest error rate, yet the system was

highly unstable and became inoperable sometimes. Clutching seemed to be the most stable

controller from the system point of view, yet most of the errors provoked by users were

also made while using this scheme. Some operators observed that this was because of the

interface itself and it was easy to mistakenly command the hand to open the gripper while

the intention was to clutch the arm.

5.6 Using Haptic Helpers

This experiment provided information on how useful the haptic helpers are for the user. The

main objective of this experiment, unlike the ones presented before, is to evaluate whether

the helpers improve the accuracy of the operator while performing a fine manipulation task.

The haptic helpers used in this experiment were the line and plane primitives. These helpers

would be used to draw lines and they were also expected to aid in the drawing of circular

trajectories on a plane.

It is expected that the traces drawn by the participants using the haptic helpers would

be straighter, more even, and would have less variations from the original path than when

drawing freehand. It was expected that when using the helpers, longer completion times

will be recorded due to the overhead of parameterizing the helper.

The configuration for the experiment is presented in Table 5.5. Note that in this case the

users are using a finer scaling in order to give them more control over the drawing process

and allow them finer manipulation.

As presented above in Subsection A.2, the quantification is done with a metric of the

accuracy of the drawing i.e., how evenly pressured and close the traces commanded by

the participant are to the actual paths requested. The time to complete the task was also

recorded to document the trade-off between time and accuracy.
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Setting Value
Variable to test Haptic Helpers
Gold Standard No Helper

Video Feed All three camera feeds.
Arm Control Scheme Clutching (Fixed Scaling 1 : 1.1)

Helpers Haptic Constraints: line and plane primitives; None
Mobile Base Disabled

Activity Drawing Patterns (P, Circle, and Triangle)

Table 5.5: The configuration used in evaluating the haptic helpers.

5.6.1 Results

Users were largely helped by the haptic helpers while drawing. All users performed the

tasks with less changes in pressure while tracing the lines. Figure 5.14 shows the number

of pressure changes recorded when using the haptic helpers and when using plain manip-

ulation. In just one case, the difference was not statistically significant. It is worth noting

that the variance of the recorded pressure changes for this case is high while the variance

when using the helpers is considerably smaller. Less pressure changes while drawing means

more even interaction between the robot and the surface of interest. In a real task, this could

mean that there are less chances of making undesired collisions or high-force interactions

with the environment.

As Figure 5.15 shows, the errors were almost the same when using the helpers than

without. Only for subject 1 and the developer, a statistical significant difference was reg-

istered. This could be largely because the users were not trained sufficiently to use the

helpers. An interesting observation is that although the errors were approximately the same

for either case, the overall traces using the helpers were closer to the desired lines but the

tracing was done with a regular offset from the intended line. When using the plane restric-

tion, curves were also done with more continuity, but again with a constant offset from the

target trace.

Regarding the times, in Figure 5.16, the task took longer while using the helpers and

this was mainly due to the overhead of defining the restriction planes or the trajectories to

follow. Overall, the increase in time is between 100% and 250%.

The perception of the users on using the helpers was divided. Half of the participants

thought the helpers were helping them while the other half thought they were actually im-

peding them from finishing the task efficiently. In fact, two of the operators (subjects 2

and 4) were not certain whether the helpers were that different if using plain manipulation.
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Figure 5.14: Pressure changes with 90% confidence intervals for the haptic helpers experi-
ment. Users were able to draw with more constant pressure over the paper when using the
haptic helpers (both line and plan restrictions).
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Figure 5.15: Length of error in tracing with 90% confidence intervals for the haptic helpers
experiment. The haptic helpers did not perform as well as expected. In this case the amount
of errors (counted as the times and length of a trace going out of the grey line), remained
almost the same when using haptic helpers or plain manipulation. Only for subject 1 and
the developer, a statistical significant difference was registered.
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Figure 5.16: Times with 90% confidence intervals for the haptic helpers experiment. Times
when using the haptic helpers were larger because they include the overhead of parameter-
izing the helper.
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Figure 5.17: NASA-TLX raw scores comparing freehand drawing and Haptic Helped draw-
ing

89



Figure 5.18: Unweighted NASA-TLX scores comparing freehand drawing and Haptic
Helped drawing. Load perception when using the helpers or plain manipulation was di-
vided. Some users felt that the helpers indeed reduce the onus while others felt that using
the helper was more taxing.

90



They differentiate their preference based on the frustration the task gave them.

Overall, the haptic helpers facilitated the users to make even-pressured traces and there-

fore softer contact interactions with the environment. Although the overall number of errors

was not improved, there is still room to test for these helpers while defining better primi-

tives that could help attain better trajectory following. Giving the users more time to train

and gain more confidence on using these helpers would also be desirable.

5.7 Mobile Manipulation Case Studies

The objective of these case studies is to demonstrate the capabilities of the mobile manip-

ulator to perform a large-displacement pick and place task: large-displacement towers of

Hanoi.

