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Abstract

Grapheme-to-phoneme conversion (G2P) and machine transliteration are impor-

tant tasks in natural language processing. Supplemental data can often help resolve

difficult ambiguities: existing transliterations of the same word can help choose

among a G2P system’s candidate output transcriptions; similarly, transliterations

from other languages can help choose among candidate transliterations in a given

language. Transcriptions can be leveraged in this way as well. In this thesis, I in-

vestigate the problem of applying supplemental data to improve G2P and machine

transliteration results. I present a unified method for leveraging related translit-

eration or transcription data to improve the performance of a base G2P or ma-

chine transliteration system. My approach constructs features with the supplemen-

tal data, which are then used in an SVM re-ranker. This re-ranking approach is

shown to work across multiple base systems and achieves error reductions rang-

ing from 8% to 43% over state-of-the-art base systems in cases where supplemental

data are available.
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Chapter 1

Introduction

Imagine that you have been tasked with reading a news article aloud. Of the words
in the document that you have not seen before, many are names, and you are not
sure how to pronounce them. If you are having trouble thinking of such a name,
consider “Eyjafjallajökull”, the name of a volcano in Iceland whose eruption in 2010
was heavily reported due to the ash cloud that massively disrupted much European
air traffic. Are the ‘j’ letters pronounced as in “Jack”, “Jacques”, “Jaeger”, or is there
some other pronunciation for them? What about the double-‘l’ groups? And what
does that trema (umlaut) over the ‘o’ do?

In addition to being difficult for humans, pronouncing new words and names
can be difficult for computational methods as well. Handling such cases gracefully
is becoming increasingly important as we turn to speech synthesis systems to speak
text aloud for us automatically. For example, The Economist provides podcasts for
each issue, wherein each article is read aloud by a human. Ultimately, we would
like to supplant the need for a human and use a speech synthesis system instead,
especially if we do not have a similar magnitude of resources available as does The
Economist.

Since we cannot hope to create an exhaustive pronunciation database of all pos-
sible words and names, speech synthesis systems will need to be able to make rea-
sonable guesses for new words and names; this presents the same types of issues for
computer programs as we saw for humans above. A human may have the option of
asking an Icelandic friend to help, but a computer doesn’t: to provide a pronuncia-
tion requires specific linguistic expertise. Even relying on pronunciation databases
for other languages can be difficult due to differences in formatting and the dearth
of such databases for many languages that have fewer speakers (and even with a
suitable resource, it will also suffer from being unable to cover all possibilities).

While it is difficult at best to rely upon the computational equivalent of an Ice-
landic friend, we can instead take advantage of information that we already have.
For example, assume that you can read not only English but Japanese and Russian as
well. Resourceful person that you are, you turn to the Web and look for translations
of the original news item. You find that in Japanese, “Eyjafjallajökull” is written as
“エイヤフィヤトラヨークトル” and appears as “Эйяфьядлайёкюдль” in Russian. These
help you resolve some of the ambiguities, which you can combine with your own
knowledge of English to help your initial pronunciation of the name. Importantly,
you do not follow the Japanese or Russian pronunciations exactly, as that would
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sound strange to a native English speaker. Even if your pronunciation is not true
to the original Icelandic, it will at least be more informed than if you had simply
guessed. Similarly, a computer program can find foreign-language versions of new
names from the Web and use them to help guide its own pronunciation.

Such translated versions of names are known as transliterations. Generating
transliterations automatically is another task that has been researched from a com-
putational perspective. In this case we can also refer to other transliterations to learn
how to write out a difficult name; seeing the Russian equivalent of Eyjafjallajökull
can help write out the Japanese version. Similarly, if we know the pronunciation of
a name in some form that provides pronunciation information perfectly, we can use
that to help as well.

The commonality between the various above cases is that related external data
are being consulted to inform a base task. In this thesis, I present a unified method
for leveraging such supplemental data to improve the performance of a base system.
The base tasks that I explore are grapheme-to-phoneme conversion and machine
transliteration, to each of which I apply supplemental transcriptions and transliter-
ations.

1.1 Base task definitions

1.1.1 Grapheme-to-phoneme conversion

A grapheme is a written unit that represents a spoken sound; we refer to these more
specifically in English as letters. Phonemes are more abstract: they are psycholog-
ical representations of spoken sounds, a core unit of speech. Phonemes provide
a way of dealing with the pronunciation of a word, while graphemes are simply
the written representation of it. As it is not always clear what the pronunciation
of a word is from its written representation, representing it with phonemes allows
this information to be communicated in a written manner. This is known as a tran-
scription. For example, I use the International Phonetic Alphabet (IPA)1 to represent
phonemes and transcribe words throughout this thesis.

Grapheme-to-phoneme conversion (G2P) (also known as letter-to-phoneme
conversion (L2P) or letter-to-sound (LTS)), then, is the task of converting an input
word to its phonetic representation, or transcription. While G2P is something that
humans do without thinking, it is much more difficult to describe algorithmically
for implementation in a computer program, where it is needed for speech synthe-
sis (among others): G2P would tell a speech synthesis system which phonemes to
produce. Simply storing transcriptions in a dictionary will not work, as there will
always be new words that have not been seen previously, necessitating the devel-
opment of general G2P systems.

1The casual (or else otherwise IPA-illiterate) reader can consult Wikipedia to get an idea of the sound
represented by individual IPA characters. For example, the ”English phonology” article provides ex-
amples for the various IPA characters used to represent English sounds, and also links to a concise
chart.
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1.1.2 Machine transliteration

To transliterate a name means to rewrite it in another orthography (language script)
while trying to preserve the original pronunciation as closely as possible. Translit-
erating a name (or, more generally, a named entity) is important when translating
documents, as we generally do not translate names by meaning. My own first name,
for example, is a transliteration: the meaning is ”sun”, but my name in English is
not ”Sun”; instead, we try to write it such that the original Hindi pronunciation is
maintained to whatever degree possible.

As we turn to computers to do our translation for us, we must enable them to
transliterate as well. This task is known as machine transliteration, and has much in
common with G2P: both are string transduction tasks, in which an input string is to
be converted into another format; and for both tasks, preservation of pronunciation
is paramount.

1.2 Leveraging supplemental data

I focus on applying supplemental data to these base tasks. Consider again the G2P
case: our base G2P system is given a name that is difficult to pronounce. In this case,
we can turn to transliterations, which can be mined from the Web. (Wikipedia, for
example, often has copies of articles in multiple languages.) This is particularly true
of news items, which are often reported around the world, especially if they are of
global (or at least international) significance.

My objective is to use available transliterations to improve the performance of
existing G2P systems. Many state-of-the-art G2P systems are able to provide multi-
ple candidate transcriptions, ranked by the score that the system gives each of them;
this is known as an n-best output list. This list presents an opportunity to re-order
it according to the transliteration.

To provide a more concrete (and readable) example, consider the ambiguity in
English of the phoneme associated with the letter ‘G’, which usually represents ei-
ther /ɡ/ as in “Gertrude” or /d͡ʒ/ as in “Gerald”. When considering a list of can-
didate transcriptions provided by a G2P system for “Gershwin”, we may find that
the top choice mis-predicts the initial phoneme as /d͡ʒ/ instead of /ɡ/. The correct
transcription may still appear in the output list, however; existing transliterations
can help indicate which of the transcriptions in the output list is indeed the correct
choice.

It may seem simple conceptually to use transliterations to disambiguate tran-
scriptions, but doing so computationally is non-trivial. Different languages have
different phonologies, or sets of spoken sounds, and mapping sounds between lan-
guages is usually a complex affair. For example, the Hindi /ʋ/ phoneme, similar
to the English /v/, is usually represented with a ‘w’ in English. Similarly, English
words and names containing ‘w’ are written with the character for /ʋ/, so in a Hindi
transliteration of an English or other foreign name such as “Gershwin”, the /w/

phoneme is lost. This indicates that considerations must be made for the specific
circumstances under which a transliteration from another language will be help-
ful in pronouncing a name. Even without such an issue, converting transliterations
into transcriptions is often complicated; although few orthographies are as incon-
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sistent as that of English, this is effectively the G2P task for the particular language
in question (which is an active research area for many languages).

This scenario of applying transliterations to G2P can work for machine translit-
eration as well. When transliterating from English to Hindi, for example, Japanese
or Russian transliterations can help disambiguate certain characters. Similarly, tran-
scriptions could also help machine transliteration, and transcriptions from one cor-
pus (data set) could be used to inform G2P systems trained on another. These are
the four cases on which I focus.

The key, as noted above, is that the base systems are all capable of providing
output lists. I apply machine learning methods to leverage multiple supplemental
data sources, such as transliterations from multiple languages or transcriptions, to
re-order the output lists of existing base systems for G2P and machine translitera-
tion, achieving a substantial error reduction for all cases and across multiple base
systems; my approach can operate on any base system that provides an n-best out-
put list. Notably, I am able to achieve these results using similar information as is
included in the base systems, but applied in a new way across supplemental data.
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Chapter 2

SVM re-ranking

This chapter provides a brief introduction to Support Vector Machines and their
application to re-ranking. Note that the focus of this thesis is not Support Vector
Machines; rather, they are used as a tool for accomplishing another task. I therefore
do not survey them in-depth and instead focus on the background aspects relevant
to this thesis, namely their fundamental concepts and how they are applied to re-
ranking.

