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Abstract 

 

Base station (BS) positioning is considered an effective method to improve the performance of a 

Wireless  Sensor  Network  (WSN).  The  goal  of  this  dissertation  is  to  minimize  total  energy 

consumption  and  to prolong  lifetime of  a WSN.  First,  the  idea of  the BS positioning  in WSNs 

through our exhaustive search algorithm is evaluated; where it is shown that the BS position has 

an  undeniable  effect  on  the  energy  efficiency  and  lifespan  of  a WSN.  Then,  a metric‐aware 

optimal BS positioning and relocation mechanism for WSNs  is proposed. This technique  locates 

the BS with respect to the available energy resources and the amount of traffic travelling through 

the sensor nodes at the time. Moreover, a BS relocation technique  is presented  in response to 

the  dynamic  environment  that  the  sensor  nodes  operate  in.  Specifically,  two  optimization 

strategies  based  on  the  value  of  the  path  loss  exponent  are  analyzed  as weighted  linear  or 

nonlinear  least squares minimization problems. Lastly, a distributed algorithm  is proposed  that 

can  effectively  handle  the  required  computation  by  exploiting  the  nodes’  cooperation.  The 

simulation  results  demonstrate  that  the  proposed  BS  positioning  and  relocation method  can 

significantly improve the lifespan and energy efficiency in WSNs. 
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Chapter 1 

1 INTRODUCTION 

1.1 OVERVIEW 
The next generation of wireless communication needs independent mobile users to operate 

by exchanging information among themselves while keeping the communication cost a low as 
possible [1]. In such networks, the topology of the network changes rapidly due to the mobility of 
the users and the dynamic number of active users at a time. Therefore, wireless systems are 
migrating toward ad hoc networks to take advantage of the dynamic infrastructure and the 
absence of centralized control and management. Wireless Sensor Networks (WSNs), as ad hoc 
networks, bring all these features together; however, they face several technical challenges in 
their design and implementation [1]. WSNs are general infrastructure that can be classified into 
two categories: centralized and decentralized networks. In decentralized WSNs, nodes execute 
all the operations, such as message routing, decision making and topology discovery, by 
themselves without relying on a specific management centre. On the other hand, centralized 
networks operate by having a special powerful node as a centre that organizes and manages the 
other nodes; as a result, centralized networks face several challenges. 

Recently WSNs have been the focus of researchers due to their wide range of applications, 
such as disaster management, traffic control, battlefield surveillance, medical diagnostics, and 
environmental and habitat monitoring. Some of the potential goals of such networks are 
conservation of natural resources, improved manufacturing productivity and improved 
emergency response [2].  

WSNs consist of a large number of tiny and cheap devices with limited energy, processing and 
communication capabilities to cooperatively monitor physical or environmental conditions, such 
as temperature, pressure, vibration, sound, motion or pollutants at different locations. A typical 
task for nodes is to cooperatively gather data from the surrounding environment, make a proper 
decision accordingly, and send their data to a Base Station (BS). The BS is often a gateway 
between the sensor network and a wired network like the Internet. In the case of small 
networks, sensor nodes may be able to send data directly to the BS. However, in large networks 
multihop communication is required with intermediate sensor nodes cooperating to forward 
data to the BS, see Figure  1.1. The BS may be fixed but is often mobile. Two main arguments 
have been proposed in the literature to support multihop routing. First, there is an energy 
benefit of ���� when the distance between the source and destination is divided into � hops. 
Here, � is the path loss coefficient. Secondly, shorter hops lead to higher received signal 
strength, which results in higher network throughput [3].  

Sensor nodes are typically powered by limited battery resources, and the large number of 
physically dispersed nodes makes it highly impractical to replace sensor nodes’ batteries. Thus, 
the main challenge in any WSN is to employ energy control mechanisms through network 
management techniques [2]. Hence, energy is a critical issue in the lifetime of a WSN and 
requires energy to be optimized in order to extend the network lifetime. Although in WSNs 
energy is consumed by processing and observation, the most energy intensive task is 
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communication [4]. Based on the recent paper by Koomey [5], in future networks, energy 
requirements for information processing will be insignificant compared to the energy required 
for transmission which does not scale with process technology and is fixed by Shannon’s bound 
[6]. 

Due to the scarce energy resources, many studies have focused on energy-aware solutions in 
order to increase the network lifetime [7-11]. An ideal WSN is scalable, consumes very little 
energy, is reliable and accurate over the long term, and requires little or no maintenance. 

Figure  1.1. A typical form of a WSN field 

Recent research results have shown that strategic positioning of the BS can effectively 
improve the network performance, such as throughput and delay [12]. In this context, several BS 
positioning techniques have been proposed to conserve energy consumption and to prolong 
lifetime in WSNs [13-17]. The goal of most published papers is to find a good location for the BS 
based on initial topological information such as distances between sensor nodes and the BS, 
density of sensor nodes and traffic flow within a WSN. However, such schemes are not resource-
aware and can lead to misplacing the BS in the network.  

One of the major characteristics of any wireless system is the reduction in power intensity as 
the signal propagates through space—called, path loss, which depends on propagation 
environmental features, such as type of area (urban versus rural); medium characteristics 
including weather; and antenna properties. Path loss values normally are in the range between 2 
to 4, where 2 is for propagation in free space and 4 is for highly lossy environments. Sensor 
networks may often be deployed where the path loss is greater than 2, such as mountainous 
forests, on ground and inside buildings. Therefore, BS positioning techniques become important 
in these environments. Most current literature focuses on environments with path loss 
exponents of 2, which is not realistic for WSNs.    

Furthermore, the majority of the proposed methods [8, 12, 14, 16] rely on centralized 
solutions for the problem and typically need computationally powerful hardware to perform the 
required calculations. However, local data processing increases energy consumption in multihop 
WSNs. In addition, when the algorithm runs on a specialized node, global knowledge is needed. 
Hence, the system requires that each sensor node reports its geographical information to that 
node. Several localization mechanisms have been proposed in order to obtain the nodes’ 
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location information [18-21]. From a technical perspective, centralized approaches are highly 
expensive due to limited bandwidth and memory in WSNs.  

1.2 THESIS CONTRIBUTION 
First, the impact of the BS positioning is investigated using our exhaustive algorithm. Our 

results show that in general position of the BS has a marked influence on energy efficiency and 
lifetime of the WSN. Then, as the main building block of this dissertation our study is extended to 
the optimal placement of the BS in obtaining the least total consumed energy.  The objective of 
this thesis is to establish a BS positioning scheme in a WSN that is: 

� optimal. Our method finds the optimal position for the BS in a WSN by providing the 
least total consumed communication energy.  

� inclusive. One of the main problems that previous BS positioning techniques have not 
addressed is path loss exponent values arising from different environmental conditions 
that have an essential role in energy minimizations in WSNs. Our method finds the 
optimum position for a BS with regards to different path loss exponent values. 

� resource-aware. This feature enables the BS positioning technique to take into account 
network resource availabilities and to locate the BS accordingly. We argue that network 
topology should be considered, and that every sensor node should contribute to the 
calculations relative to the conditions that it is experiencing at the time.  

� distributed. The communication nature of WSNs is based on nodes’ cooperation; 
likewise the BS positioning result should be obtained from the local interaction between 
the nodes. In fact, our algorithm uses only local information available at each node 
without the need for global knowledge. 

� dynamic. Placing the BS in its initial optimal position leads to a false location over time. 
Thus, BS relocation needs to be implemented. The BS has to be considered for 
relocation in case of changes in available network resources, network topology and 
environmental conditions.  

In other words, we aim to find an optimal BS position within a sensor field in a resource-
adaptive manner according to node properties at a given point in time. Our goal is to minimize 
the total energy consumption in a WSN and to prolong network lifetime. Our proposed optimal 
BS positioning is built upon models of two environments. First, we consider a WSN located in free 
space where the path loss value is 2. Second, we extend our solution to environments with path 
loss values greater than 2, where our approach is based on an adaptive algorithm that converges 
to the optimal solution in a finite number of iterations. This feature makes our method robust to 
the dynamic changes in a WSN.  

1.3 THESIS OUTLINE AND ORGANIZATION 
Chapter 2 presents a review of related solutions to the BS placement problem in WSNs 

followed by the challenging aspects of the mentioned schemes.      

In Chapter 3, some background information is discussed for better understating of this thesis. 
First, we explain the network model and the energy consumption model of a WSN. Then, we 
conduct a probability analysis on node neighborhood’s connectivity, which provide us with a 
sufficient number of sensor nodes to be deployed in the network field. Next, we explain the 
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definition of the network lifetime that we use in this work. Finally, we introduce linear and 
nonlinear least squares optimization. This section serves as the infrastructure for the purposed 
BS positioning algorithms in Chapters 5 and 6. 

Chapter 4 presents our proposed BS positioning and relocation algorithm relative to a known 
area of interest in WSNs. Our proposed algorithm considers different features for the area of 
interest in order to position the BS in a place where the network consumes the least energy. This 
algorithm is an initial elaboration on BS positioning based on an exhaustive search that evaluates 
and assures us of BS position on network performance in terms of energy consumption and 
network lifespan. 

In Chapter 5, we develop our BS positioning and relocation method by formulating the 
problem into a weighted linear least squares optimization, where path loss exponent is 
considered to be 2. Weights include node characteristics that influence the energy consumption 
of the network. Using this algorithm along with BS relocation method, the energy consumption is 
minimized and results in network lifetime extension. A detailed explanation of our proposed 
distributed algorithm can be found in Chapter 5. The distributed algorithm exploits the nodes 
collaboration in order to perform the needed computation for BS positioning. The proposed 
distributed method works with local information and removes the need for global knowledge.    

Later in Chapter 6, an extension of the proposed BS positioning algorithm in Chapter 5 is 
presented where a realistic network model with path loss exponent value greater than 2 is 
considered. An optimal algorithm for BS placement is presented along with an algorithm for BS 
relocation. The solution is in the framework of weighted nonlinear least squares optimization. 
Similarly, the weights are taken into account in order to provide a metric-aware solution. The 
performance of the proposed algorithms is presented for different scenarios in a WSN.  

Finally, Chapter 7 concludes the thesis and suggests some potential directions for future 
work.  
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Chapter 2 

2 KNOWN BASE STATION POSITIONING TECHNIQUES 

Researchers have conducted investigations on WSNs at almost every layer of the 
communication protocol stack [22]. There exist several papers on efficient routing algorithms and 
data aggregation techniques [23-26], localization techniques [18-21] and medium access control 
(MAC) methods [27-31]. In addition, researchers take advantage of the flexibility of WSNs by 
designing protocols that positively affect energy consumption. To address this issue, a number of 
topology control techniques have been proposed, including clustering algorithms [32-36] and 
node deployment strategies [11, 36-39]. In recent years, several papers [8, 12, 14, 16] report on 
BS positioning and mainly design the network to ensure energy conservation and network 
lifetime extension. Nevertheless, all of these papers are facing some limitations in different 
aspects including relying on centralized algorithms with global knowledge, considering an 
unrealistic value for the path loss exponent parameter, overlooking influential metrics on energy 
consumption, neglecting the importance of BS relocation, and proposing an unscalable strategy 
restricted to small size WSNs.  