The first case study is an instance of the towers of Hanoi puzzle with the stacking places

further apart from one another. This setting requires to move the mobile base to be able to

reach the stacking places. The particularities and results of this case study will be presented

in Subsection 5.7.1.

The second case study is a more day to day activity that has been proven to be diffi-

cult for robots: Opening doors. Teleoperated bomb-defusing robots usually have problems

opening car doors and some mobile manipulators have problems navigating environments

with closed doors. This task has received particular attention from the robotics community

due to the complexity of the task involving grasping, planning, manipulation, etc. The ob-

jective of this second case study is to also demonstrate the capabilities of the system. The

details are presented in Subsection 5.7.2.

The case studies trials were run only by the system designer/developer as commanding

the robot for this kind of activity needs several hours of training and detailed knowledge of

the system and its capabilities.

5.7.1 Revisiting the Towers of Hanoi

As said before, this case study is the mobile manipulation version of the setting used for

the experiments described before in this chapter. The general setting was designed to test

the capabilities of the system in a mobile manipulation context. The stacking places were

placed far away from each other requiring to navigate the environment to finish the puzzle.

Figure 5.19 shows a picture of the setting for the Towers of Hanoi with large displacements.

Three trials were run and the times were recorded using all the basic rules of the orig-

inal setting of the puzzle. The instances used for the trials were selected in such a way
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Figure 5.19: The setting for the Towers of Hanoi with large displacements. The three
stacking stations are highlighted.

that the stack, at the end of one trial, would be placed in the starting position for the

next. The times for the trials were: 24 minutes, 58 seconds, 25 minutes, 32 seconds, and

25 minutes, 53 seconds, yielding an average time of 25 minutes, 28 seconds. Surprisingly

no errors were made such as bumping into the props or the limits of the room, or dropping

pieces while manipulating or stacking.

Throughout the runs of the experiment, the clutching mapping was used for most of the

time and other schemes were tried only in the first trial. The scaling used was increased

and decreased several times in order to make more efficient movements while manipulating

the pieces; selection of a finer scaling while aligning or unstacking the pieces was crucial

for achieving good grasping. Coarser movements for rough-alignment were essential to

traverse free-space faster. Also, the manipulation helpers were used to make rough height

alignments.

5.7.2 Opening a Door and Exiting a Room

Opening a door has been an open problem in robotics for some time. It is known that open-

ing doors is a problem that can be found in almost any task involving human environments.

Opening doors can be used for environment navigation and also in security related appli-

cations such as investigation of suspicious packages in cars or bomb defusing. Figure 5.20
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Figure 5.20: The teleoperated mobile manipulator in the initial setting to open a door.

shows the initial stage for this case study.

Three trials were run to open the door. All the trials started from the same initial con-

figuration. The times to open the door, partially exit, come back, close the door, and come

back to the original place were recorded. In general all trials were successfully completed

without any system failures or restarting needed. The times recorded for the three runs

were: 13 minutes, 25 seconds, 12 minutes, 32 seconds, and 14 minutes, 41 seconds giving

an average of: 13 minutes, 33 seconds.

Clutching was used all the time because it provided position control in every instant.

It was possible to attain better control over the proximity to the contact and manipulation

points. Contacts and overall manipulation were done with extreme care to prevent any

failure of the system and also to minimize the potential harm the robot. The haptics in

this case were very useful to know when the robot was in contact with the door’s handle

and when it was turning it to open the lock. The haptics module also became useful when

pulling the door open using the arm.
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Camera Configuration Average Time [s] Average Unweighted NASA-TLX
Eye-in-hand 415.125 50.781
Overview Camera Pair 310.542 36.771
All-3 Cameras 364.042 31.094

Table 5.6: Averages over all the participants’ times and NASA-TLX Scores for each camera
configuration tested. Although the Overview Camera Pair yields overall faster completion
times, the All-3 Cameras setting is the least taxing for the user.

5.8 Discussion

This chapter presented the experiments and the results obtained from a set of user stud-

ies. The participant operators commanded the manipulator (and a mobile manipulator in

the case studies) to perform an activity. These experiments were designed around settings

which sampled real-world generic manipulation tasks yet allowed for evolving condition

and requirements. Future studies can be deployed and tested using the same proxy tasks.

Different experiments were conducted to evaluate the overall setting of the mobile ma-

nipulator.

The first set of experiments evaluated how different camera feeds affected the operators’

performance. Despite the results not being as conclusive as expected, in a more detailed

analysis, it is possible to conclude that having more information about the remote scene

yields improved performance. It is necessary to train the operators, let them practice, and

guide them on how to use the information that is being displayed (help them learn to discard

non-essential information and notice the details). Table 5.6 gives a condensed summary of

the results on the first set of experiments.

The second set of experiments showed how manipulation helpers could be used and

evaluated how useful these were to speed-up the execution of a task. The manipulation

helpers indeed helped the participants perform the task faster, but at the cost of demanding

some more attention from the operator. Table 5.7 gives a summary presenting the averages

for times and task load scores for all users.