2.1 Support Vector Machines

In their simplest and most commonly used formulation, Support Vector Machines
(SVMs) (Cortes and Vapnik, 1995) are binary classifiers: given an input, they predict
to which of two classes the input belongs. Such binary classification can obviously
be applied to simple yes/no questions, such as whether a given brain scan indi-
cates the presence of a tumour or not, or (to provide a more NLP-based example)
whether a given text is in English or not. This latter example is known as language
identification, an instance of the task of text categorization.

As with most machine learning approaches to classification, each input must
be represented by a set of numbers called features; these form the feature vector
for the input, denoted by x. Each feature is representative of some aspect of the in-
put; in the language identification example, we may have a binary feature for every
character. Then, for a given input (e.g., a document, sentence, or word), every char-
acter in the input would “activate” the corresponding feature: a feature value of 1
would indicate that the character occurs in the input, while 0 would indicate that
it does not. Alternatively, the features might not be binary and instead indicate the
number of times the character occurs in the text; the value of this kind of feature can
indicate the degree to which a certain property is “expressed”, to borrow a biolog-
ical term. In this example, it should be noted that single characters do not provide
enough information to discriminate between languages; groups of n characters, or
n-grams, must be counted. As we increase n, our number of features drastically in-
creases; machine learning methods allow us to use potentially millions of criteria
(in the form of features) to inform the classification decision, although they do have
their own limits. Each feature can be thought of as a dimension (axis) in a multi-
dimensional hyperspace, in which case each feature vector would be a point in this
space.
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Figure 2.1: The decision boundary found using SVMs (solid line) as compared to
that found using perceptrons (dotted line). The perceptron finds a separating hy-
perplane, but not one that maximizes the margin between the hyperplane and the
data points. In this case, there are two dimensions in the feature vector (so the hy-
perplane is a line); points belonging to the 1 class are shown as squares, while points
belonging to the −1 class are shown as circles. The SVM decision boundary has the
equation λ · x − b = 0 and the margins (shown as dashed lines) have the equations
λ · x − b = ±1. The support vectors are the points that are on the margins, also
indicated by the grey lines between the points and the SVM decision boundary.

The actual output class of a given input x is denoted by y; the predicted class
is denoted by ŷ. In binary classification, the outputs are usually defined such that
y ∈ {−1, 1};−1 is used to represent one class, while 1 represents the other. SVMs are
linear classification methods: they model the output as a linear combination of the
input features, with each feature having a corresponding weight in a weight vector
λ. Formally, a linear classification method has ŷ = sign (λ · x − b). This means that
all points on one side of the hyperplane given by λ · x − b = 0 belong to one class,
and all points on the other side belong to the other class; this hyperplane is there-
fore referred to as a separating hyperplane or a decision boundary. b is a bias term
that prevents the decision boundary from being forced to go through the origin.
(In two dimensions, the bias term corresponds to the y-intercept.) Given the linear
classification formulation, the objective is to learn the weight vector such that the
predicted output ŷ matches the actual output y for as many new (unseen) instances
as possible. SVMs are one of many possible methods for learning the weight vector.

SVMs are trained on a set of data (the training set) that provides many example
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input/output pairs; this training set is disjoint from the test set that is used to eval-
uate the final model because most modern machine learning methods can achieve
near-perfect performance on the training set that does not usually generalize well
to unseen (test) data. The training data are used by SVMs to learn the weight vector.
The actual method used by SVMs to learn the weights has a geometric intuition:
the line (decision boundary) that is learned should be such that it separates the two
classes with the largest possible margin, allowing for better classification perfor-
mance on unseen data.

Figure 2.1 shows this intuition, compared to the decision boundary found by the
simple perceptron algorithm (Rosenblatt, 1958). The two point classes have each co-
ordinate sampled from normal distributions. Ultimately, we want to learn a classi-
fier that can separate the means of the distributions while remaining resilient to the
variance. So while the perceptron can separate the training data correctly, it is not
likely to work well for new test data that are sampled from the same distributions.

To convert the SVM intuition into computable mathematics, assume that we
have two parallel hyperplanes given by λ · x − b = ±1. We wish to maximize the
distance between these two hyperplanes while ensuring that no data come between
them, so each datum xi has either λ · xi − b ≥ 1 or λ · xi − b ≤ −1. The distance be-
tween the hyperplanes is given by 2

|λ| , so maximizing the margin is equivalent to
minimizing |λ|. This is expressed as a quadratic programming optimization prob-
lem (note that i indexes our data, so xi refers to an individual feature vector used to
represent one point):

min
λ,b

1
2 |λ|

2

s.t. yi (λ · xi − b) ≥ 1, ∀i
which can be solved using standard quadratic programming techniques (though
in practice other faster algorithms such as coordinate descent are often used). Note
that the 1

2 term is a mathematical convenience, so that there is no coefficient after
taking the derivative. This optimization problem is convex, so an optimal hyper-
plane will be found as long as the classes are linearly separable. The optimization
returns the vectors that lie on the margin; these are all that are needed to construct
the equation for the decision boundary (and hence, the weight vector) and as such
are called the support vectors (hence the term Support Vector Machine).

Linear separability is an important caveat; real-life problems often present data
that are not linearly separable. SVMs provide two ways of dealing with this: soft
margins and kernels. Soft margins relax the constraint that all points must be out-
side the margins, allowing for some points to be mislabelled. This is accomplished
by means of slack variables that allow for misclassified points up to a certain degree,
controlled by a cost hyperparameter C. The modified optimization becomes:

min
λ,b,ξ

1
2 |λ|

2 + C
∑

ξi

s.t. yi (λ · xi − b) ≥ 1− ξi, ∀i
ξi ≥ 0, ∀i

where C is the cost hyperparameter that controls how much the slack is penalized;
as C → ∞, the problem approaches the original hard-margin SVM problem. Figure
2.2 shows the SVM decision boundary for a problem that is not linearly separable.
Note that, even if a given problem is linearly separable, the decision boundary that
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Figure 2.2: The decision boundary found using soft-margin SVMs for a non-linearly-
separable problem. The perceptron algorithm would not converge for this problem
while the SVM provides a good decision boundary even though there are clearly
circles that penetrate square territory and vice versa. Points and lines are formatted
as in Figure 2.1. Note that there are many more support vectors in this case, and
there is no need for them to lie exactly on the margin thanks to the slack variables.

maximizes the margin may not be ideal if, for example, one or both of the classes
has or have outliers. Allowing some misclassified points further helps in isolating
the signal (the means of the two distributions) from the noise (the large variances
of the distributions).

In practice, various values of C are tried: models trained using different values
of C1 on a common training set can be evaluated on a development set. The model
yielding the best results provides an “optimal” value for C, which can then be used
to train models for final system evaluation. The development set is used so that
we do not unfairly advantage our systems by tuning our hyperparameters to be
optimized for the testing data. Alternatively, cross-validation can also be used; in
ten-fold cross-validation, for example, the training set is split into ten folds. One
fold is designated for development, and the models are trained on the remaining
data; this is repeated with each successive fold being used for development.2

Non-linear kernels allow SVMs to be applied to problems that are not linearly
1I usually use powers of two to try a large enough range of parameters; some use powers of ten.
2Held-out sets and cross-validation have important (theoretical) distinctions in what they opti-

mize, but in my experience cross-validation usually works well for NLP tasks unless the increased
computation time is an issue.
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separable by mapping the input problem into a higher-dimensional feature space.
Polynomial kernels allow n-degree mappings, while the radial basis function (RBF)
kernel is equivalent to an infinite-dimensional mapping. These allow the learning of
nonlinear decision boundaries. In my experience, using non-linear kernels has sel-
dom provided significantly better results than the simple linear kernel used in the
standard SVM formulation and are additionally cumbersome in that they require
additional hyperparameter tuning (the RBF kernel, for example, has one additional
parameter that must be tuned). Kernels also significantly slow down the entire pro-
cess. For these reasons, I do not use any SVM kernels in this thesis.

There are several free SVM packages that are available. LIBSVM (Chang and
Lin, 2001) is quite popular and available under the very permissive BSD license.
LIBLINEAR (Fan et al., 2008) is very fast, able to solve problems with millions of
features and thousands of data points in minutes, if not seconds. Like LIBSVM, it
is available under the BSD license; unlike LIBSVM, it does not support any kernels.
Since, as noted above, I do not use non-linear kernels, I employ LIBLINEAR to im-
plement SVMs in this thesis.

2.2 Applying SVMs to re-ranking

Sometimes, we have an existing system for a task to which we would like to add in-
formation but cannot do so directly. This system provides multiple possible outputs
for a given input, but does not always place the correct output at the top. This po-
tentially applies to many NLP tasks: syntactic parsing, machine translation, etc. For
a more intuitive example, consider search engines: imagine that we have an existing
search engine that does not always place the best document in the top position, as
indicated by user clicks on documents lower in the list. Because user clicks are not
available during the design of the system (and may not be easy to incorporate), we
can re-rank the search engine output using the user click information. We may also
want to incorporate results from other search engines.