In [8], the BS positioning problem is formulated as a maximum flow problem. In order to 
implement their BS positioning method, they argue that any maximum flow algorithm (e.g. [40]) 
can compute the needed calculations. In [8], production of data across the network is considered 
as the metric to be maximized. A fixed data rate for sensor nodes is assumed in the network 
model. The authors aim to find optimal positions for multiple BSs such that the energy consumed 
by the sensor nodes is minimized. They also investigate the effect of the BSs’ layout on the data 
production and flow in the network. In [8], it is shown that their method for choosing the BS 
position can significantly improve the data rate and total energy consumption of a WSN. 
However, their approach is based on a centralized algorithm where a global knowledge is 
provided to a single workstation, including the locations of each sensor node in the network. 
Furthermore, the number of BSs is assumed to be fixed and known in advance. Also, authors 
have not investigated relocation of the BS, but we will show how this technique can dramatically 
improve the network performance.  

The approach in [16] uses the well known k-means algorithm [41] to cluster the network and 
then places the BS at the centre of the cluster. However, their method to find a centre of each 
cluster does not include any power-aware distance metrics. Thus, if there are multiple BSs, 
multiple clusters need to be created. The authors define the network lifetime as the percentage 
of dead sensor nodes in the network. The drawback of this approach is that the number of 
clusters depends on the number of BSs in the network, and a priori knowledge about the number 
of BSs is needed without having a global view of the network. Their solution is centralized, in that 
a system designer should calculate the BS position. For this purpose, node locations are assumed 
to be known before the solution phase. Furthermore, clustering algorithms must be deployed 
carefully since they significantly increase the computation load on low capacity sensor nodes. 
Similar to the study in [8], no BS relocation mechanism has been deployed by the authors. 
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In [14] the authors use a mathematical model to minimize the energy used for 
communication by deploying the BS where the average distance between the sensors and the BS 
is minimized. The BS coordinates ���, ��� are given by: 

���, ��� � ��������,�� !��" # ��$ % ��" # ��$
&

"'�
2.1

where � is the number of sensor nodes in the network, and ��, �� is the coordinates of the BS 
initial position. To find the minimum, the authors in [14] calculate unit vectors pointing to the 
location of every sensor node. Then, the BS coordinates are obtained so that every resultant 
vector is zero; see Figure  2.1, redrawn from [14]. They also investigate their method on networks 
with a possibility of multiple BSs. It is shown that in some cases poor BS positioning may result in 
isolating the BS from the network by moving the BS to a place without sensor nodes. However, 
the proposed approach relies only on Euclidean distances as a metric for BS positioning without 
considering other parameters that affect energy consumption in the network. BS relocation 
methods in [14] use the same metric as for BS positioning. In their method, path loss value is 
assumed to be 2, which happens when a WSN is located in a free space. We argue that such an 
environment is not a realistic assumption for a WSN, and we propose a solution for this problem.  

r

Figure  2.1. Calculating the BS position based on the resultant vectors 

The proposed approach in [12] locates the BS by choosing n nodes within the one-hop 
neighborhood of the BS in terms of traffic density to form vertices of a polygon. The BS is 
positioned at the centroid of the vertices, which is equidistant from the selected sensor nodes. It 
is shown that BS repositioning reduces the average energy consumed per transmitted data 
packet while network throughput increases. However, the vertices (nodes) must be chosen with 
special care, since the solution in [12] fails when the polygon is self-intersecting, i.e. the 
boundary of the polygon crosses itself. Moreover, their BS positioning method only evaluates a 
limited region of the network, which is the BS’s one-hop neighborhood. Thus, their method 
ignores other potentially important sensor nodes in the rest of the network. However, in our 
approach we consider each potentially important node to contribute to the calculations 
automatically. 

The BS positioning problem has also been studied for universal mobile telecommunications 
system (UMTS) networks [42]. It is worth mentioning that cellular networks generally differ from 
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WSNs, since nodes in cellular networks are not able to forward messages from other nodes. The 
method in [42] formulates the BS positioning problem with a polynomial-time approximation 
scheme such that certain limitations and costs are met. They assume that a subset of possible BS 
positions is identified by the service provider. Their method should be applied in the planning 
stage of a new network, when the service provider has to decide about the locations of the BSs. 
Their method efficiently improves the network performances, but it is difficult to implement.  

In [17], the authors investigate the BS positioning problem in a wireless video sensor 
network, in which tiny video sensor nodes are placed in certain locations in order to monitor and 
capture the data. Their goal is to maximize the network lifetime by placing the BSs in optimal 
positions. In their approach, the network lifetime is defined as when the first node runs out of 
energy. Their method forms a circle which encloses all critical nodes in the network.  Critical 
nodes are defined as a subset of nodes with very low residual energy. The BS is positioned at the 
centre of the formed circle; see Figure  2.2, redrawn from [17]. They propose two algorithms 
based on centralized and decentralized schemes. In the decentralized method, node information 
is calculated based on the measurements of Arrival of Angle (AOA). For more details on AOA 
methodologies, see [43]. However, in some situations node locations have to be falsified since 
the circle has to enclose all critical nodes, as shown in the left picture of Figure  2.2. One of the 
other drawbacks of their approach is that their algorithm is limited to a network with a path loss 
of 2. Moreover, another aspect that the authors in [17] do not consider is that moving the BS 
towards the critical nodes (nodes with low energy reserves) is not always beneficial for networks 
with multihop communication schemes. Hence, their strategy can be detrimental by moving the 
BS closer to the critical nodes, which increases the burden on these nodes since they have to 
forward other nodes’ messages as well as the data of their own observations. This situation can 
lead to exhaustion of critical node batteries and BS isolation from the rest of the network. We 
address this problem in our proposed work.    

Figure  2.2. Placing the BS in the centre of a formed circle 

The authors in [17] extended their work to a two-tiered WSN [35], where sensor nodes exist 
to capture and transmit the observed data. Sensor nodes form clusters and at least one 
application node (AN) is responsible for receiving the data from sensor nodes and forwarding it 
to the BS. It is assumed that ANs are more powerful in terms of energy resources than sensor 
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nodes. In [35] the critical subset contains the first ANs that run out of energy. The lifetime of 
each node � is defined as (". They aim to maximize the network lifetime by maximizing ����("�
for 1 * � * +, where + is the number of ANs in the network. The authors argue that maximizing 

����(" � ,�-�./0 � is equivalent to minimizing the radius 1 of the enclosing circle as: 

1 � ��� 21" � !��" # �-�$ % ��" # �-�$3 2.2

where ��-, �-� is the BS initial position, 4�0� is the initial energy allocated to each AN, and � is 
the path loss exponent which is assumed to be 2. Then, they locate the BS at the centre of a 
minimal enclosing circle. The focus is specifically on the distances between the ANs and the BS 
while the data rate of sensor nodes is assumed to be fixed. Their solution is unscalable to large 
WSNs, since the communication scheme is considered to be a single hop. Moreover, as a solution 
to large WSNs, it is not cost efficient to assign large number of ANs since these nodes are 
expensive due to higher energy supplies. 

Although BS positioning is advantageous for network performance, such as delay, energy 
consumption and throughput, it may risk the BS safety by putting the BS in a potentially 
dangerous location. In [44] authors investigate the BS safety level caused by BS positioning and 
relocating in the network. This is especially important in disaster management applications, 
where there is a risk of fire, gas leak or collapsing buildings [44]. The idea is to observe the BS at 
different locations and to define the parameters of the BS safety levels. They propose a solution 
for monitoring and evaluating the BS safety and for providing candidate positions for the BS 
relocation. The authors argue that there is a trade-off between network performance and the BS 
safety. To address this problem, our BS positioning technique takes BS safety into consideration 
and has the ability to locate the BS in a pre-specified sub-region within the network. This way, 
the BS is kept far from the dangerous events in the network.   

In this thesis we deal with BS positioning and relocation problems, but we do not elaborate 
on the literature addressing other problems in a WSN. However, we want to mention the 
following recent works. 

In [45], authors propose a method for propagating the location of a mobile BS to the nodes in 
WSNs. They exploit the overhearing feature of wireless transmission, in which a node can 
overhear the packets in the neighborhood that are not destined for itself. In [45], sensor nodes 
are assumed to be static and know their own position and the location of their neighbor nodes. 
The BS is considered to be movable. The idea is that the BS sends periodic messages containing 
its new position to the last forwarder node, from which it received the last data packet. Then, the 
informed node propagates this message to its neighbors about the BS’s new location. However, 
their method will be unsuccessful if the last forwarder node runs out of energy before it receives 
the beacon message from the BS or if the beacon message is lost due to data collisions in the 
network. Also, the method in [45] may lead to confusion about the current and real position of 
the BS due to time-synchronization problems. In their approach, all communication links are 
considered to be bi-directional, which means all nodes have the same communication ranges. 
Their solution is not applicable for a network containing nodes with different transmission 
capabilities. 
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The authors in [46] propose a method for BS placement, node activity scheduling and routing. 
Their method is based on linear programming with the goal of maximizing the network lifetime. 
Since the authors argue that the current integer linear programming solvers are not efficient for 
realistic size problems, they propose a heuristic algorithm to find the solutions in a reasonable 
amount of time. It should be noted that they have not assumed an energy consumption cost 
model. The main contributions in [46] are the strategies of finding a subset of sensor nodes that 
ensures network coverage, and of determining efficient data transmission routes from sensors to 
BSs. Their approach for BS placement is simple and limited to reduce the distances between 
sensor nodes and the BSs. For this purpose, they divide the sensor field into equal rectangular 
sub-regions and place the BSs at the centre of each part. BS relocation is not investigated by the 
authors.  

An upstream (sensors to BS) oriented transport protocol is proposed in [47], which controls 
the event-to-BS reliability in a WSN. Authors define Event-to BS reliability as the number of 
packets received by the BS in a certain period of time. Their approach is an enhanced version of 
the algorithm proposed in [48] when the desired reliability is sufficiently greater than the 
capacity of the network—called over-demand reliability. They argue that their approach in [47] 
outperforms the transport scheme in [48] in case of over-demand reliability by detecting this 
unwanted condition and recursively pushing the algorithm to converge based on the feedback 
from the network. In such a case, the goal is to approach the maximum reliability point in which 
the BS has to reduce the desired event reliability. However, the maximum reliability cannot be 
calculated easily due to several reasons, such as network topology changes and randomness in 
initial network setup.  