Different motion coordination schemes for asymmetric systems were tested in a third set

of experiments. Overall, the proposed schemes were not different from each other once the

participants tried them. Regardless of this, and although clutching being the most generic

approach, there is still room to design more ergonomic controllers which include different

mappings. It is recommended for future studies to evaluate different tasks against different

motion coordination schemes. Each approach might have some desirable behaviors which
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Mode of Manipulation Average Time [s] Average Unweighted NASA-TLX
Plain Manipulation 364.042 46.198
Manipulation Helpers 234.708 27.396

Table 5.7: Averages over all the participants’ times and NASA-TLX Scores for each mode
of manipulation tested. Using the manipulation helpers both reduces the completion times
and the perceived general load of the task. Despite of this, result, it is important to note that
some users did feel that there was more attention needed when using the helpers than when
not using them.

Control Scheme
Average Time
[s]

Average Unweighted
NASA-TLX

Failure Rate
[%]

Clutching 364.042 45.677 29.751
Differential-End-Zone 327.917 49.167 25.00
Position/Rate Switch 371.042 50.104 38.462

Table 5.8: Averages over all the participants’ times and NASA-TLX Scores for each con-
trol scheme tested. Differential-End-Zone gave the overall faster performance and the less
failure rate while clutching is still the less taxing for the operator.

could result advantageous depending on the nature of a task. The general results are sum-

marized in Table 5.8

For the fourth and final user study, haptic helpers were demonstrated and tested. These

helpers proved to be useful to minimize the high-force interactions between the slave and

the remote environment. The haptic helpers aided the users to trace more even lines with

constant pressure over the plane of interest. Although the helpers did not seem to help on

the accuracy of the traces, they did improve the overall straightness of the lines drawn by

the operators. Table 5.9 sumarizes these results.

Two mobile manipulation case studies were presented. In the first case, the task was an

Drawing Mode
Average
Time [s]

Average
pressure
changes

Average
Error
Score

Average
Unweighted
NASA-TLX

Plain Manipulation 295.333 38.792 39.063 47.500
Haptic Helpers 592.917 19.167 34.688 46.927

Table 5.9: Averages over all the participants’ times, pressure changes, error score, and
NASA-TLX Scores for each mode of drawing through telemanipulation tested. Using the
haptic helpers reduces the changes in pressure while using the restraining helpers, decreases
slightly the error score, and is mostly perceived as helping the user achieve better results.
Although the helpers add an overhead in the time of completion, they helped the user attain
better results.
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Mobile Manipulation Task Average Time [m : s]
Large Displacement Pick and Place 25:28
Opening a room’s door 13:33

Table 5.10: Averages of the times taken to perform the large displacement pick and place
towers of Hanoi and Opening a Door and exit a room cases.

extension of the setting used in the first three experiments. The overall result was that the

mobile manipulator was capable of dealing with the unstructured environment. The second

case study was performing an activity which, up to date, is an open problem: opening a

door. Several robots, teleoperated and autonomous, have problems opening doors because

of the different features doors may have and also because of the different challenges the

task offers (unstructured environment, unknown interaction forces needed, geometric con-

straints, manipulability, etc.). The teleoperated mobile manipulator was capable to open the

door in repeated times. The task was accomplished without failures of high-force interac-

tions or controller instabilities. Table 5.10 shows the average of the times recorded for both

case studies.
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Chapter 6

Conclusions

This dissertation presented the development of a mobile manipulation test bed and the ex-

periments that were conducted to test some of its features. The design goals were achieved

while gaining insight on future directions of research using this system. In the following

sections we summarize the contributions of this thesis (section 6.1) and finally we present

some of the future topics which can expand this work (section 6.2).

6.1 Summary of Contributions

The system was programmed with a setting intended for stripped down teleoperation as-

suming no delay. This setting obviated the problems inherent to time delay to explore other

aspects of a teleoperation system. Studies on which cameras help the operator manipulate

more efficiently, alternative motion coordination schemes other than the classic clutching

approach, and how different helpers can aid operators to improve their performance were

investigated.

The available video feeds from a mobile manipulator usually are limited due to the

available bandwidth. Assuming an unlimited bandwidth, we tested how providing different

video feeds to the operators changed their performance. Most of the operators performed

their best times with a static human inspired camera pair configuration overseeing the ma-

nipulation scene. These cameras provided the best times for most users. Despite this result,

participants became unsure sometimes if they were doing the correct operations as this set-

ting didn’t provide complete information of the scene. All users stated that the eye in hand

configuration was difficult due to the lack of depth perception and because the moving cam-

era distracted them. This latter became evident also when giving all views to the operators.

Most users also commented that although the eye in hand became distracting at times, it

also became in handy when trying improve the accuracy of the placements.
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The user studies also included an evaluation of different motion coordination schemes

used to command the robots position when using an asymmetric system. The master, being

almost ten times smaller in size and power than the slave, represented an interesting chal-

lenge in terms of which controller to use. We evaluated three different schemes. Clutching

is the most generic and still the most well accepted by all users, although it introduces repet-

itive motions for large movements. Differential-End-Zone proved to be also well accepted

by some users, while some others preferred the Position/Rate Switch. This latter was, at

times, the most unstable and difficult to operate for some others. Despite their performance,

these controller schemes might be good alternatives to the clutching approach.