SVMs can be applied to re-ranking (Joachims, 2002), bringing with them their
ability to apply many features to the problem. To understand this application, we
must first formalize the problem; it is broadly defined as follows. We are given an
input s; this is the overall task input, such as a sentence for parsing or a query for
a search engine. For each input s we have m possible outputs ti=1···m; these are
possible parse trees or documents for search engine retrieval. We define an integral
rank yi for each output ti such that if yi > yj then ti is to be ranked higher than
tj . Given an input s and an output ti, we have a featurizing function F (s, ti) that
returns a corresponding feature vector. I abbreviate F (s, ti) as fi where the input s
is implied.

Ultimately, we are learning the coefficients (the weight vector) for a linear com-
bination of the elements of the feature vector. Intuitively, we would like a weight
vector λ that can reproduce our desired rankings; if yi > yj , we would like to have:

λ · fi > λ · fj

To this we can apply the SVM’s maximum-margin intuition; we aim to learn a
weight vector that ranks fi higher than fj by a certain margin. Adding this mar-
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gin and the soft-margin slack gives:

λ · fi ≥ λ · fj + 1− ξi,j

We can rearrange this to get an inequality that is exactly like the SVM constraints:

λ ·
(
fi − fj

)
≥ 1− ξi,j

The casting of re-ranking as an SVM problem is becoming clear. For conve-
nience, we define p(s) as the set of all output pairs (ti, tj) such that yi > yj . Where
SVMs used for classification have one constraint for every input feature vector,
SVMs used for re-ranking have several constraints (plus corresponding slack vari-
able constraints): for a given input s, there is one constraint for every pair in p(s).
When we consider all of our data si=1···n, we have the following quadratic program-
ming optimization problem:

min
λ,ξ

1
2 |λ|

2 + C
∑

ξi,j,k

s.t.
∀ (tj , tk) ∈ p(si) : λ · (F (si, tj)− F (si, tk)) ≥ 1− ξi,j,k, ∀i

ξi,j,k ≥ 0, ∀i, j, k

We can see that this is equivalent to the SVM classification problem: we need
only make the simple substitution xi = F (si, tj)−F (si, tk). Intuitively, we can inter-
pret SVM re-ranking as a pairwise classification problem: given two outputs, should
one be ranked higher than the other? The mechanics of the SVM allow us to do this
without much added complexity: we need only compute the difference between
two feature vectors. While there exist packages to do SVM ranking, such as SVMrank

(Joachims, 2006), I directly convert SVM ranking problems into SVM classification
problems using a custom Python script, which allows me to use the very fast LIB-
LINEAR (Fan et al., 2008) while achieving the same overall performance.

2.3 Training SVM re-rankers

When training standard SVMs, the data (feature vector inputs with class label out-
puts) are supplied directly to the SVM. The algorithm does the optimization to find
the optimal weights according to the SVM optimization equations above. When
using SVM re-rankers, however, the training process is not as simple. The key is
that we are re-ranking a base system’s output, and in our ultimate use for an SVM
re-ranking model, the re-ranker will be applied to a system’s output on unseen test
data. If we feed the problem training set into the base system, it will (usually) learn a
model that works very well on the training set but less so on test data. If we then run
the model on the training data to produce outputs for re-ranking, our re-ranker will
not be able to learn how the re-ranking should be done in the general unseen case.
The amount of information in training data and test data often differs as well: when
counting n-grams, for example, features are constructed only for n-grams seen in
the training set; new n-grams in the test set are not counted, and even if they were,
the system would have no idea what to do with them since they never showed up
in the training data.
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The re-ranker, then, must be run on outputs that the system has not seen before.
At the same time, we want to give the re-ranker as much training data as we can
in order to obtain the best possible re-ranking model. My solution to this applies a
process similar to cross-validation mentioned above. I split the training data into ten
folds and train ten separate base system “sub-models”, each one using a different
set of nine folds. Each sub-model is then tested on the remaining fold of unseen data
in the training set; the results from each of the sub-models are then concatenated
together and the result is used as the training set for the SVM re-ranker. This gives
me system outputs that are indicative of the base system’s performance on unseen
data while preserving the size of the training set.

Avoiding such concessions can be disastrous. If we train the re-ranker on system
outputs that result from running the system on previously-seen (training) data, the
re-ranker will quite likely learn that the base system is almost always right, thereby
becoming effectively useless.

Finally, there are two important points that should be noted for training any
kind of SVM and that apply to many other machine learning methods as well:

1. All features should be properly scaled. The usual way—as provided in the
LIBSVM package—is to scale each feature linearly so that it falls between zero
and one. If this is not done, performance generally suffers, as features with
larger ranges tend to dominate the linear combination, which makes learning
optimal weights more difficult. I have never seen a performance decrease from
scaling—only an increase–so I always do feature scaling.

2. Certain feature types work better if the logarithm of the feature value is com-
puted prior to scaling. This is particularly true if we are more interested in
the ratio between two feature values than the difference. Ultimately, SVMs use
linear combinations; this means that two data points are differentiated from
each other according to the differences between their feature values (this is
explicitly the case for SVM re-ranking). Probabilities are an example of one
such feature type: we are usually interested in the ratio of one probability to
another, not the difference. This applies to word or character counts as well
(which can be interpreted as unnormalized probabilities).
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Chapter 3

Related work

This chapter provides a brief look at previous work that is related to this thesis: I
discuss grapheme-to-phoneme conversion, machine transliteration, and the combi-
nation of languages and systems for various tasks. Since the focus of this thesis is
not the core tasks of G2P or machine transliteration, I do not survey the relevant
methods in-depth and instead focus on the aspects that are especially relevant to
this thesis. In particular, I explicitly describe the Festival, Sequitur, and DirecTL+
systems as I make use of them directly.

3.1 Grapheme-to-phoneme conversion

The ultimate use of G2P is the crucial role it plays in speech synthesis. From this
perspective, we need to justify the development of general G2P methods. Is it re-
ally necessary to have complex methods that can convert an arbitrary string into its
corresponding transcription? Would a simple pronunciation dictionary suffice?

In fact, pronunciation dictionaries form the basis for the popular Festival1 end-
to-end speech synthesis system: words have their transcriptions retrieved from a
stored dictionary or lexicon. Unfortunately, word look-up turns out to be insuffi-
cient. The distribution of words is described by Zipf’s law (Manning and Schütze,
1999, pp. 23–25): the frequency of a word is roughly inversely proportional to its
rank order, or its position in a list of all words sorted by descending frequency. In
layman’s terms, this means that a few words occur very commonly (such as “the”,
“of”, etc.), but most occur rarely. Black et al. (1998) found that in a corpus of news-
style text, 4.6% of the words were words that did not occur in their lexicon; these are
known as out-of-vocabulary or OOV words. Zipf’s law makes it extremely difficult,
if not impossible in practice, to construct a pronunciation dictionary that covers
close to 100% of words.

One way of dealing with OOV words is to construct hand-written G2P rules.
Intuitively, it seems simple: for a given word, we can look at it and come up with
a rough collection of rules for why we pronounce each letter the way we do. For
example, in the word “car”, the ‘a’ is pronounced as /ɑ/, but in the word “care”, it is
pronounced as /e/. We attribute this to the ‘e’ at the end of the latter. Following this
reasoning, we should be able to construct general transcription rules that should

1http://www.cstr.ed.ac.uk/projects/festival/
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work for any unseen words.
Unfortunately, this intuition does not follow through, at least for English. It is

not always possible to provide reasoning for a certain pronunciation, other than
“that’s just how it is”. For example, the ‘o’ in “move” is pronounced as /u/ but as
/ʌ/ in “love”; that this is due purely to the ‘l’ versus the ‘m’ is debatable. In general,
manually constructing transcription rules is only feasible for languages where the
orthography (writing script) has a high correspondence with the pronunciation;
such languages are said to have more transparent orthographies. Spanish is one
such language (Kominek and Black, 2006).

Even for a highly transparent script, it can be tedious to construct rules man-
ually. Machine learning methods can help do so automatically, provided a suffi-
ciently large training corpus. Once we have some sort of transcription model for
OOV words (whether hand-built rules, rules learned via machine learning, or some
other machine learning method), our general transcription process starts with look-
ing up the word in the pronunciation lexicon; if it is not found, we then fall back to
the transcription model. As a side note, if memory is an issue (as in embedded envi-
ronments) we can reduce the size of the stored lexicon by removing the entries that
the model can predict correctly. If, as is the case for many modern machine learn-
ing methods, the model can achieve near-perfect accuracy on the training data, this
allows the removal of almost the entire lexicon.

3.1.1 Names

Names have often received special treatment in terms of G2P because they do not
always follow the same rules as regular words. While names are generally written
so as to roughly indicate pronunciation, they are often coloured by their etymo-
logical origins and can present groups of letters for which pronunciations are not
readily available, or else may use unusual or rare pronunciations (in context) for
certain letters. Pronunciation is further confounded by conventions used in writing
words and names from one language in another’s script (i.e., transliterating them).
For example, modern Hindi speakers often drop word-final schwas, but this is not
always reflected in the written form. My last name “Bhargava” is a good example of
this: in Hindi, it is pronounced without the final ‘a’, as /bʰaːrɡəʋ/ (Masica, 1991, pp.
107, 110). The convention is to include the final ‘a’ in the English spelling; this con-
vention likely comes from Sanskrit romanization, where schwas are only deleted
when marked explicitly in the source text. This process of schwa deletion occurs in
a number of Indo-Aryan languages2 (Masica, 1991, pp. 149–150), so knowing that a
given name is of Indian origin may be helpful in pronouncing or transliterating it
(Bhargava and Kondrak, 2010).