In [49], authors introduce a new hybrid simulator for sensor and actor networks (SANETs). 
SANETs is a combination of two research fields namely, wireless sensor networks and mobile 
robotics. Their proposed integrated simulator helps to evaluate and measure the efficiency of the 
new algorithms by creating a realistic physical environment. The authors define the current 
development status of this simulator as a prototype since it still lacks performing in more 
complex scenarios. According to their performance evaluation, comparing the proposed 
simulator in [49] to the currently available simulators, the results obtained from [49] are more 
precise at the cost of more computation time.  

Authors in [50] evaluate number of known ad-hoc routing protocols when applied to dynamic 
infrastructures in WSNs. They argue that traditional ad-hoc routing protocols have to be 
deployed for WSNs such that they support the nodes mobility feature. They categorize the 
existing ad-hoc routing protocols to Table Driven and On-Demand Routing Protocols. Authors 
argue that Table Driven method, where each sensor node has a routing table, achieves better 
results in dynamic WSNs compared to the On-Demand Routing Protocols. Nevertheless, Table 
Driven methods are inefficient due to memory limitations in sensor nodes. The study in [50] also 
presents a set of required characteristics for the future routing protocols to support mobility in 
WSNs. Authors believe that by supporting mobility features in WSNs such as phenomenon 
movement, sensor movement, network movement and user movement, the integration of WSNs 
with 4G (fourth generation of cellular wireless standards) will be possible.    

To the best of our knowledge, no specific mechanism has been proposed to provide an 
optimal metric-aware BS positioning technique based on a distributed algorithm to reduce 
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energy consumption in WSNs. We argue that centralized solutions are inefficient and unscalable 
due to limited energy resources, large numbers of deployed sensor nodes and continuous 
changes to the node properties in WSNs. Therefore, we propose a distributed algorithm where 
the computation is based on cooperation between the sensor nodes. In this way, our method 
leverages the information exchange among collaborating sensor nodes, which is the dominant 
form of communication in WSNs. Table  2.1 compares the features of some selected approaches 
on BS positioning with our proposed method. 

Table  2.1. Comparison of BS positioning approaches 

Methods’ 
characteristics 

BS 
positioning 
for enhanced 
performance  
[12] 

A efficient 
heuristic 
for BS 
placement 
[46] 

Power-
aware BS 
positioning 
[8] 

Optimal BS 
locations in 
two-tiered 
WSNs [35] 

Optimal BS 
positioning 
(our proposed 
method) 

Centralized or 
decentralized 

Centralized Centralized Centralized Centralized Decentralized 

Path loss 
exponent value 

2 N/A N/A 2 2-4 

Evaluated 
metrics in BS 
positioning 

Traffic 
density, 
distance 

Distance Data flow, 
distance 

Nodes 
residual 
energy, 
distance  

Nodes residual 
energy,  traffic 
density, 
distance 

Independency 
to initial BS 
position 

No Yes No No Yes 

BS relocation Yes No No No Yes 
Applicable 
network area 

Convex-hull 
region 

Rectangular 
grid shape 

Enclosed 
polygon 

Two-tier 
(sensor and 
cluster-
head) 

No restriction 
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Chapter 3 

3 NETWORK MODEL AND PRELIMINARIES 
In this chapter, we describe the system model that is used, including the node deployment 

and connectivity, energy consumption model and network lifetime definition. Furthermore, a 
detailed discussion on least squares optimization problems is provided. These definitions will be 
later used in the following chapters. 

3.1 NETWORK MODEL  
In this work, we consider a set of battery-powered sensor nodes that are distributed in a 

field. The BS is assumed to be placed randomly within the network, which is a typical case in a 
WSN. The sensor nodes are designed to monitor the coverage area and to forward data to a BS. 
We consider a multihop communication scheme, where intermediate sensor nodes act as relays 
to forward data to the BS. The BS is also a gateway between the WSN and a wired network like 
the Internet. For the above transmission and reception energy model, a contention-free MAC 
protocol is assumed, where interference can be minimized or avoided effectively. 

3.2 ENERGY CONSUMPTION  
Here, we outline an energy consumption cost model for a WSN that is used in our work. 

Based on the Friis formula [51]: 

67
68 � 9897 :

	
4<=
$
:11=
�

3.1

where, 

- 68 and 67 are the transmitted power and received power respectively, 
- 98 and 97 are the transmitter and receiver antenna gains respectively,  
- 1 is the distance between the transmitter and receiver, 
- � represents the path loss exponent which is usually between 2-4, 
- 	 � >? denotes the wavelength of the transmitted signal, whereas ? is the frequency, 

and > is the velocity of radio wave propagation in free space, which is equal to the speed 
of light.  

We can express the transmitted power in ( 3.1) as: 

68 �
67
9897 :

4<
	 =
$
1� 3.2

The amount of energy that is required to operate for time ∆t is: 

68 ∆A � B1� C 3.3

where B is a constant coefficient that captures basic transmission characteristics and C is the 
data rate from transmitter to receiver [52]. As mentioned previously, we assume a multihop 
communication scheme where the BS is situated at a significant distance relative to the sensor 
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nodes. This will result in energy consumption in all intermediate nodes used for message 
relaying. Any other energy consuming activities in the sensor node is added as an overhead 
energy D. Therefore, we can write the transmission energy cost model of each node � as: 

48�C", 1"� � �B1"�� . C" % D 3.4

However, reception energy is independent of 1", and is given by [52]: 

47�C"� � FC" 3.5

in which F is a constant parameter which represents the energy consumed in the reception 
mode. The total energy consumption of the network with � nodes at time instance t is defined 
as: 

48G8HI�A� �  247/J�A� % 47/J�A�3
&/

K'�

&

"'�

3.6

where �" is  the number of nodes that are cooperating in routing the message of node � to the 
BS.  

3.3 PROBABILISTIC ANALYSIS ON NODES DEPLOYMENT 
Our proposed BS positioning algorithms in Chapters 5 and 6 work in a distributed fashion; 

thus, it is crucial that all nodes should be able to communicate with each other throughout the 
network. For this purpose, we present a probabilistic analysis which assures us that each node is 
connected to its neighbors.  

Let G = (U,V) be a graph representing the WSN. In this graph, the vertex set U stands for the 
nodes, and the arc set V stands for valid communication links. Let � denote the set of sensor 
nodes in the network, and A is the length of the side of the square containing the WSN. Thus, the 
probability that a node is located in a circular unit area with radius � is (see Figure  3.1): 

6& �
<�$
L$

3.7

r

Figure  3.1. Randomly distributed sensor nodes in a square field network 

In this scenario, we consider node placements following a Poisson distribution: 
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6�M;O� � O
PQ�O
M! 3.8 

where O is the expected number of nodes per unit area, O � �. 6&, and M denotes the number of 
nodes within its communication range. For example, if we assume a range of 4 meters for every 
sensor node in a field area of 100 �$, while we require at least 2 nodes in range of every node in 
the network, i.e. 6�M S 2; O�, then based on ( 3.8), with 20 nodes the connectivity condition will 
be met with a probability of 0.99998.  

3.4 NETWORK LIFETIME 
There exist several definitions for network lifetime in the literature. Basically, network 

lifetime is strongly related to the lifetime of each individual sensor in the network. In fact, energy 
depletion of a single node may lead to a partial failure in message deliveries. Therefore, there 
should be a mechanism to control the sensor nodes’ lifetime in order to prolong the lifetime of a 
WSN. Here, we define our formulation to quantify the lifetime of the sensor network, which will 
later be used as network performance criteria.    

We define the network lifetime as the ratio of unreachable nodes to the total number of 
nodes in the network [16]. Unavailability is often caused by energy depletion in a node. The 
network is assumed to be inoperative whenever number of unreachable nodes exceeds a 
predefined threshold value. The threshold value can be specified according to network 
specifications. The network lifetime is defined as follows: 

T�A� � �U�VQ� W? U��Q�>X�V(Q �W1QY �A A��Q AAWA�( �U�VQ� W? �W1QY ���
3.9

3.5 LEAST SQUARES OPTIMIZATION 
The proposed approach in this dissertation for BS positioning is based on weighted linear and 

nonlinear least square optimization problems. Here, we discuss an overview on the related 
methods on least squares minimization. The concepts introduced here will be covered later in 
Chapters 4 and 5 with more technical details. 

In practice, many applications are involved with least squares problems including medical 
image processing, economics and system design where the optimization methods are assisting a 
human decision maker such as a system designer or an operator. As an answer to this demand, 
many approaches have been proposed for linear and nonlinear least squares problems, 
specifically for the unconstrained cases, where there is no limit on the parameters. See [53] for a 
complete discussion of algorithms for least squares problems. Moreover, many programming 
softwares contain least squares implementations such as Mathematica and Matlab. 

Least squares minimization consists of two sets of problems: linear least squares and 
nonlinear least squares, when the residuals or errors are in linear or nonlinear forms 
respectively. The linear least squares problem can usually be solved by data fitting and it has a 
closed form solution. Basically, in data fitting the goal is to find a model which best fits the 
observed data. However, nonlinear squares problem has no closed form solution and is solved by 
iterative refinement. There exist numerical algorithms that find a solution to the unknown 
parameter, which minimizes the given function. Most algorithms involve choosing initial values 
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for their search process. Then, the parameters are refined iteratively, that is, the values are 
obtained by successive approximation. At each iteration, the solution is calculated based on a 
linear regression model, thus it follows a similar approach as linear least squares problem. 

If we assume that a model is processed based on a function Z that depends on parameters �,
while the actual observations are �" at time A". Thus, we need to find parameters � such that the 
difference between the predicted and actual measurements is minimized.   

?"��� � �" # Z��, A"� 3.10

where f denotes the random measurement errors of the data, which is assumed to be normally 
distributed and independent of the errors for other observations 

A mathematical procedure to find the curve which best fits the curve of a given set of points 
is minimizing the sum of the squares of the residuals of the points from the curve. The sum of the 
squares of the errors is used instead of the offset absolute values because this allows the 
residuals to be treated as a continuous differentiable quantity. However, because squares of the 
offsets are used, outlying points can have a disproportionate effect on the fit, a property which 
may or may not be desirable depending on the problem at hand. The goal of least squares 
method is to determine the vector of parameters � in order to minimize the sum of squared 
residuals which is defined as, 

[��� � 12 �?"����
$

&

"'�

3.11

where ?": ]^ _ ], � =1,…,� are the given functions, 

?��� � `
?����
?$���
a
?&���
b 3.12

We want to find �c such that 

�c � ������� d[���e 3.13

However, finding a global minimum is not always trivial and usually this problem is solved by 
finding a local minimizer for the function.  

Find �c so that, [��c� * [��� for 
� # �c
 * � . 

By assuming that each [ is a differentiable function, its Taylor expansion can be written as,  

[�� % X� � [��� % Xf[g��� % 12X
f�X % h�
X
i� 3.14


·
 denotes the usual Euclidean norm.  

where [g��� can be calculated as: 
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[g��� �
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l m[m�� ���
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m[
m�^ ���n

o
o
o
p

3.15

And � is the Hessian, 

� � ["��� � r m
$[
m�"m�K ���s 3.16 

In the remainder of this section, we shall discuss some basic concepts in optimization and 
also a brief introduction to the methods for finding a solution for the least squares problems. We 
will review some theoretical background on linear and nonlinear optimization problems. We also 
explain unconstrained and boundary constrained cases. Moreover, we introduce some 
specialized methods for boundary constrained least squares problems.  