Some other user studies were conducted to evaluate manipulation and haptic helpers.

These helpers aided users by recording specific configurations of the slave and replay-

ing them, or by restricting motions or the available workspace. The manipulation helpers

proved to aid in most cases by relieving the users from doing several large motions, keeping

straight paths, or maintaining a more even pressure over a surface than when doing the same

task with plain teleoperation. Software helper routines decreased the perceived task load

for the operators. In particular Manipulation Helpers reduced the completion times for the

towers of Hanoi activity by almost half. Haptic Helpers aided users to keep more steady

contact interactions when performing the fine manipulation task.

Case studies were also conducted to demonstrate the capabilities of the mobile manip-

ulation setting. First, a large displacement pick and place activity was performed and the

times, recorded. The robot successfully finished the task commanded solely using a Phan-

tom Omni and a computer keyboard. The second case study was to open a door. In this

case, the system also proved to be successful while rendering back the contact forces on the

master device. This helped the operator to open the door and have the robot exit a room

without major problems.

The overall system proved to be modular, expandable, and flexible. Two configurations

using one and two arms were built. New components (either hardware or software) can be

integrated with ease as long as the component can coexist with the others under the defined

Framework.

The use of more elaborate software interfaces and message passing frameworks, can

be both advantageous and taxing. While the software might have good support and re-

sources, it might not fully be suited or intended for the application or it might require a

lot of time invested into learning the basics of it. In this particular case, ROS was a very

advantageous tool. The overall improvement in modularity alone out-weights the moderate
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learning overhead. Some other advantages are the large community using this framework

and the constant release of updates.

The use of off-the-shelf-components can largely speed-up the development process of

a mobile manipulator. While Ad hoc. systems provide well integrated and design specific

qualities, they also require a large share of resources. By using commercially available

solutions, it is possible to achieve acceptable performance while keeping developing times

shorter. Since the resources are more accessible, a larger community of researchers will be

able to produce results that could speed up the advances in teleoperation, autonomy, and

robot design, to name a few areas.

The methodology for designing a mobile manipulator presented in chapter 3 and the

user interface rationale presented in chapter 4 were put to test by developing the mobile

manipulator used to carry out the user and case studies presented in chapter 5. The system

proved to be a stable test bed for numerous trials while also providing agile prototyping in

hardware and software.

The developed system was designed to be capable of doing human-scale manipula-

tion and prototyping test-bed for mobile manipulation algorithms. The design was largely

thought to be modular. Modules can be interchanged, substituted, or added depending on

what the system is going to be used for.

6.2 Future Work

Further refinement on the motion coordination schemes needs to be done. Specially on the

Differential End Zone scheme. This controller was perceived as a very natural and intuitive

scheme compared to clutching because it removed the onus of having to clutch several times

to translate the mapped workspace of the arm to a new position. Some people suggested to

include an option to disable the differential-end-zone.

The helpers proved to be useful and new helpers should be developed and tested. Ex-

tending the line primitive to work with general parametric paths and the plane primitive to

work with parameterized surface are natural extensions. Moreover, helpers for mobile nav-

igation could be another good extension. For the latter, it is first needed to do some more

automation of the mobile base before the helpers can be added.

The design methodology presented is to be used as a guideline to develop mobile ma-

nipulators, yet still generic, addresses most of the common problems a designer is likely to

find when sketching such a complex system. As a guideline, it is by no means exhaustive
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and therefore should be combined with other design methodologies or frameworks. These

combination and inclusions enrich the design process.

While ROS is a very good tool for prototyping and building stand-alone modules for

robotics in general, it lacks the implementation of UDP package relay. This makes the

system’s overall latency prone to failures due to package retransmission when the package

in question is already obsolete and useless. A UDP implementation of message passing can

help the system work with the most up-to-date information at any given time.

In the same line of thought of the bandwidth and message passing, we observed that

sometimes the system can become unresponsive for short periods of time (less than 100ms)

when commands are issued more frequently. This was always the case when using sepa-

rate computers for the operator and the robot while using the video feeds from the cameras

on-board. If the cameras were not used, or the on-board computer was also used as the op-

erator’s station, this problem was not observed. In future versions of the system, a detailed

system characterization of the inter-module communication timing has to be constructed.

This characterization will help solve this issue. As a temporary solution, it is possible to

simply use a separate network for relaying the video back to the operators computer.

Although one of the intentions was to also study two arm manipulation and two-handed

mobile manipulation, this avenue was only lightly explored and some results were presented

in [40]. One-arm mobile manipulation was explored and the results were presented in this

work yet, several further tests and different applications remain to be tried using the current

setting.