Names are a highly productive class: new, never-before-seen names are appear-
ing all the time, especially in the news, which reduces the utility of simply storing
names and their transcriptions (while the expense remains the same). Black et al.
(1998) observed that of the words that were not in their lexicon, 76.6% were names.
This tells us that, seeing as our G2P methods are used to supplement lexica for when
OOV words are encountered, we must have G2P approaches that can handle names

2There has been some work in modelling schwa deletion computationally (Choudhury et al., 2004;
Tyson and Nagar, 2009), which is especially relevant to G2P systems for these languages.
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well. The utility of treating names specially, however, seems to vary per language.
German names show a higher error rate than regular words (Kienappel and Kneser,
2001) and separate name-specific phoneme-to-phoneme converters have been ap-
plied to post-process the output from a G2P system for Dutch names (Yang et al.,
2006; van den Heuvel et al., 2007). For English, however, Black et al. (1998) report
similar accuracy on names as for other types of English words.

3.1.2 Festival

The popular Festival speech synthesis system follows the above transcription pro-
cess: it stores lexica, which are consulted to obtain a transcription for a word. When
an OOV word is encountered, Festival falls back on its general G2P model: a clas-
sification decision tree, also referred to as CARTs for Classification And Regression
Trees.

CARTs apply machine learning to the concept of decision trees. The output for
a given input is predicted by asking a series of questions about the input; the par-
ticular questions are learned automatically from training data. For example, in the
“car”/“care” example, we might write a rule to pronounce ‘a’ as /ɑ/ unless two
characters later there occurs a word-final ‘e’, in which case it is to be pronounced as
/e/ (this is, of course, a gross oversimplification). CARTs would learn such a rule—
in actuality, a series of rules—from the data.

The problem is set up as a classification problem: for each letter in the input
word, the task is to predict the corresponding phoneme. In addition to the usual
phonemes, a letter may also produce a null phoneme ε, in effect meaning that the
letter is “deleted” from the pronunciation (for example, in the word “phoenix”, we
may say that the ‘o’ is deleted, so it would be mapped to the null phoneme). The
features presented to the decision tree include the letter being considered, the four
preceding characters, and the four following characters. The decision tree is trained
on the featurized lexicon to learn the appropriate rules; this requires that individual
letters in the words in the training data be aligned to the corresponding phonemes.
This alignment is accomplished by means of an algorithm that requires a prede-
fined list of allowable phonemes for each letter, which then picks the most likely
phoneme for each letter using frequencies gathered from the entire training set.
While Festival’s CART-based classification approach makes sense at first glance, it
suffers from the problem that the prediction of the phoneme(s) generated by a given
letter is independent of the phoneme(s) predicted for the previous letter (Jiampoja-
marn, 2010).

3.1.3 Sequitur

Sequitur (Bisani and Ney, 2008) is a G2P system, not an end-to-end speech syn-
thesis package like Festival. Sequitur implements the joint n-gram model, which
combines graphemes and phonemes together into units dubbed graphones; mul-
tiple graphemes are allowed to be grouped with multiple phonemes. Probabilities
of graphone sequences are computed using the n-gram approximation: the proba-
bility of an individual graphone in a sequence is given by how often it follows the
previous n−1 graphones in the training data. The probabilities of each graphone in
a given sequence are then multiplied together to yield the probability for the whole
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sequence. To generate a transcription for a given input, the phoneme sequence that
gives the highest graphone sequence probability is chosen. The segmentation pa-
rameters that split word-transcription pairs into graphone sequences are learned
using the Expectation-Maximization (EM) algorithm.

Bisani and Ney (2008) report that Sequitur significantly outperforms methods
based on decision trees, and in fact is a top-performing system. The joint n-gram ap-
proach works in a left-to-right manner, and the use of graphones as the operational
unit allows Sequitur to construct better phoneme sequences, partially by making
use of information regarding previous phoneme decisions.

3.1.4 DirecTL+

Sequitur is a generative approach: it explicitly models the relationship between the
inputs and the outputs, and the underlying machine learning algorithms aim to
learn the parameters of that model. By contrast, DirecTL+ (Jiampojamarn et al.,
2010a) implements a discriminative method: the focus of the machine learning al-
gorithm is to learn parameters that increase system performance. SVMs are also
discriminative; they learn to discriminate between classes and the classes are mod-
elled simply as linear combinations of features (which, in turn, are extracted from
the inputs).

DirecTL+’s features are based on groupings of graphemes and phonemes, ne-
cessitating alignment of the training data. This is done using M2M-Aligner (Ji-
ampojamarn et al., 2007), which is an unsupervised alignment system, meaning
that it is learns how to align sequence pairs using a corpus of unaligned sequence
pairs (i.e., without seeing example alignments). M2M-Aligner is named as such
because it allows the construction of many-to-many alignments rather than being
forced to make one-to-one alignments that may not always make sense. For exam-
ple, the ‘ph’ letters often map to the phoneme /f/ in English.3 In a one-to-one or
even one-to-many alignment, we would have to set either ‘p’ or ‘h’ as producing
the null phoneme (i.e., being deleted; this is how Festival does it), when in fact the
phenomenon at work is that the two together produce /f/. With many-to-many align-
ments, ‘ph’ can be aligned directly to /f/, allowing this two-to-one phenomenon
to be expressed. M2M-Aligner’s algorithm is an extension of an EM algorithm for
learning a function to calculate the string edit distance (the number of edits between
two strings) from a corpus of string pairs (Ristad and Yianilos, 1998).

Given the aligned training set, DirecTL+ constructs feature vectors for each
input-output pair and uses an online training algorithm—meaning that each train-
ing datum is processed one-by-one rather than processing all data together as a
batch—to learn weights for the features. For each input, a number of possible out-
puts are generated, correct outputs identified, and then an SVM-like optimization
is performed to increase the score of the correct outputs as compared to the others
(this is very similar to the SVM re-ranking optimization constraints). To generate the
possible outputs for a given input sequence, DirecTL+ employs a phrasal decoder
that uses the features and weights to successively build up candidate outputs.

It should be noted that DirecTL+ is an extension of the original DirecTL (Ji-
ampojamarn et al., 2008). DirecTL+ provides new features based on joint n-grams,

3Examples such as “aphelion” suggest that morphology may play a role in ‘ph’ producing /f/.
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demonstrating an advantage of the discriminative (feature-based) approach: pro-
vided that they can be appropriately featurized, other methods can be incorporated
into the discriminative model. Thanks in part to these extra features, DirecTL+ out-
performs Sequitur, making it the state-of-the-art G2P system (Jiampojamarn et al.,
2010a).

3.2 Machine transliteration

Conceptually, machine transliteration is very similar to G2P: an input string must be
converted into a string in another script, with pronunciation being the key quality
that is preserved. For G2P the output is a phonetic transcription; for transliteration,
it is a representation in another language’s script.

Linguistically, the process is more complex. When humans transliterate some-
thing, we consider the pronunciation of the source word in the source language,
and then approximate that pronunciation in the target language.4 The approxima-
tion is then used to write out the transliteration in the target orthography. Note
that, because of the differences in the source- and target-language phonologies and
orthographies, machine transliteration can be considered more complex than G2P.
Knight and Graehl (1998) use a four-stage system that realizes the above conceptual
process, and this includes a (specialized) G2P system.

The uses of transliterations are also different. Where G2P finds obvious ap-
plication in speech synthesis, transliterations are vital to machine translation sys-
tems: named entities are transliterated (i.e., the pronunciation is roughly preserved),
whereas ordinary words are translated (i.e., the meaning is roughly preserved). This
has led some to refer to transliteration as phonetic translation (Li et al., 2009a).

Given this application, transliteration is usually applied only to named enti-
ties, although sometimes dictionary words are transliterated as well5. Given that
names are difficult to handle just by storing them (see Chapter 3.1.1), the old-hat
G2P method of storing transcriptions and reverting to a model when an OOV word
is encountered will not work; machine transliteration needs a general approach. At
the same time, transliterations are produced by humans more easily than are pho-
netic transcriptions: they do not require phonetic knowledge, and are a necessary
byproduct of translations, which are appearing constantly (for international news
stories, for example).

The 2009 and 2010 Named Entities Workshops had shared tasks in which teams
submitted machine transliteration systems for evaluation on a common corpus (Li
et al., 2009b, 2010). Both phoneme-based systems, where the conversion process is
grapheme→phoneme→grapheme, as well as grapheme-based systems, for which
the conversion process is grapheme→grapheme, were submitted; the ones that I

4If the objective is to conserve the original pronunciation as much as possible, which it usually is for
transliteration, the transliterator should be able to produce the original pronunciation and therefore
his or her proficiency should be in the less transparent language (or whichever language has the least
transparent orthographic representation for the given name). This prevents opaque source names
from being mis-transliterated and allows for correct resulting transliterations.

