ERA Banner
Download Add to Cart Share
More Like This
  • http://hdl.handle.net/10402/era.29366
  • A study of interactions between an air bubble and a solid surface in a liquid
  • Wang, Louxiang
  • English
  • Force apparatus
    bubble-particle attachment
    thin film drainage
    film drainage time
    induction time
    hydrodynamic force
    hydrophobicity
    force barrier
    oil sands
    bitumen extraction
  • Nov 15, 2012 2:02 PM
  • Thesis
  • English
  • Adobe PDF
  • 4607853 bytes
  • As one of the most critical steps to recover valuable particles from a slurry using flotation, knowledge of the drainage of the thin liquid film between an air bubble and a solid surface is required. The main focus of this thesis is to develop and use an integrated thin film drainage appratus (ITFDA) to investigate the physicochemical properties of the aqueous liquid film between an air bubble and a solid surface under dynamic conditions. The ITFDA was designed to measure drainage dynamics of thin liquid films confined between a solid particle, a gas bubble or/and an immiscible liquid droplet. Equipped with a bimorph force sensor, a computer-interfaced video capture device and a data acquisition system, this custom-made ITFDA allowed us to measure directly and simultaneously hydrodynamic forces, true liquid film drainage time under a well controlled external force, receding and advancing contact angles, capillary force, and detachment force between an air bubble or oil droplet and a solid, a liquid or an air bubble in an immiscible liquid. Using a diaphragm of a high frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this new device is capable of accurately and independently measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocity up to 50 mm/s and displacement range up to 1 mm. Using this device, interactions between an air bubble and a hydrophilic or hydrophobized glass sphere were measured. The results showed that the ITFDA was capable to accurately measure hydrodynamic resistance between air bubbles and solid particles in aqueous solutions, providing direct evidence of the critical roles of hydrodynamic forces and particle hydrophobicity in air bubble and particle interactions. The results from this study also showed a close relationship between bubble drive velocity, solid hydrophobicity and force barrier before three phase contact of air bubbles on hydrophobized solids in aqueous solutions. Solution pH, salt concentration and surfactant all have effects on the solid hydrophobicity, and hence change the bubble-hydrophobic solid interactions.
  • Wang, L.; Englert, A.H.; Masliyah, J.H. and Xu, Z. Oil sands processing: Role of colloidal chemistry, Encyclopedia of Surface and Colloid Science, Second Edition, Taylor & Francis, 2011, pp1-7
    Wang, L.; Englert, A.H.; Masliyah, J.H. and Xu, Z. Oil sands processing: Role of colloidal chemistry, Encyclopedia of Surface and Colloid Science, Second Edition, Taylor & Francis, 2011, pp1-7.
    Wang, L.; Sharp, D.; Xu, Z. and Masliyah, J.H. A novel induction timer to study interactions between an air bubble and bitumen surface, in Separation Technologies for Minerals, Coal and Earth Resources, SME, 2012, ed. Courtney A. Young and Gerald H. Luttrell, Englewood, CO, pp. 47-55.
  • Doctoral
  • Doctor of Philosophy
  • Department of Chemical and Materials Engineering
  • Chemical Engineering
  • Spring 2013
  • Xu, Zhenghe (Chemical and Materials Engineering)
    Masliyah, Jacob (Chemical and Materials Engineering)
  • Zeng, Hongbo (Chemical and Materials Engineering)
    Babadgli, Tayfun (Civil and Environment Engineering)
    Walz, John (Chemical and Materials Engineering)