 3.5.1 LINEAR LEAST SQUARES MINIMIZATION 
The linear least squares technique is a common form of a linear regression which finds the 

best fitting straight line through the given set of points. The linear regression model may be 
written as, 

?��� � V # L� 3.17

where matrix At ]&u^ and vector V t ]& are problem data, and the vector � t ]^ is the 
optimization variable. We want to find a vector � such that the function ?��� be minimized. The 
objective function ?��� contains the prediction errors between the observed data and the 
predicted values by the model. In this optimization problem, the goal is to find the model 
parameters that are consistent with the observed data such that the prediction error is 
minimized. Thus, the objective function is of the form,  

����
1
2 �?"����

$
&

"'�
3.18 

Similarly ( 3.18) can be rewritten as,  

���� [��� � ����
1
2 �V" # �"

f��$
&

"'�
3.19 

Where �"fare the components of matrix A. By setting the gradient of the cost function [ to zero, 

[g��� � #Lf�V # L�� � 0 3.20

The above minimization problem can be solved through a set of linear equations as, 

�LfL� � � LfV 3.21

Thus, the analytical solution is � � �LfL���LfV. The solution to the linear least squares can 
be found via many algorithms and software implementations which provide a high accurate 
solution. It worth noting that a solution to some nonlinear least squares methods is found by 
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iteratively solving linear least squares problems. There exist several numerical algorithms for the 
linear least squares problem, See [54, 55] for more detail.     

 3.5.2 NONLINEAR LEAST SQUARES MINIMIZATION 
The solution to the first order condition of the nonlinear square minimization problem cannot 

be obtained analytically; therefore solutions for such problems must be computed using numerical 
methods. In order to find a minimize solution for a nonlinear square function, an iterative 
algorithm starts by picking an initial value of the argument in the cost function and then next 
solutions are repeatedly are calculated until an optimum is reached approximately.  

It is common to see that the algorithm cannot find the global optimum and it gives the local 
optimum value as the final solution.  However, there exist algorithms which they find the global 
solution. These algorithms have not been commonly employed due to their high complexity and 
difficulty of implementation. Thus, the global optimization techniques are used for problems with 
a small number of variables, in which the computation time is not critical. We will therefore 
confine ourselves to those commonly used “local” methods. 

In nonlinear regression model, the problem has the form, 

����
1
2 �?"����

$
&

"'�
3.22 

Our goal is to find, 

�c � ������� d[���e 3.23

The likelihood of the nonlinear regression model is maximized when the sum of squared 
residuals are minimized. 

We can reformulate as ( 3.32), 

[��� � 12 
?���

$ � 12?���

f?��� 3.24

By assuming that f has second partial derivatives, we can write its Taylor expansion as, 

?�� % X� � ?��� % 
���X % h�
X
$� 3.25

where 
 is the Jacobian matrix contains the first partial derivatives of the function f as below, 

�
�"K �
m?"
m�K �

j
k
k
k
lm?�m�� v

m?&
m�^

a w a
m?&
m�� v

m?&
m�^n
o
o
o
p

3.26

Based on ( 3.15) and ( 3.26), the gradient of the function [ can be written as, 
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Thus, we will have, 

[g��� � 
���f?��� 3.28

The Hessian of [ can be expressed as, 

� � ["��� � ?"���?""���
&

"'�
% 
���f
��� 3.29 

�c is a local minimizer when,  

[g��c� � 0 3.30

If �c is a stationary point and ["��� is positive definite, then �c is a local minimizer.  

In some case the solution of the nonlinear least-squares problems has to be within a specific 
boundary as, 

����
1
2 
?���


$

Subject to ( x � x U 3.31

In order to solve a nonlinear least squares problem, two types of methods known as large-
scale and medium-scale algorithms can be deployed. The former method handles bound 
constraints in contrary to the latter one. There exist algorithms as a solution to bound-constrained 
nonlinear least squares such as ASTRAL [56]. In practice, any WSN is restricted to a specific region 
which forms a boundary for the solution; therefore we utilize large-scale algorithms in our 
solution for BS positioning based on Gauss-Newton and Boundary-Constraint Nonlinear Least 
Square (BCNLS) methods.  

3.5.3 WEIGHTED LEAST SQUARES MINIMIZATION 
Least squares problem are straightforward to be recognized and be solved; it is only needed to 

verify that the objective is in a quadratic form and always positive semidefinite. However, there 
exist several formats of least square optimization in order to increase its flexibility in specific 
applications such as weighted least squares.  

In weighted least squares, the cost function has the form, 

����
1
2 �"�?"����

$
&

"'�
3.32 
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where � � y��,… ,�&{ are positive values, and is called the weighting matrix. � is often a 
diagonal matrix and it reflects different emphasis to the residual vector ?���. The weighted least 
squares problem can solved as a linear or nonlinear least squares problem as explained earlier. 
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 Chapter 41

4 EXHAUSTIVE SEARCH ALGORITHM  

4.1 INTRODUCTION 
In some WSNs, data from a specific area within the network is critical and is of more interest to 

the end-user. We call this the “area of interest”. This might be the front line in a battlefield, a 
portion of a forest supporting a colony of animals or the location of a fire in a city. Sensor data 
that originates in the area of interest is more important than that from other sensors. The data 
should reach the BS successfully. Nevertheless, the position of the BS in such networks is crucial as 
far as energy consumption is concerned. Thus, it is important to deploy the BS at a position with 
respect to the area of interest such that total energy consumption is minimized. In this Chapter, 
we propose a new dynamic approach to efficiently place the BS with the goal of reducing the total 
energy consumption which has a direct effect on the network’s lifetime while guaranteeing 
successful communication between nodes in the area of interest and the BS.  

We begin by describing our algorithm in detail. We then examine the consequences of adding 
various constraints on the allowable positions of the BS. For instance, in order to validate our 
results we have considered various types of areas of interest. We have considered placing the area 
of interest in the centre, corner and side of the network. We have also considered different 
transmission rates and sizes for the area of interest. Adding constraints to this search must 
increase energy consumption, and we are interested in the magnitude of these increases.  

The results from exhaustive search must, of course, result in the global minimum energy 
consumption, so it is considered to be useful for comparison. Exhaustive search is relied on here 
as an expedient way to explore the effects of arbitrary side-constraints that could be very difficult 
to add to a more efficient method. Although, the exhaustive search is impractical for networks 
with large number of sensor nodes or BSs, it is intended as a standard by which other more 
efficient and practically useful algorithms can be judged. We recognize the need for efficient, 
practical algorithms and develop them in the following Chapters after we have completed this 
initial survey. 

4.2 BS POSITIONING 

As mentioned earlier, multihop forwarding is assumed as a communication scheme when the 
BS is situated at a significant distance relative to the sensor nodes. This results in energy 
consumption in all intermediate nodes for message reception and transmission. Here, we assume 
that the BS has a global knowledge of the network including the geographical coordinates of the 
sensor nodes. Placing the BS in an initial position for a short period of time, the BS can calculate its 
optimal position by evaluating the incoming packets from other sensor nodes. 

 
1 A version of this chapter has been submitted for accepted for publication WiMoNe 2010, Dec. 
2010 
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Let Q�� denote the energy consumed when node (�, �) transmits data to the BS, |}"K. ~��"K  
denotes all the sensor nodes along a shortest path to the BS. We use Dijkstra’s algorithm for 
finding shortest paths. In the case of multihop communication, Q�� would be the total consumed 

energy of contributor nodes for all nodes in set ~��"K. Figure  4.1 shows such a communication 

setup. 

Figure  4.1. Multihop communication scheme 

In this example, set ~��"K  includes: 

~��"K � ~�,�,�,i � d���, �$$, �i$, �ii, ��i, ��$e 4.1

Q�,� is obtained as:  

Q&�����/J �  Q&��
&����

4.2

In the expression below, let � denote the number of sensor nodes in the entire network. ��� 
stands for a weight of each sensor node ��� . In this work, we assume the weight of a node is its 

transmission rate. This parameter could alternatively be used to represent other node 
characteristics, such as its importance, residual energy, etc.  

Once we have deployed the BS somewhere in the network, all nodes start transmitting data to 
the BS over their shortest paths. The energy reserve of every node which contributed to the data 
transmission is reduced appropriately. Then the total energy consumption of placing the BS at 
location (i,j) is: 

4"K �   ���
&

�'�

&

�'�
Q&�����/J

4.3

(4.3) is used to calculate the energy consumption of all possible locations for the BS. In order 
to simplify the analysis, we assume that the possible locations of the BS are exactly the locations 
of the sensor nodes. By placing the BS in all possible locations in the network, we will have a 
matrix of total energy consumptions 4"K  which is denoted by �.

� � �4"K�&& 4.4

Let |}"K- denote the initial optimum position of the BS, and let � be the set of alive nodes in 

the network. Using ( 4.2), |}"K- is obtained as: 
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|}"K- � ��� �����/Jc d � ,� e 4.5

Our results show that the algorithm finds an optimum location for the BS, and not surprisingly 
this is close to the area of interest. Therefore, data originated by the nodes inside the area of 
interest reaches the BS quickly and reliably while causing minimum energy consumption as they 
transit the network. As the transmission rate of the nodes in the area of interest increases (in 
other words, as the importance of nodes inside the area of interest increases) the algorithm tends 
to choose positions for the BS towards the centre of the area of interest. This trend is beneficial in 
decreasing the total energy consumption in the network. 

However, placing the BS statically in one position will cause nodes nearby the BS to run out of 
energy quickly as they are the most heavily utilized nodes in the network. In this case, the BS will 
be isolated from the network. In some cases, the BS’s nearest neighbors are located in the area of 
interest. These nodes need even more long-term support in terms of energy because they are 
both originating and forwarding data. To reflect this, each node in the area of interest is assigned a 
threshold energy value ���  assumed equal for all nodes located inside the area of interest. Here, 
“hs” denotes the area of interest, or “hot spot”. The value of the threshold can be defined 
according to node physical resources such as battery capacity.  

We set ��� as the average energy required for a node in the area of interest to communicate 
with the BS in its initial position: 

��� �
∑ Q��-��t��
���

4.6

where: 

- ���  is the threshold value for nodes located in the area of interest, 
- Q��- is the energy consumption of nodes (�, �) for communicating with the BS in initial BS 

placement, 
- XY is the set of the indices of the nodes in the area of interest, 
- ��� is the number of nodes in the area of interest. 