5For example, I would transliterate “University of Alberta” in its entirety, even though the only
name is “Alberta”; the three words together refer to a single named entity and are hence all translit-
erated.
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consider here are grapheme-based and are in fact G2P systems applied to transliter-
ation. In particular, Finch and Sumita (2010) applied Sequitur along with a phrase-
based machine translation system together to perform the transliteration task. Ji-
ampojamarn et al. (2009, 2010b) applied DirecTL+ with some optional language-
specific enhancements that I do not consider here. Both approaches yielded top
results, though the rankings varied per-language.

Interestingly, we can see the increase in complexity of transliteration over G2P
from the increase in performance seen using DirecTL+ with language-specific ap-
proaches. While DirecTL+ was applied directly to each transliteration task, various
modifications were made on a per-language basis (converting Chinese to Pinyin,
for example), and results were generally higher with these modifications than with-
out. Furthermore, word accuracies for G2P are usually above 70%, depending on
the specific corpus, while transliteration word accuracies fall much lower (such as
around 45% for English-to-Hindi transliteration) for comparable corpus sizes.

3.3 Combining languages and systems

I focus in this thesis on G2P and machine transliteration, particularly on how data
from the two tasks can be used to inform models for either. This is conceptually sim-
ilar to approaches for model and system combination. In statistical machine trans-
lation (SMT), methods that incorporate translations from other languages (Utiyama
and Isahara, 2007; Cohn and Lapata, 2007; Wu and Wang, 2009) have proven effec-
tive: when phrase translations are unavailable for a certain language, one can look
at other languages where the translation is available and then translate from that
language. A similar pivoting approach has also been applied to machine transliter-
ation (Zhang et al., 2010); Khapra et al. (2010) refer to this as transliterating through
“bridge” languages. Notably, many of these works have focused on cases in which
there are less data available. Others have incorporated paraphrases (Callison-Burch
et al., 2006), and applying multiple languages has also yielded success for part-of-
speech tagging (Snyder et al., 2009).

Finch and Sumita (2010) combined two very different approaches to translitera-
tion using simple linear interpolation: they merged Sequitur’s output with that of
a phrase-based SMT system, and then re-ranked the entire list using a linear com-
bination of the scores from the two systems. The linear weights were hand-tuned.
Similarly, Matusov et al. (2006) looked at the output of multiple machine transla-
tion systems, and used the various hypotheses to re-order each other, choosing a
consensus hypothesis from a constructed confusion network.

Finally, Loots and Niesler (2009) considered the problem of adapting G2P cor-
pora for one accent to another accent—the British Received Pronunciation (RP) to
South African English (SAE), for example. They found that given a word for which
there was no entry in the SAE corpus, it was better to find the same word in the RP
corpus and convert its transcription than to try to guess the transcription in SAE
directly from the word. Results were similar in the opposite direction and to and
from American English corpora. However, their experiments were limited to deci-
sion trees, which as noted above perform rather poorly compared to newer methods
(see also Appendix B), so it is not clear that this finding would extend to state-of-the-
art G2P systems. Still, it represents a possible way of applying the information from
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one G2P corpus to improve the performance of a G2P system on another corpus.
These approaches all combine various data of the same type or systems that

perform the same task; my focus in this thesis is on additionally looking at other
tasks for potentially useful information (transliterations for G2P, for example).
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Chapter 4

Applying supplemental data to
G2P and machine transliteration

In this chapter, I present my method for combining related transliteration and tran-
scription data into base G2P and machine transliteration systems. Because the two
base tasks are different, I first set the problem up in an abstract way before dis-
cussing the specific cases of G2P and machine transliteration. Once the problems
have been described, I build up the case for applying SVM re-ranking and then
present the experiments and discuss their results.

4.1 Abstract approach description

For the type of problems I seek to address, I assume, as is the case for machine trans-
lation, part-of-speech tagging, grapheme-to-phoneme conversion, machine translit-
eration, and others, that the ultimate goal is to learn a function that produces an
output sequence t given an input sequence s. I further assume that there is avail-
able a system T (s) that attempts this task and produces an n-best list of outputs
t̂1, t̂2, . . . , t̂n for the input s. T is imperfect; i.e., the correct output t may appear in
a position in the list other than the first (or it may not appear at all, but in this case
nothing can be done post hoc). It is reasonable to expect that such a system also pro-
vides a list of scores k1, k2, . . . , kn corresponding to the outputs.

The ultimate objective is to achieve higher performance for the task in question.
To this end, I turn to supplemental data sources A (s) ,B (s) , . . . that, given s, pro-
vide corresponding information a, b, . . . respectively. Practically, a, b, . . . should be
related to t in some way. For example, A,B, . . . could represent other systems that
perform a similar or equivalent task to that of T . More concretely, if T (s) is a ma-
chine transliteration system, one might use a completely different transliteration
system A (s) to generate an alternative hypothesis for the same input s, as done by
Finch and Sumita (2010). Given the supplemental data sources, the extra informa-
tion a, b, . . . can be used to judge the quality of each output t̂1, . . . , t̂n and re-rank
the output list appropriately. The specifics of how the re-ranking is done, or how
the alternative information is applied, will vary per task; my proposal is that the
same (or similar) type of information that is used in the main task can be re-applied
across the supplemental data.

While it is generally true that incorporating information directly into an existing

19



system is better than injecting it post hoc, this is not always feasible. With genera-
tive approaches, we would have to find some way of modelling the relationship be-
tween the system inputs, outputs, and the supplemental data. Even discriminative
approaches can present a challenge to injecting information that is supplemental to
the task at hand; DirecTL+, for example, is discriminative, but its decoder needs
to be able to generate features on-the-fly for partial grapheme-phoneme sequence
pairs. Treating the system as an n-best list–generating black box bypasses this limi-
tation, and further provides the advantage of an approach that can work on top of
any system that can provide n-best output lists.

4.2 Re-ranking G2P and machine transliteration

My focus is on improving G2P and machine transliteration systems. Consider first
the G2P case, in which we are trying to predict the transcription of a given input
word. The key point that I would like to make here is that a transliteration of a
given input can be thought of as providing some alternative pronunciation informa-
tion about a given input; in transliteration, the aim is to write some named entity
in a different script while preserving the pronunciation as much as possible. The
pronunciation information is there implicitly, albeit in a different form than what
we expect (i.e., phoneme sequences). In terms of actual use, this is a realistic sce-
nario; transliterations can often be mined cheaply from the Web (see, for example,
the results of the 2010 Named Entities Workshop (NEWS) Transliteration Mining
Shared Task (Kumaran et al., 2010)) whereas transcriptions are scarce.

The presence of this alternative information should make clear the potential of
casting G2P together with transliteration in the above framework: T would be some
G2P system that provides n-best output lists and a, b, . . . would be transliterations
of the input in various languages.

Similarly, when we are transliterating from one language to another—say, from
English to Hindi—we can look at transliterations in other languages to provide
some supplemental information. In this case, T would be a transliteration system
and again a, b, . . . would be transliterations in other languages.

Using transliterations in this way suggests that perhaps G2P transcription data
can be used as supplemental data for transliteration. This makes intuitive sense too:
if we know the pronunciation (via a transcription) of a word, we should be able to
transliterate it better. Lastly, applying G2P to transliterations suggests that G2P can
be used to help G2P as well. At first glance, this seems to make little sense: if we have
the transcription of a word, how can we help that with another transcription? The
trick is to observe that there exist multiple pronunciation corpora, and because they
often use different conventions or rules, merging them can have deleterious effects.
Our task would then be to improve the performance of a G2P system trained on one
corpus using data from another corpus.

To summarize, we have two base tasks—G2P and machine transliteration—that
we would like to improve using two classes of supplemental data: transliterations
and transcriptions. Table 4.1 shows the various task/supplemental data combina-
tions with sample inputs, outputs, and supplemental data.
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Supplemental data
Transcriptions Transliterations

Ta
sk

G
2P

Input Outputs Sup. data

Sudan sud@n sudAn
sud{n

...
sud#n

Input Outputs Sup. data

McGee m@kJi मगी

m@gi マギー

...
...

m@CJi Макги

M
TL

Input Outputs Sup. data

Sudan ズーダン sud#n

スーダン sudAn
ズダン

...
スユーダン

Input Outputs Sup. data

DOS डोस ドス

दोस ДОС

डॉस ดอส
...

...
दॉनस

Table 4.1: G2P and machine transliteration (MTL) system inputs, outputs, and sup-
plemental data. Correct outputs are shown boxed. The transcriptions are shown
in the corpus’s format rather than IPA to illustrate the differences between corpora.

4.2.1 Leveraging similarity directly

The question remains of how exactly to leverage the supplemental data. One pos-
sibility is to use some similarity function S that can provide the similarity between
a candidate output t̂i and a supplemental datum a. If there is only one source of
supplemental data—e.g., one transliteration language—a simple (and intuitive) ap-
proach would be to select from the n-best list the output that is most similar to the
supplemental datum. Consider the case of applying transliterations to G2P in Ta-
ble 4.1 (the top right square): the second output is closest perceptually to the Hindi
transliteration of the input (as compared to the other outputs). Of course, this ap-
proach is overly simplistic in that it ignores the scores and relative ordering of the
base system’s output list.

A better idea, then, would be to use a linear combination of the base system’s
score ki and the similarity S

(
t̂i, a

)
to provide a new score with which the base sys-

tem’s output list can be re-ranked. In other words, define:

ri = λS
(
t̂i, a

)
+ (1− λ) ki

where the linear combination weight 0 ≤ λ ≤ 1 chooses how strongly the sup-
plemental datum is used and is optimized on a held-out set. The output list can
then be re-ranked using ri rather than ki. This approach is similar to the method
used by Finch and Sumita (2010) to combine the scores of two different machine
transliteration systems.