Inclusion of sensors for the mobile navigation and path-planning should be tested and

integrated into the system. The same way there are manipulation helpers, some navigation

helpers can be developed to record particular positions of the mobile base in an environ-

ment.

Another application which remains to be addressed is the development of a controller

scheme which considers the whole mobile manipulator as a single kinematic chain. So far,

all the schemes presented in this work assume that the mobile manipulator is commanded

in a segmented way, either commanding the base or commanding the manipulator, yet they

can be extended to cope with this paradigm taking the robot as a single kinematic chain.

We believe that the inclusion of an active vision system can help operators to cope

with the issues of the human inspired camera pair not giving complete information of the

remote scene. Usually when doing an activity, humans tend to move their heads to find a

better point of view that helps to solve the task. In this same way, an active vision system
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comprised of a turret (pan and tilt) can help position the cameras and get better visual

information of the remote scene.

The user studies conducted on how different camera views affected the performance

of the operators provided good insight into how to train operators to use the information

presented to them. It also provided insight on how to plan and include sensors when running

on a tight budget that does not allow to use several camera feeds. Further studies should be

made to evaluate if combinations of one of the cameras of the human inspired camera pair

together with eye-in-hand are useful.

More sensors can be included into the system. Laser Rangers could help the mobile base

not to collide with the environment while moving around. They could also serving as depth

sensors for the arm and relay information and warn the operator of potential collisions.

More cameras can also be included to gain more visual information of the surroundings of

the slave. The information can be useful to make the operator more situational aware.

However useful the Phantom Omni proved to be, new haptic and non-haptic interfaces

should be tested and interfaced to the system. The author used a haptics enabled game-pad

controller to command the arm. Although the haptic feedback was not easy to decode as

when using forces, it provided a condensed station to command the whole mobile manipu-

lator.

Many other options for future work are possible, yet the ones above, from the point

of view of the author, are the most important to develop in short. They provide the next

building blocks to bring supervisory control for mobile manipulation closer.
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Appendix A

Experimental Design

A.1 The Towers of Hanoi

The towers of Hanoi is a mathematical puzzle consisting of a number of places and a number

of discs of different diameters. The puzzle starts with the disks ordered in ascending size in

one place: the largest at the bottom and the smallest at the top. The objective of the game

is to move the entire stack from one place to another by moving the top-most disk in the

stack, one at a time, without putting a bigger disk on top of a smaller one.

The towers of Hanoi was selected as a proxy for general teleoperation settings where

pick and place are the principal actions involved. In [35] this setting was used for their

autonomous mobile manipulation challenge because it gives an excellent sandbox problem

to address research topics like perception, world modeling, planning, and coordination. Al-

though the focus is in teleoperation and not directly in autonomy, it is possible to use the

same setting to experiment with Operator Interfaces, Functionalities, and System Inte-

gration. This same setting can later be used to experiment as well with Control Stability,

Time-Delay, and Safety.

For the experiments, a three-place three-disk instance of the towers of Hanoi was used.

Since the focus of the study is not the solution of the puzzle, the participants were given the

strategy to solve the problem in advance. The strategy is presented in procedure 7.

There are six different configurations that can be used for the trials:

• left stack to center stack

• left stack to right stack

• center stack to left stack

• center stack to right stack
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Procedure 7 Strategy to Solve the Towers of Hanoi with 3 disks and 3 places
1: Move the smallest disk to the “target” stack
2: Move the medium disk to the remaining stack
3: Move the smallest disk on top of the medium disk
4: Move the biggest disk to the “target” stack
5: Move the smallest disk to the “starting” stack
6: Move the medium disk on top of biggest disk
7: Move the smallest disk on top of the medium disk

Figure A.1: An annotated diagram of the arrangement of the Towers of Hanoi setting. The
dimensions are in centimeters.

• right stack to left stack

• right stack to center stack

The stacks were marked with two colored targets which were placed on top of a black

surface. The places were 50cm in diameter and were placed approximately 45cm apart

one from the other. The center stack was placed 54cm away from center of the arm’s base

directly in front of the arm. An annotated diagram is presented in figure A.1 and
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The disks used in the experiments were cylindrical of about 5cm high and with diame-

ters of 7cm, 10cm, and 13cm. They were made from plastic foam and covered with a black

and white pattern to allow for the center of the piece to be found even when occluded. This

feature was also used in the design of the targets for the stacks/places.

The target-like setting served two purposes. The first was to point out the exact location

where the users were required to place the discs and build the stacks. The second is to be

able to measure the accuracy of the placement. For the sake of simplicity this accuracy was

discretized into four possible zones. The first circle was selected to be 20cm in diameter

so it could allow the biggest disk to be placed with some degree of error. The subsequent

circles were defined at 30cm, 40cm, and 50cm. Users were advised to place the discs as

close as possible to the center and within the smallest circle.