In order to calculate ���, we put the BS at its initial optimum position in the network without 
considering any threshold value, and compute the average of energy consumption of the nodes in 
the area of interest for sending data to the BS. Then, we use this value as ��� and find an optimum 
position for the BS subject to the condition that every node in the area of interest can send a 
message to the BS using less energy than ���.

If the features of the area of interest such as its location, size or transmission rate change, the 
algorithm calculates the new ���  value. In order to calculate the new ��� value, the algorithm 
locates the BS at the optimum position based on the new features of the area of interest, and 
computes the average energy which nodes in the area of interest use to communicate with the BS. 
This value is considered the new ���  until any of the features of the area of interest changes again. 
The pseudo code of ��� calculation is shown in Table  4.1. 
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Table  4.1. Area of interest threshold calculation 

If (Area of Interest’s location is changed)
Or 
(Area of Interest’s size is changed) 
Or  
(Area of Interest’s transmission rate is changed) 
Then  
Add the new features to the network status 
Run BS Placement algorithm (Equation  4.5)

���� �
∑ Q���,�t��
���

��� � ����

Using ( 4.6), we define a new optimal location for the BS, |}�c :

|}�c � ��� ����/Jc � � � Q"Kt�� x ���, � �
4.7

where, 

- � is the matrix of total energy consumptions related to locating the BS in all positions, 
- |}�c is an optimum position of the BS which satisfies the threshold. 

(4.7) selects the position for the BS which minimizes the total energy consumption for each 
node to send a message to the BS. The selected position must meet the threshold condition of the 
nodes in the area of interest. It is not surprising to see slightly higher total energy consumption in 
the network after adding ���  as a parameter of the optimization. Setting the threshold value is 
necessary to keep nodes in the area of interest safe from rapid energy depletion. 

4.3 BS RELOCATION 
Once the BS has been in place for a while at the chosen optimal position, the energy levels in 

neighboring sensor nodes will be reduced. We propose to relocate the BS from time to time to 
prevent this pattern of energy depletion from partitioning the network. We assume that the BS 
can move to any location in the area covered by the network. 

Relocating the BS is complicated by the following factors. First, there exist an infinite number 
of locations in the network where the BS can be placed. Second, in every search step all the 
energy-aware routes that become possible must be considered. We also need to decide exactly 
when to move the BS. 

We consider two different cases. First, we recall that the BS is being moved to avoid energy 
depletion in its neighbors. Therefore, we define a threshold value equal to a specific number of 
depleted nodes around the BS. We move the BS before this threshold is exceeded. Figure  4.2 
shows the relocation of the BS in order to meet the threshold value. Leaving the BS where it is first 
placed will result in longer paths from other nodes that are communicating with the BS due to 
presence of some depleted nodes around the BS. We find that our algorithm avoids this 
undesirable situation by relocating the BS and keeps the total energy consumption low. 
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The following notation is used in deriving the condition for BS relocation: 

- � : the set of depleted nodes nearby the BS 
- � : the set of alive nodes in the network 

- |}�c�/�  : new optimal location for BS 

The BS relocation can be defined in ( 4.8) as: 

|}�c�/� � ��������/Jc � � � Q"Kt�� x ���,� # � �
4.8 

(a) (b)
Figure  4.2. (a) Depletion of all nodes nearby BS resulted in isolating the BS from network. (b) 

BS is relocated to a new position. Other nodes’ messages can reach the BS while keeping total 
energy consumption low. 

Another reason to relocate the BS is that in practical situations, the area of interest may move 
from one place in the network to another. However, if the BS stays in its previous location 
regardless of changes in the location of the area of interest, then after a while the end-user is 
likely to lose contact with some of the nodes in the area of interest. 

Therefore, we developed another algorithm in which the BS tracks the location of the area of 
interest. This reduces the total energy consumption while maintaining a high rate of successful 
data transmission. If either or both of the two relocation conditions are met, the algorithm for BS 
placement is called with the input of updated network conditions and the output as a new 
coordinate |}"K for the BS. Pseudo code for the BS relocation algorithm is given in Table  4.2. 

Table  4.2. BS relocation pseudo code 

If (Area of Interest has moved)
else 
If (too many BS’s nearby nodes depleted) 
Then remove depleted nodes from consideration 
Run BS Placement algorithm (Equation  4.8)
Relocate B}"K
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4.4 SIMULATION RESULTS 
We implemented a simulator in Matlab and evaluated the performance of our proposed 

algorithm. Then we compared the results of different scenarios. In our experiments, the sensor 
network consisted of 100 nodes deployed in a 10u10 square meter grid-shaped area.  

The communication range of the sensor nodes was such that each node could communicate 
with its one-hop horizontal and vertical neighbors. We assumed that the energy used for 
transmitting one bit is twice the energy needed to receive a bit [57]. Every sensor consumed one 
unit of energy for each data transmission and reception.  

The BS is assumed to know its own location and the location of the area of interest. The BS is 
assumed to have enough energy to broadcast a message containing its location to all the sensor 
nodes in the network. We used Dijkstra’s algorithm to find a shortest path from each node to the 
BS. The threshold value for BS relocation was defined as 75% depleted nodes, and the energy 
threshold ���  for nodes inside the area of interest was calculated by taking the average value of 
consumed energy for the nodes inside the area. 

We ran the simulations under different network conditions while considering various 
characteristics for the nodes and the area of interest. These included the transmission rates, which 
we set at two, five and ten data transmissions per second for nodes inside the area of interest 
while considering one data transmission per second for all other nodes. We located the area of 
interest at the centre, corner and side of the network, and tried one hope and two hop lengths for 
the area of interest. 

Figure  4.3 illustrates the optimal BS placements found by the proposed algorithm. Figure  4.3 
(a) and (b) show the placements of the BS when the area of interest is located at the side of the 
network while increasing the data transmission rate and size of the area of interest respectively.  

Figure  4.3 (c) shows the case when the area of interest is placed at the corner of network. It is 
interesting to note that the BS position at the centre of the network is never changed in Figure  4.3 
(d). Obviously, this is caused by the symmetric shape of the network in this case. 

Comparing the energy consumption of the network when using our proposed algorithm to the 
case of placing the BS without considering the area of interest, we find a significant reduction. 
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Figure  4.3. Effect of area of interest on BS position 

Recall that setting the threshold for nodes in the area of interest, ���, avoids depleting those 
nodes. Figure  4.4 shows the situation when the area of interest is placed at the corner of the 
network while we set ��� equal to 50 units of energy and transmission rate for nodes inside the 
interesting area is set to 5. The BS tends to move away from the area of interest.  
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Figure 4.4. Effect of nodes’ threshold on BS position

Figure  4.5 presents the results without and then with taking into account the threshold, �h�.
The results of BS placement simulation show that energy consumption before setting the 
threshold was 1644 units of energy while after having threshold for nodes in the area of interest 
the energy consumption increases slightly to 1800 units of energy. As can be seen from the 
results, the value for the case of considering threshold is higher than placement of the BS 
regardless of threshold. This is because the BS is positioned further away in contrast to situations 
without any threshold. Setting the threshold, results in data transiting longer paths to reach the 
BS. The goal is to respect the threshold ��� of the nodes in the area of interest. The algorithm tries 
to keep the consumed energy as low as possible. Other experiments with different conditions give 
similar results. 

(a) (b)
Figure 4.5. (a) Before threshold, total energy consumption=1644 units of energy, (b) After 

threshold, total energy consumption=1800 units of energy 
 

Moreover, the algorithm relocates the BS if the number of depleted nodes around the BS 
exceeds a threshold value. This value is set to 75% of all nearby nodes in our experiments. These 
sensor nodes are not necessarily nodes in the area of interest - they could be any node in the 
network. It is reasonable to move the BS after depletion of ¾ nearby nodes because we assumed 
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each sensor node can communicate directly with its four horizontal and vertical neighbors. First 
the algorithm finds the optimal BS position. This yields a total energy consumption of 1800 units of 
energy. However, BS optimum static placement allows depletion of ¾ of neighbors and leads to 
1830 units of energy.  

Therefore, we do dynamic BS placement to avoid neighbor depletion. The new position for the 
BS is selected by running our relocation algorithm while we do not take into account the depleted 
nodes in this decision. The relocation algorithm finds a new position for the BS after reevaluating 
the overall network traffic flow. The result is to locate the BS in a position which leads to a lower 
total energy consumption. The new value for the total energy consumption is even less than the 
static placement of the BS because the new position of the BS in this case is closer to the area of 
interest. We achieved reduction in total energy consumption to 1755 units of energy. 

Another condition which makes the algorithm relocate the BS to a new position is when the 
location of the area of interest changes. In order to evaluate our algorithm, first we placed the 
area of interest at the west corner of the network. We used the algorithm to find the optimal 
position for the BS, and this resulted in total energy consumption of 1800 units of energy.  

Then, we moved the area of interest to the east corner of the network while keeping the BS’s 
location unchanged. Total energy consumption increased to 2124 units of energy. By relocating 
the BS to a new optimum location with respect to the new location of the area of interest we 
obtained 7% reduction in total energy consumption from 2124 to 1971 units of energy. Therefore, 
careful BS relocation can prevent the loss of connectivity to the BS and also significantly reduce 
energy consumption compared to the case where the position of BS is static. 

These results confirm that our algorithm enhances the network performance by repositioning 
the BS. However, BS repositioning must be controlled carefully as it can result in slightly higher 
energy consumption in if we set too high a value for the threshold ���.

4.5 CONCLUSION 
In this Chapter, we proposed a new approach for BS placement and relocation relative to a 

known area of interest. The BS is placed to minimize the total energy consumption while 
considering different features of the area of interest, such as its size, location and data 
transmission rate. Our algorithm considers the features of the area of interest as well as the 
importance of this area in order to position the BS in a place where the network consumes the 
least energy. As discussed, placing the BS statically in a position once and for all will result in 
depleting the energy of the BS’s neighbors. Our algorithm takes into account the problem of early 
depletion of these nodes by relocating the BS to a new position whenever the nodes around the 
BS pass below a threshold value for remaining energy. Furthermore, the algorithm relocates the 
BS whenever the location of the area of interest changes. 

It worth noting that the our solution based on the exhaustive search algorithm is guaranteed 
to give an optimum solution in obtaining the least consumed total energy in the network, and thus 
it is useful for comparison, however it is impractical on examples with large number of sensor 
nodes and multiple BSs in a WSN.  
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Chapter 5 

5 DISTRIBUTED OPTIMAL BASE STATION POSITIONING AND 

RELOCATION IN WIRELESS SENSOR NETWORKS 
As mentioned previously, none of the previous papers in the literature aims at finding the best 

position for the BS by deploying a metric-aware solution that pays attention to node 
characteristics such as data rate or remaining energy resources. In this Chapter, we propose a 
metric-aware solution to find an optimal position for the BS in a WSN. We consider node data 
rates, remaining energy reserves at each node and distances between nodes and the BS as the 
metrics that affect the decision-making process.  