Both of these approaches depend on the existence of a similarity function S.
Unfortunately, the system outputs in Table 4.1 are never in the same script as the
supplemental data—the closest they get is when using other pronunciation corpora
for G2P (the top left square). Sometimes it is possible to convert one to the other;
in such cases, simple methods such as minimum edit (Levenshtein) distance (Juraf-
sky and Martin, 2009, pp. 73–75) or lowest common subsequence ratio (LCSR) can
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Gershwininput

/ɡɜːʃwɪn//d͡ʒɜːʃwɪn/ /d͡ʒɛɹʃwɪn/n-best outputs

गश�िवन ガーシュウィン Гершвинtransliterations
(/ɡʌrʃʋɪn/) (/ɡaːɕuwiɴ/) (/ɡerʂvin/)

Figure 4.1: An example showing the pairs used for feature construction with
transliterations being used to augment a G2P system. Each arrow links a pair used
to generate features. One feature vector is constructed for each system output.

be applied. There are also more sophisticated methods such as ALINE (Kondrak,
2000), which specifically computes the distance between pairs of phonemes. Doing
the actual conversion is usually difficult, however, requiring much training data or
specific linguistic expertise.

A more general approach would compute the similarity between the output
and the supplemental data directly. For example, the edit distance function can be
learned from a sufficient set of training data using the EM algorithm (Ristad and
Yianilos, 1998). In this thesis, I use M2M-Aligner (Jiampojamarn et al., 2007); as
noted in Chapter 3.1.4, M2M-Aligner is an unsupervised aligner that uses an ex-
tension of the learned edit distance algorithm, allowing many-to-many alignments.
For any alignment between two input strings that it computes, it provides an align-
ment probability that is representative of the similarity between the two strings.
Since M2M-Aligner is unsupervised, it can be applied to compute alignments be-
tween any two scripts provided sufficient training data, allowing it to be used for
all four cases in Table 4.1.

4.2.2 Applying SVM re-ranking

The methods described above in Chapter 4.2.1 are difficult to generalize to situations
where there are multiple sources of supplemental data available, such as multiple
transliteration languages. A re-ranker based on a linear combination is still possi-
ble, but having multiple data sources increases the number of linear weights, sig-
nificantly complicating hand-tuning. Thankfully, SVM re-ranking offers a method
for finding optimal weights for an arbitrary number of parameters. This addition-
ally allows the incorporation of not just multiple data sources but multiple types
of features: where before there were only similarities, there may now be features
based on n-grams as well.

Applying SVM re-ranking means that a feature vector is constructed for every
output. My process for this is (at a broad level) as follows:

1. For each input s, gather all supplemental data a, b, . . . that is available.

2. For an output t̂i generated by the base system T (s), generate a pair with the
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input
(
t̂i, s

)
and one pair with each supplemental datum

(
t̂i, a

)
,
(
t̂i, b

)
, . . .

3. Generate features for each pair and add them to the feature vector fi for the
output t̂i.

Figure 4.1 shows this visually for the case of transliterations being applied to G2P.
Broadly, my use of SVM re-ranking incorporates two feature classes: those based

on scores and those based on n-grams. The score-based features are obtained either
from the base system (for input-output pairs) or from M2M-Aligner (for output-
supplemental pairs); in the latter case, I use the logarithm of M2M-Aligner’s align-
ment probability. In addition to the scores, I also compute the differences between
scores in the n-best list. For example, if there are two outputs, one with a system
score of 10 and the other with a system score of 5, the feature vector for the first
output includes 10 (the system score), 0 (the difference with the first output’s score),
and 5 (the difference with the second output’s score) as features, while the second
feature vector includes 5 (the system score),−5 (the difference with the first output’s
score), and 0 (the difference with the second output’s score).

The set of binary (indicator) n-gram features includes those used in DirecTL+
(Jiampojamarn et al., 2010a). They can be divided into four types:

1. The context features bind output symbols with n-grams of varying sizes in a
window of size c centred around a corresponding position on the input side.

2. The transition features are bigrams on the output side.

3. The linear chain features combine the context features with the bigram tran-
sition features.

4. The jointn-gram features aren-grams containing both input and output sym-
bols.

I apply these features in a new way: instead of being constructed strictly from a
given input-output set, I expand their use across all available supplemental data
simultaneously. The n-gram features are applied across all output-supplemental
pairs as well as the input-output pairs corresponding to the n-best lists.

Unlike a traditional G2P system, the re-ranking process has access to the entire
outputs produced by the base system. By swapping the input and the output side,
we can add reverse context and linear-chain features. For example, this allows the
inclusion of a variety of n-grams in the supplemental strings with a single corre-
sponding output character.

Table 4.2 shows the various n-gram feature types. Note that the construction
of n-gram features presupposes a fixed alignment between the input and output
sequences. If the base system does not provide any structure (alignments) in the
output, I align them with M2M-Aligner. The transliteration-transcription pairs are
aligned uniformly by M2M-Aligner, which at the same time produces the corre-
sponding similarity scores. Unlike in machine translation, M2M-Aligner produces
monotonic alignments—there is no reordering. This is the standard approach for
G2P (Jiampojamarn and Kondrak, 2010) and machine transliteration, and makes
sense: phonemes do not reorder themselves. If M2M-Aligner is unable to produce
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context xi−cyi reverse context xiyi−c

...
...

xi+cyi xiyi+c

xi−cxi−c+1yi xiyi−cyi−c+1

...
...

xi+c−1xi+cyi xiyi+c−1yi+c

...
...

xi−c · · ·xi+cyi xiyi−c · · · yi+c

transition yi−1yi

linear chain xi−cyi−1yi reverse linear xi−1xiyi−c

... chain
...

xi+cyi−1yi xi−1xiyi+c

xi−cxi−c+1yi−1yi xi−1xiyi−cyi−c+1

...
...

xi+c−1xi+cyi−1yi xi−1xiyi+c−1yi+c

...
...

xi−c · · ·xi+cyi−1yi yi−1yixi−c · · ·xi+c

joint n-gram xi+1−nyi+1−nxiyi
...
xi−1yi−1xiyi
xi+1−nyi+1−nxi+2−nyi+2−nxiyi
...
xi−2yi−2xi−1yi−1xiyi
...
xi+1−nyi+1−n · · ·xi−1yi−1xiyi

Table 4.2: The different types of n-gram features used in the re-ranker. This table is
an extension of one by Jiampojamarn et al. (2010a).

an alignment, I indicate this with a binary feature that is included with the n-gram
features.

This re-ranking approach is similar to that of Song et al. (2010), who used an
averaged perceptron re-ranker for English-to-Chinese machine transliteration. The
main differences in my application of re-ranking is that I incorporate features from
supplemental data, whereas their approach uses features constructed only from
the inputs and system outputs and derivations thereof. I additionally use SVM re-
ranking rather than perceptrons.
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4.3 Experimental setup

4.3.1 Data

I use two corpora to provide transcriptions: Combilex (Richmond et al., 2009) and
CELEX (Baayen et al., 1996). Combilex has just under 500 multi-word entries, which
I discard, as it is not always simple to match the individual words with their tran-
scriptions. I also discard all diacritics and duplicate entries, yielding 25 575 unique
entries. CELEX requires no such preprocessing and provides 66 372 unique entries.

All experiments use 10% of the data set for testing, 10% for development, and
the remaining 80% for training. The development set is used for initial tests and
is merged with the training set for final testing (the base systems may then use a
subset of this for their own development purposes during training).

The transliteration data come from the shared tasks of the 2009 and 2010 Named
Entities Workshops (Li et al., 2009a, 2010). I combine the training and development
sets from all of the 2010 English-source corpora as well as the English-to-Russian
data from 2009, which makes nine languages in total. Note that these translitera-
tion corpora are noisy: Jiampojamarn et al. (2009) found a significant increase in
English-to-Hindi transliteration performance with a simple cleaning of the data.
The number of entries in the transliteration corpora can be seen below in Table 4.3.

4.3.2 Base systems

Importantly, obtaining positive results with the SVM re-ranker on one base sys-
tem only would not conclusively show that the overall method works, only that it
works for the one system. Furthermore, the n-gram features I use are very similar
to the DirecTL+ features, so applying them to any non-DirecTL+ system should
provide an increase in performance simply by virtue of the different type of infor-
mation being included (conceptually similar to how DirecTL+ incorporates the joint
n-gram information used by Sequitur). Therefore, it is important that there be mul-
tiple base systems and that they include DirecTL+. Positive results with the latter
would demonstrate that the supplemental data do provide useful information, and
positive results over all or most base systems would demonstrate that incorporating
that information via SVM re-ranking works in general.

I use the three G2P systems described in Chapter 3.1: Festival, Sequitur, and
DirecTL+. I use these particular systems because they are freely available, Festi-
val is very popular, and Sequitur and DirecTL+ represent state-of-the-art G2P ap-
proaches. All systems are capable of providing n-best output lists along with scores
for each output, although for Festival they must be constructed manually from the
list of output probabilities for each input character. As noted above, I use M2M-
Aligner to provide alignments for n-gram feature generation; the training data are
obtained by intersecting the supplemental data with the primary data for each lan-
guage. I set a lower limit of −100 on the M2M-Aligner log-probabilities, and use
the default of 2-2 alignments; deletions are enabled for the supplemental data side
of the alignment.