The test-bed was left open in the edges and a disk can leave the table at any time if

mishandled. If this should happen, the trial will be restarted. The purpose of this feature is

to differentiate from two different failures or errors during manipulation: recoverable and

fatal errors. The former was usually the case when pieces turned over their side while on

the table. The later happened when one disk left the testbed. These two types of errors are

always present in manipulation settings1.

A.2 Drawing

Drawing (i.e., making traces with a stylus) is a very basic activity which requires precision

movements and the use of a tool which deposits a material on top of a surface along a path.

Drawing can be used as a proxy for any kind of application which requires fine manipula-

tion constrained to a plane or along a path. Examples of such activities are welding, glue

application, painting, and inspection.

In this case the main task is to follow some patterns which include straight lines, circular

segments, or a combination of both. These “basic” configurations were selected because

they can be extended in future iterations to general curve segments and non-planar paths.

Figure A.2 shows the guide pattern the users were asked to follow and draw over.

The drawing has some specific dimensions. The P was selected to be 20cm high and

12cm long while the triangle was 10cm base by 10cm high and the circle 10cm diameter.

The shaded region is 1cm thick and is the region where the user was asked to trace the

lines or curves. The patterns were printed in a letter-size sheet of paper with a landscape

1some cases, like in telesurgery or in space teleoperation, the recoverable errors are very few, and most
errors can be indeed fatal
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Figure A.2: These are the patterns used in the drawing task. The “P” combines straight
lines and curves, while the circle is a pure curve and the triangle has only straight lines.

111



Figure A.3: An annotated diagram of the arrangement of the Drawing setting. The dimen-
sions are in centimeters.

orientation. The upper left corner of the sheet of paper was placed 79cm away from the

robot base’s center and 38cm to the left of the centerline. This arrangement was selected so

that the cameras had clear line of sight of the paper at all times without occlusions from the

arm or the drawing tool. Figure A.3 shows an annotated diagram of the testbed.

A felt tip marker was used as the drawing stylus as it made it easy to evaluate how

smooth the traces were done and differentiate levels of pressure applied by the marker to

the paper. This can be seen after the trial has been completed by looking at the thickness of

the trace and the amount of ink that penetrated into the paper i.e., by looking at the paper

from behind, this features become evident.

A way for the robot to hold a marker was needed. Although the gripper itself could

hold the marker, a more “ergonomic” interface was favored. This interface served two

purposes: Put the marking pen tip directly in front of the eye-in-hand camera and also put it

away from the gripper so it would be easier to look at the point from the left camera of the

overview pair. The second purpose was to be able to change quickly between the settings
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Figure A.4: The overlay screen used to identify and classify the different errors in the
drawings.

of drawing and the towers of Hanoi while provide a mechanical “fuse” to prevent the arm

from suffering damage due to contact with the table2. The contraption made it possible to

adjust the angle of the pen with respect to the drawing plane as well.

To evaluate the drawings qualities, an overlay pattern was used defining three regions:

safe, minor error, and too-far-error. The zones were selected to be:

Safe <±0.5cm from the original path

Minor error >±0.5cm and <±1.5cm from the original path

too-far-error >±1.5cm away from the path.

A detailed view of this overlay is shown in figure A.4. In this case it was decided to

deem all errors recoverable and thus each trial was run until all traces were completed by

the user. In a post stage, the pressure and the smoothness of the traces were evaluated by

2Although the table was made of cardboard and it would have collapsed if the arm had a collision with it.
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looking at the completed drawings. Identification of the changes in thickness and intensity

of the traces in the back of the sheet was done manually.

A.3 The Set of Experiments

For all the experiments, it was decided to run each condition three times in order to be able

to gather enough data to minimally characterize a user. Each trial was expected to take

between 2 and 6 minutes each. It was decided to make the minimum number of trials so the

tests would not take longer than a couple of hours, otherwise variability due to tiredness or

boredom would appear in the data. Overall the conditions to be tested per experiment were:

• 3 Camera Feeds Experiments (Towers of Hanoi)

• 3 Control Scheme Experiments (Towers of Hanoi)

• 2 Manipulation Helpers Experiments (Towers of Hanoi)

• 2 Haptic Helpers Experiments (Drawing)

An important fact about all the experiments involving the towers of Hanoi is that one of

the conditions corresponds to a common configuration in all the experiments. This configu-

ration has all three camera feeds, uses the clutching control scheme, no helpers are allowed

and the mobile base is disabled. This common configuration made it possible to run this

condition only once (three trials per user) and use it for every experiment. At the end of the

day, this condition is the “control” of each experiment. Therefore, only 6 conditions need

to be run for the towers of Hanoi and 2 conditions for the Drawing experiments:

• 3 Camera Feeds (control conditions included here)

• 2 Master-Slave Motion Coordination Schemes

• 1 Manipulation Helpers

• 2 Haptic Helpers

The Haptic Helper experiments was treated as a separate module amd it was run after

the Towers of Hanoi experiments were completed. Training the users and let them become

familiar with the system was desirable before requesting an activity requiring fine manipu-

lation and system awareness.
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A natural ordering of the experiments would be first to run the Camera Feeds, follow

with the Manipulation Helpers, then the Master-Slave Motion Coordination Schemes and

finally the Haptic Helpers. This ordering assumes that the user will train just enough to

control the system. Since the camera video feeds are somewhat detached from the con-

troller related experiments (Manipulation Helpers and Master-Slave Motion Coordination

schemes), it is possible to start with this setting. This let the users gain confidence and skill

commanding the robot. Once the users have completed the camera feed tests, they become

comfortable with the setting and were taught to use the manipulation helpers. Finally, since

the users are more familiar on how the system works and behaves, it is safe to introduce the

novelty of using different motion coordination schemes to command the robot.