Centralized solutions are not efficient due to dynamic environment of WSNs; hence, the idea 
in this work is to request and process data locally at each node, while collecting required 
information from neighbors on a demand basis. We not only consider the network topology, but 
we also let every sensor node contribute to BS positioning calculations with regards to the 
conditions that it is experiencing at the time. Therefore, we implemented a distributed algorithm 
that uses only local information available at each node. We will describe our proposed distributed 
algorithm in depth in section 5.2.  

5.1 ENERGY MINIMIZATION: LINEAR OPTIMIZATION 
As illustrated in [14], the energy of transmitting a message via multihop communication is 

proportional to the distance between the transmitter node and the BS. Therefore, minimizing ( 3.6) 
is equivalent to minimizing the weighted sum of, 

��� �"1"�
&

"'�
5.1 

wher 1" � 
�" # ��
 � !��" # ���$ % ��" # ���$ , and �� � y�� ��{f stands for the optimal BS 

position. �" is the weight of each node �, as below:  

�" � C" % Q" 5.2

C" and Q" denote the normalized values of data rate and residual energy at each node �
respectively. Note that 
·
 is the usual Euclidean norm. As we are considering multihop 
communication, moving the BS closer to the nodes with low energy reserves increases the relay 
burden for those nodes. Therefore, we set a threshold value so that when a node’s energy 
reserve drops below this threshold, that node will put its weight to a very low value so that it will 
be pushed away from the BS and not have to act as a relay. 

We aim to position the BS such that ( 5.1) is minimized. We formulate the problem of the BS 
positioning as a curve-fitting process. If the path loss exponent value is equal to 2 or greater than 
2, then the energy optimization problem turns into a linear or nonlinear least squares 
minimization respectively. The linear least squares problem can usually be solved by data fitting 
and has a closed form solution. The BS positioning method based on nonlinear least squares 
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minimization will be explained later in Chapter 6. Figure  5.1 gives the flowchart of the BS 
placement and relocation method. �^H�  and A^H�  are the pre-specified thresholds for network 
lifetime and network operation time, respectively.  

Figure  5.1. Flowchart of the BS positioning and relocation procedure used in our method 

We can satisfy the minimization problem in ( 5.2) when � � 2 by solving a weighted linear least 
squares problem: 

[���� � �����  �"1"
$

&

"'�
5.3 
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In problem ( 5.3) the objective is to adjust the vector �� � y�� ��{f in order to best fit a 
regression model consisting of 1" and �" . In fact, our data set includes � vectors �" � y�" �"{f,
� = 1,…, �, where �" and �" are independent variables. Moreover, the weighting matrix   �
1��� d��,… ,�&e gives different relative emphasis to different components of the residual vector 
1 � y1�, … , 1&{f. The optimization problem can be expressed as follows: 

����� [���� � �����  �"��" # ���
f��" # ���

&

"'�

5.4 

The minimum is obtained by setting the gradient of [ in ( 5.4) to zero: 

¡[ � ¢m[m��
m[
m��£ � 0

5.5

Knowing that ¡y��" # ���f��" # ���{ � #2��" # ���f, the solution can be written as: 

�� �
∑ �"�"&"'�
∑ �"&
"'�

5.6

Remark 5.1: It can be inferred that the optimal solution in ( 5.6) is indeed the centre of mass of 
the network. The centre of mass is often called the centre of gravity because any uniform 
gravitational field g acts on a system as if the mass of the system were concentrated at the centre 
of mass [58]. We justified how this selection minimizes the total communication energy in ( 3.6) 
when � � 2. Indeed, we position the BS at the centre of gravity of all the masses in the network, 
i.e. the distances between the BS and sensor nodes in the network are minimized according to 
each node’s weight at that time. Furthermore, this method assures us that the new BS location is 
always a point within the network boundaries, which avoids isolating the BS from the network. It 
is worth noting that this technique is different from finding the centroid of the network as 
deployed in [12], where the focus is explicitly on minimizing the distances. 

Remark 5.2: In the above proposed solution ( 5.6), the origin of the coordinate system is 
selected as the current position of the BS, O(��, ��). 

Remark 5.3: Approaches in [8, 12, 35] present a solution where the initial BS positioning is 
important; however, in our work the the solution obtained from (5.6) is independent of the 
selected origin of the framework (initial BS position). We support this statement as follows: 

Let us assume �¤� and �¤$ are the two vectors representing the centre of masses in the planes 
defined by origins �� and �¥� respectively, where  �� ¦ �¥�. They can be defined as: 

�¤� �
∑ �"��" # ���&"'�
∑ �"&"'�

, �¤$ �
∑ �"��" # �¥� �&"'�
∑ �"&"'�

5.7

By coordinate transformation of  �¤� and �¤$ to the coordinate system with h�0,0� as the 
origin, we will have identical results for both cases as: 

�¤� % �� � �¤$ % �¥� �
∑ �" �"&"'�
∑ �"&
"'�

5.8



31 

Remark 5.4: If � � 2, then the BS placement solution obtained via our solution is optimal and 
offers provably minimum energy consumption in the network. However, if � is greater than two 
(which would result, for example, by considering path loss exponents greater than 2) then the 
solution given by ( 5.6) is not optimal anymore. In this thesis, we solve the nonlinear optimization 
using search from a good initial starting point (see Chapter 6).  

5.2 DISTRIBUTED BS POSITIONING AND RELOCATION ALGORITHM  
In this section, we present our algorithm which works in a distributed manner to find the BS 

optimum position. A level § is defined as an area that consists of a node i and the unvisited nodes 
in its neighborhood. Two nodes are considered as neighbors if the communication link between 
them is bidirectional. Let �" � y�" �"{f be a vector representing the coordinates of the node � in 
the network. 

�¤K �

©ª
«
ª¬
∑ �"K­�"K # ��®&J"'�

¯K § � 1
∑ �"K­�"K # ��®&J"'� % ∑ ¯P­�¤K��®K��

P'�
∑ ¯PK
P'�

§ ¦ 1
5.9 

�¤K is a vector of the BS position coordinates related to §th level of the network, with the 
assumption of  �¤- � �� � y�� ��{f, where �� and �� are the coordinates of the BS initial 

position. �K is the number of nodes in §th level, �"K is the weight of a node � in §th level and 

¯P � ∑ �"K&J"'� .

5.9(5.9) is formulated based on our distributed BS positioning algorithm. Theorem 5.1 
demonstrates that propagating (5.9) through the entire network will compute the BS optimum 
position described by (5.6). 

Theorem 5.1: Our proposed BS positioning method given by ( 5.6) minimizes the total energy 
cost function in ( 3.6) when � � 2 based on our distributed algorithm in ( 5.9). 

Proof: It can be inferred that (5.6) is indeed the proposed BS positioning given by (5.9) 
computed across the entire network as below: 

The BS position in the first layer can be computed as: 

�¤� �
∑ �"���"� # ���&±"'�

¯�
5.10 

Similarly for the second layer: 

�¤$ �
∑ �"$��"$ # ��� % ¯���¤��&²"'�

∑ ¯P$P'�

5.11

Substituting �¤� in �¤$ leads to a new BS position: 

�¤$ � ��&³´ �
∑ �"$��"$ # ��� % ∑ �"���"� # ���&±"'�&²"'�

∑ ¯P$P'�

5.12

This is equivalent to (5.6) for a two level network. By induction, we deduce that (5.9) will result 
in (5.6) for a network with � levels, and therefore minimizes ( 3.6). 
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This concludes the proof.                                                                                                                        µ

Figure  5.2 illustrates a scenario where the WSN is partitioned into different levels while 
running the distributed BS positioning algorithm. Moreover, only the integrated information of 
each level which is the optimum BS coordinates needs to be sent to the next level in the 
network. It should be noted that the BS positioning algorithm will be initiated by the BS 
periodically, or if an unacceptable situation is observed as described in the next section. 

Figure  5.2. Nodes calculate the centre of mass of each level and send it to the next level, while 
information integrated as it traverses through the network. 

5.2.1 BASE STATION POSITIONING 
Our proposed distributed algorithm for BS positioning is shown in Table  5.1. The calculation is 

initiated by the BS. In line 2, Nodei (initially the BS) creates a list containing the nodes located in 
its communication range. Then the parent node information is stored by Nodei, in lines 3-4. The 
parent of a Nodei is defined as the first node that sends the BS positioning information to the 
Nodei (line 24). In the initial step where Nodei is the BS, the parent information is set to null. In 
the next step, line 5, Nodei creates a list of nodes in Ldif, by removing the nodes from Lnew which 
also exist in Lold (initially empty). Lold contains the list of the visited nodes from the beginning, 
thus we avoid considering a node more than once.  

In lines 7-9, if Ldif of Nodei contains one or more nodes, then Nodei calculates the BS optimum 
position based on the list Ldif which contains the nodes that have not been yet considered for the 
calculation; moreover the computation takes into account the latest value of the BS position, 

COMold, as shown by �¤K�� in (5.9). Here, Mold contains sum of the nodes’ weights up to the 
current level and Mnew includes sum of the weights related to the nodes in the current level. The 
list of the nodes that are considered up to this level in the computation is updated in line 10. 
Then, Nodei randomly selects one of the nodes from its list Ldif, while removing it from this list, 
and sends the required information (COMold, Lold, Pa, Mold) to the chosen node (lines 20-24). The 
above steps continue until no more nodes are left in the Ldif of Nodei, which results in backward 
flow of information in the network (line 12). In line 12, Nodei sends the values of COMold , Lold and 
Mold to its parent node, which was previously stored in line 4. The above steps repeat until the 
parent node is the BS (line 14), which happens only when all the nodes in the network have 
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contributed to the calculation. At that point the value of COMold is the BS optimum position of 
the entire network, which is the centre of mass of the network when path loss exponent value is 
2. The BS is repositioned accordingly, line 15. Clearly, our algorithm is distributed and 
independent of the network topology whether it is a tree or not, since a node in each level 
eliminates repeated received information. Therefore, the information is pruned as it flows 
through the network. Our method handles the dynamic infrastructure of a WSN where sensor 
nodes are added and removed during the network operation. 