Because of the similarity between G2P and machine transliteration, G2P systems
can often be applied directly to machine transliteration; Finch and Sumita (2010) in
part apply Sequitur and Jiampojamarn et al. (2009, 2010b) apply DirecTL+. I sim-
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ilarly use Sequitur and DirecTL+ but exclude Festival for the machine translitera-
tion experiments because it is unable to work with Unicode characters.

I run DirecTL+ with all of the features described by Jiampojamarn et al. (2010a):
context features, transition features, linear chain features, and joint n-gram features.
System parameters, such as maximum number of iterations, are determined during
development. For Sequitur, I keep default options except for the enabling of the 10
best outputs. DirecTL+ and Sequitur are both modified to exclude any null outputs
(i.e., those in which every input letter is deleted), and Sequitur is additionally mod-
ified to provide log-probabilities instead of regular probabilities. Festival requires
a list of “allowable” alignments that generated manually. I use 10-best output lists
for all systems.

Note that the three base systems differ slightly in terms of what structure infor-
mation they provide in their outputs: Festival operates letter-by-letter, so I use the
single-letter inputs with the corresponding outputs as the aligned units; DirecTL+
provides many-to-many alignments in its output; but Sequitur provides no infor-
mation regarding the output structure. I use M2M-Aligner to provide alignments
for Sequitur’s outputs to ensure that inter-system comparisons remain fair.

The SVM re-ranker ultimately operates under the assumption of availability of
supplemental data. For this reason, all reported scores are on a subset of the test set
where the supplemental data are available. This means that the scores do not neces-
sarily reflect the individual systems’ performance on the full test set. See Appendix
B for a full comparison of these G2P systems.

When comparing system performance, I use the McNemar test for statistical
significance. In this thesis, all error reductions are statistically significant at the p <
0.01 level unless otherwise stated. I do not distinguish between the p < 0.01 and
p < 0.001 levels here. See Appendix A for further discussion of the McNemar test
and statistical significance.

In addition to comparing base system performance with the SVM re-ranked re-
sults, I also include the results achievable by an oracle re-ranker, i.e., a re-ranker
that automatically selects the correct output from the n-best list. An oracle re-ranker
is not a system that is implementable in a real-world scenario, as it requires prior
knowledge of the correct output, but it allows us to see the upper bound for re-
ranking and how close the use of supplemental data (via SVM re-ranking) can bring
us to it.

4.4 Improving G2P with transliterations1

As described in Chapter 1.2, applying transliterations to G2P represents a realistic
scenario: a G2P system may mis-predict an ambiguous character and translitera-
tions can help disambiguate it. A transliteration cannot be followed blindly, how-
ever, lest the foreign phonology affect our pronunciation; following only one lan-
guage can therefore be difficult. Furthermore, the transliterations are sometimes
noisy or incorrect; for example, “Aretha” is transliterated as एरीथा, with the initial
“A” as /e/ instead of /ə/ in the English-Hindi transliteration corpus. This is not a
matter of adjusting for Hindi phonology: if I were to transliterate the name, I would

1A version of this chapter has been accepted for publication (Bhargava and Kondrak, 2011).
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Language Corpus size Overlap

Bengali 12785 2484
Chinese 37753 5100
Hindi 12380 2852
Japanese 26206 8377
Kannada 10543 2440
Korean 6761 3561
Russian 6447 604
Tamil 10646 2499
Thai 27023 7068

Table 4.3: The number of unique single-word entries in the transliteration corpora
for each Hindi language and the amount of common data (overlap) with the Com-
bilex data.

not do it that way2. Similarly, the Russian transliteration of “McGee” shown in Ta-
ble 4.1 provides a pronunciation closer to /məkɡi/ than to the correct /məɡi/ (even
though both might be considered correct by humans, the pronunciation corpus does
not indicate as such). Using multiple languages can help smooth out such noise in
the data; the feature-based nature of SVM re-ranking allows us to do this easily.

To train the re-ranker, the transliteration data are intersected with the Combilex
G2P data. I focus on Combilex because it provides information regarding whether
an entry is a name or a core vocabulary word, allowing some comparisons between
the two to be made. In total, there are 11 157 G2P entries for which there is at least
one transliteration available. Table 4.3 shows the overlap between Combilex and the
transliteration data for each language. As noted above, the base systems are trained
on the full training set while the re-ranker is trained (as is necessary) on the subset
of the training set for which at least one transliteration is available. In addition to
this, the systems are evaluated in isolation on those names in the test set that appear
in the names section of Combilex and similarly for the core vocabulary section; this
allows us to see how well the re-ranking works in the two cases.

Table 4.4 shows the results on the test set of 1 243 words, with 724 of these
words appearing in the names section and 527 appearing in the core vocabulary
section (some words appear in both, which is why the numbers do not add up). The
systems are evaluated on the full (intersected) Combilex test set; additionally, they
are evaluated separately on the entries appearing in the names and core vocabulary
sections. Festival shows the most improvement, but this is unsurprising given that it
had the lowest base system performance. Sequitur also gives high error reductions
while DirecTL+ sees more modest increases in performance.

Overall, we can see that the n-gram features are much more important than the
score features, providing much higher error reductions. Furthermore, the translit-
eration-informed re-ranking does better for names than it does for core vocabulary.
In practice, this means that transliterations are most useful for names; this makes
sense considering that named entities are their primary raison d’être.

2Perhaps the pronunciation in India would be different from how I pronounce it as a native English
speaker, but a transliteration is supposed to reflect the original pronunciation as closely as possible.
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Festival Sequitur DirecTL+
Test set Acc. ERR Acc. ERR Acc. ERR

Full Base 59.6 72.7 76.5
SVM-ngram 71.0 28.3 77.5 17.7 78.4 7.9
SVM-score 63.7 10.2 73.9 4.4 77.2 3.1
SVM-full 71.7 29.9 78.2 20.3 78.5 8.6
Oracle-RR 83.5 59.2 93.7 77.1 93.0 70.2

Names Base 56.6 72.5 75.7
SVM-full 70.9 32.8 78.6 22.1 78.7 12.5
Oracle-RR 90.9 56.1 93.2 75.4 92.0 67.1

Core Base 63.6 72.5 77.8
SVM-full 72.5 29.5 77.4 17.9 78.1 1.7
Oracle-RR 86.9 64.1 94.5 80.0 94.5 75.2

Table 4.4: Word accuracies and error rate reduction (ERR) in percentages for Com-
bilex G2P augmented by corresponding transliterations. Base is the base sys-
tem while SVM-full represents the same system with its output re-ranked using
transliterations. SVM-ngram and SVM-score are similar to SVM-full but use the
n-gram and score features only, respectively. Oracle-RR shows the results of an or-
acle re-ranker. Statistically insignificant error reductions are shown italicized.

4.5 Improving G2P with an alternative pronunciation cor-
pus

The next task is to use multiple G2P corpora (two, in my case) in tandem in an effec-
tive manner. A first instinct might be to merge distinct corpora, but this has two ma-
jor problems: (a) the corpora, having been created by completely separate groups,
use different conventions and are perhaps written for different accents (although
here Combilex and CELEX both use the Received Pronunciation); and (b) the cor-
pora likely use different phonemic representations. For the latter, it may seem sensi-
ble to convert the format of one corpus to that of another since the transcriptions are
all supposed to be transparent representations of phonemes. Unfortunately, differ-
ent corpora make varying levels of distinction between sounds; for example, Com-
bilex differentiates between allophones of /l/ where CELEX does not. This makes
the validity of simple conversion less clear even if it is still doable.

If we treat one corpus as our primary G2P corpus and the other as an alterna-
tive, we can apply SVM re-ranking to incorporate the alternative data. In order to
demonstrate the utility of SVM re-ranking, it is important to show that it can pro-
vide better results than simple conversion and merging.

Practically, this means that I use CELEX as the primary G2P corpus since con-
verting from Combilex to CELEX is possible but not vice versa; CELEX includes
some phonemes where it is not clear how to map them to Combilex. (On the other
hand, most would agree that mapping both allophones of /l/ in Combilex—one
being the “regular l” /l/ and the other the “dark l” /ɫ/—to the one /l/ phoneme
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in CELEX is acceptable.) As well, in order to make a proper comparison between
corpus merging and re-ranking, the two approaches must be evaluated on the same
corpus. The limiting factor is the latter, which must be evaluated on a subset of the
two corpora that have common entries; re-ranking can only be done when there is
an entry available in another corpus, just as with transliterations above in Chapter
4.4.