In the camera feeds experiments data for the 3 conditions was collected; among those,

the data for the trials under “controlled-conditions” was also gathered. The trials corre-

sponding to the manipulation helpers can be now completed and the motion coordination

schemes’ trials recorded. Trials for an experiment were randomized. This is explained in

more detail in the next subsection (A.4).

Six conditions should be tested. If all trials took 6 minutes and all trials are run one

behind the other, one set of trials would require each participant to use the system effectively

for 36 minutes. Since one single run may not be sufficient to characterize the user, a natural

small number is 3 trials per condition. The, a total time of 108 minutes is required per

operator. If more trials were to be run, the span of time needed to complete the trials would

increase significantly. Finding volunteers for the trials would be difficult. Moreover, given

the mental and physical demand of a teleoperation setting, more than three hours of use

would likely pollute the trials with the effects of tiredness from the users.

The 108 minutes do not include the training time, which could easily add up to 200

minutes. A desirable action then would be to separate the trials into two sessions of around

60 minutes each (only for the trials). In the first session it would be desirable to train the

user and then go directly into the trials for the camera feeds. Then on a separate session

give some time for a warm-up and training on how to use the manipulation helpers, run

the trials for them, train the users with the different controller schemes, and finally run the

trials. Both sessions would be of around 150 minutes.

A last session would be required to complete the drawing related experiments yet this

session would be a lot less lengthy as the users are familiar with the system. A more detailed

chronology of the experiments is presented in subsection A.4.1
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A.4 Randomized Trials

One important consideration when designing experiments is to randomize the trials to avoid

potential bias. The trials for all the experiments were randomized in the ordering in which

the control conditions and the alternate conditions were presented to the participant. Only

for those experiments using the towers of Hanoi, the initial/final configuration of the towers

was randomized as well.

For the towers of Hanoi, in both cases (ordering and instance of the puzzle) a non-

substituting approach was used; all users would face three, and exactly three, trials for each

of the tested conditions and no two trials testing the same conditions would use the same

instance of the puzzle.

All instances of the puzzle have exactly 7 movements according to the strategy which

was given to the participants. This seven manipulations, have another 7 corresponding

motions of alignment (without holding a piece) giving a total of 14 movements. Each

of these movements can be classified as a long (between left and right stacks) or short

(between left and center or right and center) motions. The instance of the puzzle does not

add variability from the point of view of the test, yet helps to keep interest of the participant

in the task.

From the three experiments involving the towers of Hanoi, only two were randomized.

The experiment where the manipulation helpers are used, could not be randomized in the

ordering in which the control conditions and the testing conditions are presented to the

user. This was because only one of such alternate conditions was left to be recorded since

the control conditions have been recorded already. The instance of the puzzle was still

randomized.

For the case of the drawing experiments, the ordering of the conditions presented to

the user was randomized. This random ordering was also done by non-substitution and

therefore all subjects will face exactly three trials for each of the conditions (Haptic Helpers

or Plain teleoperation).

The ordering and the conditions were communicated to the users at the beginning of

each trial as they should know which tools they are allowed to use to complete the task.

A.4.1 A Participant’s Schedule

All eight participants in the trials were asked to schedule their available times to perform the

tests. They were asked to schedule one session at a time and then schedule the next session
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when the previous one had been completed. The full schedule of a participant would look

as follows:

Session 1

General Training [5 to 60 minutes] Explanation of the generalities of the system and in-

struction on how to operate the arm. The objective is to get familiarized with the

setting of the display showing the video feeds and the way to command the arm us-

ing the Phantom Omni. Training on clutching control scheme, operate the gripper

and disengage the control station from the robot. Practice goes on until user feels

comfortable with the setting

Camera Feed Training [15 to 60 minutes] Practice solving some instances (up to two per

video feed mode) of the towers of Hanoi puzzle, first with all three cameras, then with

the overview camera pair, and finally with the eye-in-hand. All users are required to

test all three video feed modes.

Optional Rest [Up to 20 minutes]

Camera Feed Trials [40 to 90 minutes] The user runs the 9 trials (3 with all 3 video feeds,

3 with overview camera pair, and 3 with eye-in-hand). Optional 5 minute breaks

between trials can be taken at will by the participants

The user can start the next session right away, but it is suggested for the user to take at

least a 24 hour break before the next session.