Table 5.1. Distributed BS positioning pseudo code
BS_Positioning() 

1 Nodei=Lold=BS; Pa=Mold=¶; COMold=0; 
2 Nodei creates the list of nodes in its communication range Nodei.Lnew 
3 if (Nodei.PI is empty)    /* Nodei.PI contains parent information of Nodei */  
4 Nodei.PI = Pa          /* Nodei stores its parent information */  
5 Nodei.Ldif = Nodei.Lnew – Lold 
/* Nodei removes the repetitive nodes from Lnew */ 
6 end 

7 if (Nodei.Ldif is not empty)    
8 Nodei creates Mnew /* from nodes in Nodei.Ldif */ 
9 COMold = BS_Computation (Nodei.Ldif , COMold,Mold,Mnew)

/* Using the computation discussed in Section 4  */ 

10    Lold = Nodei.Lnew · Lold /* Update the list of visited nodes */ 
11 else  

12     Send (COMold , Lold, Mold) � Nodei.PI  
13     Nodei= Nodei.PI 
14        if (Nodei is BS)         /*At this step, COMold is BS optimum position */                                             
15          BS repositions according to COMold 
16          EXIT 
17      end 

18 end 
19 if (Nodei.Ldif is not empty)      
20     Pick a Nodej from Nodei.Ldif randomly  
21     Remove Nodej from Nodei.Ldif 

22  Mold=Mnew ·Mold 

23    Pa=Nodei

24    Send (COMold , Lold, Pa,Mold) � Nodej

25    Nodei = Nodej

26    Go to line 2 
27 else  
28    Go to line 12 
29 end
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5.2.2 BASE STATION RELOCATION 

Leaving the BS where it is first placed will result in longer paths from other nodes that are 
communicating with the BS due emergence of depleted nodes around the BS; thus increasing 
total energy consumption. We propose a BS relocation scheme to prevent this pattern of energy 
depletion that may result in partitioning the network. We assume that the BS can move to any 
location in the area covered by the network. We define a maximum time period and a threshold 
value equals to a specific number of depleted nodes that are one hop away from the BS. The BS 
is moved before the thresholds are exceeded. We find that our algorithm keeps the total energy 
consumption low during network operation by relocating the BS. The pseudo code for this 
algorithm is shown in Table  5.2.  

Table 5.2. BS relocation pseudo code
BS_Relocation( ) 
1 if (number of BS’s neighbor nodes drops the threshold value) or (Maximum time duration is 
reached) 
2 Then 
3 Run BS_Positioning ( ) 
4 Relocate BS 
5 end

5.3 ANALYSIS AND PROOF OF OPTIMALITY 
In this section, we investigate the effectiveness of our BS positioning technique when � � 2,

using the linear optimization method discussed.  

All nodes are assumed to have identical communication capabilities; hence the maximum 
communication range is the same for all nodes. As mentioned earlier, nodes are assumed to have 
weights that correspond to each node’s characteristics including data rate and remaining energy 
reserves. In our model, these values are normally distributed random numbers. We consider 20 
nodes that are uniformly randomly distributed in a 10u10 square field. We also randomly place 
the initial BS within the network boundaries. Moreover, sensor nodes are assumed to be able to 
adjust their transmission power. Thus, each sensor node consumes only the amount of energy 
that will suffice to reach the destination sensor node. We examine two scenarios. In the first, 
sensor nodes generate Constant Bit Rate (CBR) data, which is commonly employed in various 
wireless sensor network applications. In the second, we use variable data rates where the packet 
generation process is assumed to be Poisson with rate � � 3. It is assumed that each node 
knows its own position in the network without having full or partial knowledge of the rest of the 
network. We set the path loss exponent � � 2, K = 4.16 u 10�¹ Joules/bit and Z = 1.66 u 10�º 
Joules/bit. These values are chosen because they are very close to the Berkeley/Crossbow Mica 
Mote specifications [15].  

Figure  5.3 (a) illustrates how different node weights affect the algorithm decision for finding 
the optimum position for the BS. Different weights (represented with different node sizes in 
Figure  5.3 (a)) are assigned to the nodes in different simulation rounds, which directly affect the 
computed BS location. In the second approach (see Figure  5.3 (b)), the effect of different initial 
BS positions on the BS optimum solution is investigated while keeping the node weights constant 
in all rounds. The solution for BS position is identical in all cases regardless of the initial 
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placements of the BS. This is because the algorithm solution is independent of the chosen origin 
of the framework (viz. Remark 5.3). 

(a) (b)
Figure  5.3. (a) Effect of nodes’ weights on BS new position, (b) Effect of initial BS positions on BS 

new position 

Figure  5.4 (a) and (b) demonstrate the effect of our BS linear optimization positioning method 
on total energy consumption in the network based on two scenarios of packet generation, 
namely constant data rates and variable data rates respectively. Each dotted line denotes a 
different random initial BS deployment in the network. We observe that our BS positioning 
scheme (solid line) leads to a significant reduction in total energy consumption in the network for 
both data rate models.  

(a)
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(b)
Figure  5.4. Energy conservation (a) constant data rate, (b) variable data rates 

Figure  5.5 shows that our technique keeps the total energy consumption low for different 
path loss exponent values during the network operation with variable data rates, as stated in 
Remark 5.4. We repeated the experiment with different conditions in the network, while we 
observed the same trend for keeping the energy consumption low. 

 

Figure  5.5. Varying path loss exponent (»)

Figure  5.6 shows that the energy consumption decreases when BS relocation method is 
deployed. The two curves diverge at hour 23. The reason for this behavior is that the nodes close 
to the BS will be heavily involved in data forwarding and thus their energy resources will be 
drained rather quickly. This will result in longer paths from other nodes to the BS due to some 
unreachable nodes around the BS, and increase the total energy consumption. Our method 
avoids this situation by relocating the BS, hence conserving energy. 
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Figure  5.6. Effect of BS relocation on total energy consumption 

Figure  5.7 presents the number of unreachable nodes over time in two cases of a fixed BS and 
a moveable BS relocated via our method. Clearly, the number of unreachable nodes increases 
more quickly when the BS is fixed. However, the growth is noticeably slower when our BS 
relocation technique is deployed. Figure  5.8 illustrates the effect of our approach on network 
lifetime with different threshold values. Our simulations show a 40% improvement in network 
lifetime over the case when no relocation method is deployed. 

Figure  5.7. Unreachable nodes versus time 
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Figure  5.8. Network life time for different values of reliability ratio 
 

Figure  5.9 compares our proposed BS placement and relocation method with the proposed 
solution in [12], presented in solid and dotted lines respectively. The result confirms that our 
approach, at all times, keeps the consumed total energy of the network lower than the BS 
positioning technique in [12]. The reason is that our method is a metric-aware approach and also 
has a broader view of the network since a larger set of nodes in the network has been 
considered. Comparing the two curves, we observe higher fluctuation of energy consumption in 
the scheme proposed by [12], which is not desirable for network status. However, due to 
considering various metrics for BS positioning in our method, our technique avoids such 
instability by dynamically adapting the BS position to the current network condition over time. 

 
Figure  5.9. Comparison of the two approaches 

5.4 CONCLUSION 
In this Chapter, we addressed the BS positioning problem in WSNs, where the best location 

for the BS should be calculated according to several design criteria. Our approach is based on 
weighted linear least squares optimization. We proposed a distributed algorithm in order to find 
an optimal position for the BS in the network. Our proposed distributed algorithm makes a 



39 

decision based on node characteristics at the time such as data rates, energy reserves at nodes 
and distances from the BS, in order to minimize the total energy consumption in the network and 
extend the network lifetime. We tested our solution for both constant and variable data rates, 
where the source bit-rate can be time-varying. Our simulation results show a significant 
reduction in total energy consumption of the network during network operation. Moreover, 
since the BS has to be relocated in order to avoid energy depletion in its neighbors, we presented 
an algorithm to relocate the BS. The simulation results showed that we achieve 40% higher 
network lifetime by relocating the BS compared to fixed BS deployment.  
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Chapter 62

6 NONLINEAR BASE STATION POSITIONING IN WIRELESS SENSOR 

NETWORKS BASED ON BOUNDARY CONSTRAINTS 
As discussed, if the path loss exponent value is greater than 2, then the energy optimization 

problem turns into a nonlinear least squares minimization. In order to find a minimum solution 
for a nonlinear least squares function, an iterative algorithm starts by picking an initial value of 
the argument in the cost function. Subsequent solutions are repeatedly calculated until an 
approximate optimum solution is reached. 

6.1 ENERGY MINIMIZATION: NONLINEAR OPTIMIZATION 
As illustrated, the BS position obtained when � � 2 is optimal and offers minimum energy 

consumption in the network. However, if � is greater than 2, then the problem described by ( 5.1) 
forms a nonlinear least squares curve fitting problem. A weighted nonlinear least squares 
method is used to determine the vector �� in order to minimize the sum of residuals squared as 
follows: 
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Our objective is to establish the vector �� such that sum of squares ?"���� is minimized. There 
exist a number of efficient algorithms for solving a nonlinear least squares problem such as the 
Gauss-Newton [53] and the Levenberg-Marquardt [59, 60] methods. It should be noted that the 
optimization problem in ( 6.2) needs to be solved under specific constraints over �� as 
determined by ( 6.4). In practice, the network has known lower and upper bounds from its 
physical nature. Since the Gauss-Newton method solves unconstrained problems, it is not 
sufficient to be used in this situation and has to be combined with another method. Few 
approaches exist for least squares problems with constraints including ASTRAL [56, 61], and 
Boundary-Constraint Linear Least Square (BCLS) [62]. In this thesis, we use the Boundary-
Constraint Nonlinear Least Square (BCNLS) algorithm to solve the nonlinear least squares 
problem in ( 6.2). Basically, the BCNLS technique is a combination of the Gauss-Newton and the 

 
2 A version of this Chapter has been submitted for publication for Journals of Computer Networks 
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BCLS methods, and finds a solution subject to simple constraints on the variable. Each iteration 
solves a linear least squares problem subject to the original constraints. 

Thus, we aim to minimize [���� subject to: 

ℓ x �� x ½ 6.4 

ℓ and ½ are lower and upper bounds on the variable ��, where they are the boundaries of the 
network. If the network bounds are unknown, they can be set as #∞ and %∞. These bounds can 
be used for deploying the BS in a specific sub-region of the network, e.g. in networks where the 
BS safety is threatened. 

Based on the classical Gauss-Newton method, minimizing ( 6.2) leads to solving the following 
equations: 

�
f
� XP � #
f?
���¿± � ��� % XP

6.5 

where XP is a direction of descent. The parameters of �� are calibrated for each subproblem at 
step M by the value of XP. 
 is the Jacobian matrix of the vector ? and can be obtained as: 
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It follows that 
f
 is a 2u2 matrix, and its elements are given as: 
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Consequently, we can derive 
f? as: 
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Remark 6.1: The above method provides a guaranteed convergence with the condition that 

��� has full rank in all steps. In our problem, matrix  
 encounters rank deficiency only if: 
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for c t ]. Note that the above condition will be met when all the sensor nodes are located on a 
virtual single line. Normally, this situation does not happen in a WSN where the distribution of 
sensor nodes follows a random process. However, we will discuss a solution to this problem later 
in this section. 

Now, we can proceed to solve our boundary constraint optimization problem ( 6.2)-( 6.4). 
Using the Taylor expansion: 

?­��� % XP® Â ?P % 
PXP 6.10 

Recall that we assumed a boundary ( 6.4) for the solution, the bounds for each subproblem 
can be written as: 

ℓ x ��� % XP x ½
ℓP x XP x ½P

6.11 

Hence, the upper and lower bounds of XP at each iteration M are: 

Ã ℓP � ℓ # ���½P � ½ # ���
6.12

Thus, our problem can be converted to a boundary constraint linear least squares (BCLS) 
problem as: 
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subject to: ℓP x XP x ½P
In order to remedy the numerical difficulties of the Gauss-Newton method (as stated in 

Remark 6.1), we may take advantage of the two-norm regularization method as follows: 
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where �P S 0 is a design parameter.  