Session 2

Warm-up [5 to 15 minutes] review the operation of the system by solving one instance of

the towers of Hanoi.

Place Helpers Training [30 to 60 minutes] Explanation and familiarization with the use

of recording and replaying places in the workspace of the robot. Practice with solving

up to three instances of the towers of Hanoi.

Optional Rest [Up to 20 minutes]

Place Helpers Trials [15 to 45 minutes] The user runs 3 trials using place helpers to solve

the towers of Hanoi.
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Optional Rest [Up to 20 minutes]

Control Scheme Training: DEZ [10 to 25 minutes] The user receives an explanation of

the Differential End Zone control scheme. User practices first in the void workspace

of the arm to get familiarized with the behavior of the control scheme and then solves

up to 3 instances of the towers of Hanoi puzzle.

Control Scheme Training: P/R Switch [5 to 15 minutes] The user receives the explana-

tion of the Position/Rate Switch control scheme . The user again practices in the void

workspace of the arm to familiarize with the behavior of the scheme and then solves

up to 3 instances of the towers of Hanoi puzzle.

Optional Rest [Up to 20 minutes]

Control Scheme Trials [20 to 60 minutes] The user runs 6 trials (3 with Differential End

Zone and 3 with Position/Rate Switch). Optional 5 minute breaks between trials can

be taken at will by the participants

The user can start the next session right away, but it is suggested for the user to take at

least a 24 hour break before the next session.

Session 3

Warm-up [5 minutes] review the operation of the system by servoing to the drawing area.

Users will be notified about the differences in the camera video feeds and about the

difference in the scaling of the control commands.

Drawing Training [5 to 15 minutes] Users will be asked to draw curves and lines on a

white letter-sized paper using the robot. The drawing at this point is considered

“freehand” as no other helpers other than the haptic feedback from the system is

present.

Line and Plane Haptic Helpers Training [10 to 45 minutes] Users get explanation of the

use and particularities of the haptic helpers to constrain the robot to remain in a plane

or within a line. Users are then asked to draw lines and curves using these two haptic

helpers.

Optional Rest [Up to 20 minutes]
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Setting Value
Video Feed All three camera feeds.

Arm Control Scheme Clutching (Variable Scaling), Differential End Zone
and P/R Switch; Changed at will by operator

Helpers Manipulation and Haptic Helpers available, Zero, Con-
trol Disengage, Switch to joint-space control

Mobile Base Enabled with Rate Control
Activity Towers of Hanoi and Opening a Door

Table A.1: The configuration used in the mobile manipulation case studies.

Drawing Trials [25 to 60 minutes] Users draw over the presented patterns 6 times (one

time per trial, 3 with haptic helpers and 3 freehand).Optional 5 minute breaks between

trials can be taken at will by the participants.

A.5 Mobile Manipulation Case Studies

In both case studies the robot had several options enabled to be changed on-the-fly. The

overall setting is summarized in table A.1.

A.5.1 Revisiting the Towers of Hanoi

A detailed floor-plan of the setting of the experiment is shown in figure A.5.

Unlike the setting used in the experiments, where the stacking places were at an even

height of the manipulator’s base, all three stacking places in this setting had different

heights, yet all the stacking places had an effective area of 40cm by 40cm. The stacks

had the following heights:

• Place on the right 76cm off the ground

• Place on the low-left 62cm off the ground

• Place on the top-left 68cm off the ground

The trials used and the times taken for those were:

• From low-left to top-left; done in 24 minutes, 58 seconds.

• From top-left to right; done in 25 minutes, 32 seconds.

• From right to low-left; done in 25 minutes, 53 seconds.
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Figure A.5: The floor-plan for the towers of Hanoi setting with the mobile manipulator.
Dimensions are in centimeters. The places had different heights off the ground: top left
68cm, low left 62cm, and right 76cm. The stacking places were 40cm by 40cm in area.
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Figure A.6: Opening a door with a mobile manipulator. Dimensions are in centimeters.
The Door was a common standard hallow wooden door with no closing mechanism and a
turning handle.

A.5.2 Opening a Door and Exiting a Room

A major difference between all the previous cases and this particular activity is that the

robot will interact with fixed bodies and surfaces. The interactions between the robot and

the environment should be handled even more carefully than before as these interactions

might provoke instability in the controls. In turn, the instability could cause malfunctions

or result in damage to the robot or the environment. Some precautions were taken. The

safety limits before shutdown for the robot were kept conservative and any force or torque

was limited to a certain threshold. Moreover, the robot would shut down the arm and/or the

segway if these limits were reached and exceeded.

The setting used had the robot 5m away from a door, facing away from it. A more

detailed view can be seen in figure A.6. The door is a hallow wooden door without retracting

mechanism and a turning handle lock. The door is 90cm wide and 2.1m high. The handle

is positioned at a height of 1m.

The purpose of having the robot placed away and facing the other way around from the

door is to guarantee that the system allows the user to make a search of the item using only

visual information, making a displacement with the mobile base and then doing coarse and

fine manipulation to perform a task.
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