Note that ( 6.15) can also be written as: 
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Now, the matrix ¢ 
P�PÆ£ is always full-rank. 
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Selection of �P as a damping parameter protects 
XP
 from becoming large when 
P is not 
full-rank. There exist different strategies for choosing this value; in our approach selection of the 
appropriate value of �P is based on [63]. For further discussion on the choice of �P parameter, 
see [64]. The problem in ( 6.15) can now be solved directly through the BCLS algorithm [62]. 

Remark 6.2: For simplicity, our proposed solution is based on a two-dimensional space. 
However, it can be easily adopted for a three-dimensional space where the sensor nodes are 
deployed over a complex three-dimensional area.  

6.2 SIMULATION RESULTS AND COMPARISON 
Here, we present our simulation results obtained from nonlinear optimization method for BS 

positioning given in section 6.1. For this purpose, the path loss exponent value is assumed to be 
greater than 2 in all scenarios. 

In this section, we evaluate energy consumption and network lifetime associated with our 
proposed BS positioning. We consider 20 nodes that are uniformly randomly distributed in a 
10u10 square field. The BS is initially placed randomly within the network boundaries. It is 
assumed that all nodes have identical communication capabilities and are able to adjust their 
transmission power. Thus, each sensor node consumes only the amount of energy that will 
suffice to reach the destination sensor node. Nodes are assumed to have weights that 
correspond to each node’s characteristics including data rate and remaining energy reserves. In 
our model, these values are normally distributed random numbers. We evaluated two scenarios 
with different path loss exponents. In each scenario, two models for traffic generation are 
examined. In the first, sensor nodes generate Constant Bit Rate (CBR) data, which is commonly 
employed in various WSN applications. In the second, we use variable rate data where the packet 
generation process is assumed to be Poisson with rate γ � 3. It is assumed that each node knows 
its own position in the network without having full or partial knowledge of the rest of the 
network. The values of the model parameters are listed in Table  6.1. 

Table  6.1. Model parameters 

Parameter Meaning Value
� Traffic generation rate 3
Ê Packet size 1024 bits (fixed)
� Path loss exponent 2,3,4
K Energy cost of transmitter electronics 4.16 u 10�¹ Joules per bit3

Z Transmission overhead energy 1.66u 10�º Joules per bit1

W Energy cost of receiver electronics 1.66u 10�º Joules per bit1

� Regularization factor 0.1
X- Initial step size parameter 0.25

Table  6.2 illustrates how initial BS positions affect the convergence speed of the algorithm for 
finding the optimal BS position. It is reasonable to choose the solution of the linear optimization 
as a good starting point since it significantly reduces the number of iterations of the algorithm, as 
shown in row 5 of Table  6.2. Recalling Remark 5.3, initial BS position does not affect the final BS 
position.  

 
3

These values are chosen because they are very close to the Berkeley/Crossbow Mica Mote specifications [65]. 
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Table  6.3 shows the impact of node weights. It is seen that the BS positions itself closer to the 
nodes with higher weights. It should be noted that the initial BS position is kept the same in all 
rounds. 

Table  6.2. Effect of initial BS positions on new BS position, Ë = 3

#
Method for initial BS 

placement 
Initial BS 
position 

No. of 
iterations 

Norm-2 of the residual
f(x) 

Optimal BS 
position 

1 Random (6,9) 14 8592.26    (5.7,6.2)
2 Random (1,3) 13 8592.26    (5.7,6.2)
3 Random (8,1) 18 8592.26    (5.7,6.2)
4 Random (9,6) 14 8592.26    (5.7,6.2)
5 Linear ans. (5.1,5.7) 8 8592.26    (5.7,6.2)

Table  6.3. Effect of nodes’ weights on new BS position, Ë = 3

#
Norm-2 of 

nodes’ 
weights 

Norm-Infinity 
of nodes’ 
weights 

Position of the 
dominant 

weight 

No. of 
iterations 

Norm-2 of the 
residual 

f(x) 

Optimal 
BS 

position 
1 41.81 18.77 (5,4) 15 11170.5 (7.2,3.5)
2 39.25 25.99 (7,3) 17 7934.17 (6.6,3.4)
3 52.25 21.36 (8,1) 16 10620.1 (7.5,2.8)
4 1.0005e+003 1000 (9,2) 16 19845.2 (9.1,2.3)

Figure  6.1 depicts the comparison of the BS positioning based on random, linear and 
nonlinear minimization methods for environments with � � 2. In Figure  6.1 (a) a constant data 
rate for all nodes is considered. We observe BS positioning based on the nonlinear method leads 
to a further reduction in total energy consumption compared to the linear optimization method 
alone. The linear method still gives an acceptable result at the price of a small performance loss 
compared to the nonlinear method. This is because the BS position found by the linear 
optimization technique is sub-optimal yet close to the optimal solution given by the nonlinear 
optimization method. Figure  6.1 (b) shows a similar experiment when nodes are generating 
variable data rates. It can be inferred that random BS positioning causes the worst performance 
at all times. 

(a)
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(b)
Figure  6.1. Comparison of random, linear and nonlinear least squares optimization 
techniques for BS positioning in networks given α � 2: (a) Constant data rate, and 

(b) Variable data rate. 
 

Figure  6.2 (a) demonstrates the effect of increasing the number of sensor nodes on total 
energy consumed at hour 1 in a network when α � 3. The results indicate that the BS placement 
according to the nonlinear minimization technique achieves the best performance regardless of 
the number of sensor nodes. According to Figure  6.2 (b), BS positioning and relocation derived 
from the nonlinear optimization leads to the longest lifetime independent of the number of 
sensor nodes. It should be mentioned that the network lifetime is defined with the reliability 
ratio of 60%. In order to verify the reliability of our results, we tested our method on 20 
experiments with different node weights. The confidence intervals in Figure  6.2 are obtained 
based on the term Ì Í 2Î, where µ and σ are the mean value and variance of the experiments 
respectively. 

(a)
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(b)
Figure  6.2. Effect of number of sensor nodes for α � 3 on (a) the consumed energy 

(b) on network lifetime 
 

6.3 CONCLUSION 
In this Chapter, we proposed a solution for BS positioning problem in WSNs when the path 

loss exponent value is greater than 2 based on weighted nonlinear least squares optimization. 
Our solution is resource-aware by taking into account several parameters. Also the distributed 
algorithm proposed in Chapter 5 can effectively handle the required computation related to our 
BS positioning method. We investigated the network performance for different snapshots in time 
on random networks. Analytical and simulation results demonstrate that our BS positioning and 
relocation technique significantly reduces the energy consumption of the network. We also 
demonstrate that BS relocation based on our method can extend network lifetime w.r.t. a static 
BS deployment. 
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Chapter 7 

7 CONCLUSION AND FUTURE WORK 
This Chapter summarizes the contributions of this dissertation. Moreover, we will introduce 

some potential research topics for future studies. 

In this dissertation, we studied the BS positioning problem in WSNs and its impact on energy 
consumption and network lifetime. Different parameters affecting the energy consumption and 
network lifetime are considered in our analysis. The outcome of our BS positioning study can be 
utilized in WSN design step and also during the network operation. 

Initially, we studied the BS positioning for WSNs, where the sensor nodes are uniformly 
distributed in the area. In fact, the proposed algorithm was evaluating the required energy 
consumption for communication between all sensor nodes and the BS for all possible BS 
positions in the network through an exhaustive search algorithm. Based on the result, the BS is 
located in a position where the least consumed energy is achieved. Moreover, through 
simulations the improvement made by applying the BS relocation was verified. The result from 
this initial algorithm was an encouragement to develop more efficient strategies for realistic 
network models, which are explained in the following. 

We argued that BS positioning needs to be metric-aware. Thus, we proposed a technique that 
makes a decision based on the sensor nodes’ characteristics such as data rates, energy reserves 
at the nodes, and distances from the BS. Then, we proposed an optimization technique based on 
weighted linear least squares minimization when the path loss exponent value - a major 
characteristic in wireless communication - is 2. We analytically showed that the solution given by 
our method is identical to the centre of mass of the network. The accuracy of the algorithm 
solution is verified by knowing the fact that in physics, centre of mass is defined as an equidistant 
point from network borders regarding the weights throughout the network. It should be noted 
that weights were considered as the sensor nodes’ characteristics, which have a strong influence 
on the network performance criteria. We tested the improvement by our proposed algorithm 
through computer simulations.  

 In addition, we extended the analysis to WSNs that operate in a nonlinear environment 
where the path loss exponent value is greater than 2. Notably, our analysis on the energy 
minimization relies on a realistic network model assumption. We formulated this problem into a 
weighted nonlinear optimization with the goal of minimizing the energy consumption. Similar to 
the study of the BS positioning in environments with path loss of 2, we have included nodes’ 
characteristics as the metrics. We also proposed a solution for BS relocation when specific 
thresholds are met. The results showed that our method for BS positioning and relocation 
significantly reduces the total energy consumption and enhances the network lifetime. We also 
provided a BS safety strategy by locating the BS in a specific sub-region. This way, BS can be 
protected from dangerous events within the network.   

Furthermore, we proposed a distributed algorithm to find the BS position in the network 
based on the distributed collaboration of the nodes. Therefore, our technique is scalable to large 
WSNs, where the calculations are carried out on smaller sub-networks. We showed that our 
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distributed algorithm is independent of the network topology, and the information passing 
between the sensor nodes is reduced.   

 There exist interesting questions related to the proposed techniques. In our study, we 
assumed that each node knows its location information, while it participates in the calculation. 
The challenge in this direction is to evaluate the accuracy of our proposed algorithm as a function 
of the level of uncertainty in the knowledge of node coordinates.  

Our BS positioning methodology can be further extended to the case when multiple BSs exist 
in a WSN. This way, not even the position of the BS within the network has to be determined, but 
also even more energy can be saved by considering relative positions of BSs to each other. 
Similar to the case of a single BS, we anticipate that strategic positioning of multiple BSs can help 
increase the network lifetime. Moreover, in the WSNs that the number of BSs is unknown in 
advance, the BS positioning problem is combined with finding an optimum number of BSs in the 
network.   

Another potential area to study is to perform the BS relocation through predictive modeling, 
which we call it “Predictive decision for BS position detection in WSNs”. For this purpose, a 
model is created to predict the direction that the BS is travelling based on the previous 
observations. The concept is based on the fact that most of the BS’s next positions show a 
significant correlation between the successive locations. Deploying this method for BS relocation 
is anticipated to reduce the required computation and consequently decrease the consumed 
processing energy in the network, compared to recalculating the BS position every time. 
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