In addition to the above merging method, applying one corpus to another is sim-
ilar to the notion of domain adaptation. Unfortunately, most methods for domain
adaptation would work only for a single system, requiring modification of how it
handles the data. Such methods are not applicable in a black-box manner. How-
ever, the work of Loots and Niesler (2009) is applicable (see Chapter 3.3); instead
of using an external-corpus entry to re-rank a system’s output list, a G2P system
could be applied to convert the external-corpus transcription to a more appropriate
format for the current corpus—a phoneme-to-phoneme (P2P) conversion, in other
words. This provides an additional approach against which we can compare SVM
re-ranking. To provide a use case, imagine being given a word and asked for its
transcription in CELEX format. It is unavailable in the CELEX corpus, so instead
we look in Combilex and find it there; we then convert the Combilex transcription
to CELEX’s format using a G2P system as noted above. Festival is not well-suited
to this task, as there will often be extraneous phonemes in one transcription versus
another; Festival can only handle such phonemes (that should be deleted) on one
side, so I exclude Festival for this particular test.

The CELEX corpus, which has 66 372 unique entries, and the Combilex corpus,
which has 25 575 unique entries, have 15 028 entries in common. Importantly, this
confirms the viability of our usage scenario: CELEX has 51 344 entries that do not
appear in Combilex, and Combilex has 10 547 entries that do not appear in CELEX.
Each is therefore a potential resource to exploit in a real-world scenario.

The experimental procedure, then, is as follows:

1. Separate 10% of CELEX for testing.

2. Create a separate combined corpus wherein Combilex is converted to CELEX
format and merged with CELEX; I do this separately for the training and test
sets.

3. Train a G2P model on the CELEX-only training set, and another on the com-
bined training set.

4. Intersect the CELEX training set with the Combilex corpus. Repeat for the
CELEX test set.

5. Train the re-ranker on the intersected training set using the G2P system output
from CELEX and alternative data from Combilex.

6. Train a P2P system (using any general G2P system) to convert the Combilex
phonemes to the CELEX phonemes using the intersected training set.

7. Evaluate the base CELEX-only model, the combined model, the P2P converter,
and the re-ranker on the intersected test set. Because the combined model was
trained on two separate corpora, it is evaluated such that if either of the two
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Festival Sequitur DirecTL+
Acc. ERR Acc. ERR Acc. ERR

Base 65.0 87.3 88.1
CELEX+Combilex 62.1 — 74.2 — 71.6 —
P2P 85.7 — 87.0 —
SVM-ngram 84.2 54.8 93.0 45.0 92.7 40.0
SVM-score 80.8 45.2 92.0 37.2 91.8 30.9
SVM-full 84.1 54.6 92.7 42.9 92.0 32.6
Oracle-RR 88.7 67.8 97.6 81.2 96.7 72.5

Table 4.5: Word accuracies and error rate reductions (ERR) in percentages for
CELEX G2P augmented by Combilex transcriptions. Base, SVM-ngram, SVM-score,
SVM-full, and Oracle-RR are as in Table 4.4. P2P is the base system trained to con-
vert Combilex transcriptions to CELEX transcriptions. CELEX+Combilex is the base
system trained on a combined CELEX and Combilex training set.

corpora say an output is correct, it is considered as such. The other two models
are evaluated using CELEX only.

Of course, system parameters are set using the separate development set.
Table 4.5 shows the results on the intersected test set of 1 498 words. We can

see that merging the corpora provides a clear detriment in performance for data
where an alternative transcription is available from another corpus. Even if we look
at the full CELEX test set (as opposed to the intersected subset used in Table 4.5),
DirecTL+ trained only on CELEX achieves 93.0% word accuracy on the CELEX test
set where DirecTL+ trained on CELEX merged with Combilex achieves 87.3%. Evi-
dently, the disparate conventions of the two corpora “confuse” the G2P models; the
SVM re-ranker avoids this and learns the correspondences between the two cor-
pora, re-ranking the output lists appropriately. We might further consider the P2P
approach and suggest the use of the Combilex-to-CELEX converter in place of a
G2P system to perform the phoneme-to-phoneme conversion (this would be en-
tirely independent of any base system); this achieves 64.8% word accuracy, much
lower than using a G2P system. Clearly a simple mapping script isn’t enough to
capture the differences between the corpora.

We see impressive error reductions for all three systems, though (as in Chap-
ter 4.4) Festival benefits more than Sequitur which in turn benefits more than Di-
recTL+. Sequitur’s re-ranked word accuracy is in fact slightly higher than that of
DirecTL+, though not statistically significantly so. We also again see that then-gram
features are more important than the score features; in fact, even though the score
features provide significant improvements when used on their own, they signifi-
cantly (p < 0.05) degrade performance when used in conjunction with the n-gram
features!

The differences between the two corpora account for the reason why the P2P
approach does not work well, especially as compared to SVM re-ranking. For one,
learning models for any string transduction task is difficult and complex, requir-
ing much training data. On the other hand, when we have existing G2P outputs to
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Language Corpus size Overlap

Bengali 12785 6349
Chinese 37753 2295
Japanese 26206 4132
Kannada 10543 6878
Korean 6761 1741
Russian 6447 307
Tamil 10646 7069
Thai 27023 3460

Table 4.6: The number of unique single-word entries in the transliteration corpora
for each non-Hindi language and the amount of common data (overlap) with the
Hindi data.

re-rank, the string generation aspect has been done and we need only learn how to
re-rank the list. Models for these two tasks (P2P and re-ranking) are trained on the
same amount of data, so it is expected that the much more difficult task would not
perform as well. Furthermore, if the alternative corpus provides a radically different
pronunciation to any of the ones we are trying to predict, it becomes nearly impos-
sible for the P2P approach to convert it properly; with the re-ranking features that
I use, the alignments would simply fail, falling back to the original G2P system’s
output.

4.6 Improving machine transliteration with transliterations
from other languages

Applying other-language transliterations to a machine transliteration task in a given
language is similar mechanically to applying transliterations to G2P as in Chapter
4.4. The situation is that we are tasked with transliterating some text and we have
seen transliterations of the same text into other languages. Consider, for example,
the Wikipedia page for John Petrucci. Versions of the article currently exist in a
number of languages besides the primary3 English, including Japanese, but there
is none in Hindi. If we wanted to generate a stub article in Hindi, we would need to
transliterate his name, and the numerous existing transliterations could be helpful.

The focus here is on one transliteration task; because of my linguistic familiar-
ities, I choose English-to-Hindi transliteration as the primary task, with the other
transliteration languages playing roles as supplemental data. The English-Hindi
transliteration corpus contains a total of 12 380 unique single-word entries. Table
4.6 shows the amount of overlap between the English-Hindi corpus and the other
English-source transliteration corpora.

The overall procedure is as in Chapter 4.4. 10% of the data is set aside for test-
ing, and the rest is used to train the final English-Hindi transliteration model; the
SVM re-ranking model is trained on an intersection of the English-Hindi translit-

3I say primary because John Petrucci is an American guitarist whose work is more known in North
America than in most other parts of the world.
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Sequitur DirecTL+
Acc. ERR Acc. ERR

Base 44.5 45.2
SVM-ngram 52.9 15.1 50.0 8.7
SVM-score 48.9 7.9 47.5 4.2
SVM-full 52.8 14.9 49.8 8.4
Oracle-RR 82.0 67.6 73.4 51.4

Table 4.7: Word accuracies and error rate reductions (ERR) in percentages for
English-to-Hindi machine transliteration augmented by corresponding translitera-
tions from other languages. Base, SVM-ngram, SVM-score, SVM-full, and Oracle-
RR are as in Table 4.4. Changes that are only significant at the p < 0.05 level (rather
than the usual p < 0.01) are italicized.

eration data and the transliteration data for the other languages (i.e., when other
transliterations are available). In total, there are 10 077 words for which at least one
transliteration from a non-Hindi language is available. The final test set is the inter-
section of the English-Hindi test set and the supplemental transliteration data.

Table 4.7 presents the results on the intersected test set of 1 002 words. As with
G2P, we can see that the supplemental transliterations provide useful information to
inform the main transliteration process via the SVM re-ranker. Notably, Sequitur’s
re-ranked performance significantly (p < 0.05) exceeds DirecTL+’s re-ranked per-
formance, although as noted in Chapter 4.3.2 this is not necessarily indicative of
the systems’ performance on the full test set. This is attributable to the higher oracle
re-ranker accuracy for Sequitur, which shows a much higher potential error rate
reduction for re-ranking than is seen for DirecTL+ (on these particular data).

As in previous experiments, the n-gram features are again most important. Also
as seen in Chapter 4.5, the score features seem to slightly degrade performance
when used together with the n-gram features, though in this case this is not sta-
tistically significant.

4.7 Improving machine transliteration with transcriptions

Finally, we turn to applying transcription data to machine transliteration. In this
case, we are asked to transliterate some text that happens to appear in a pronuncia-
tion dictionary. While transliteration is usually applied to names, sometimes parts
of a name may also be dictionary words (see Chapter 3.2). In this case, referring to
the pronunciation dictionary may be helpful.

Some preliminary experiments with Hindi showed some promising but statis-
tically insignificant results due to the smaller size of the training set; I therefore
use English-to-Japanese transliteration as Japanese had the largest overlap with the
Combilex G2P corpus (see Table 4.3). The English-Japanese transliteration corpus
has 5 788 entries for which there are entries in at least one of CELEX or Combilex.

As above, the SVM re-ranker is trained on an intersection of the transcription
data and the English-Japanese transliteration data. Combilex and CELEX are re-
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Sequitur DirecTL+
Acc. ERR Acc. ERR

Base 60.9 64.0
SVM-ngram 59.7 — 66.8 8.0
SVM-score 65.1 10.8 66.0 5.6
SVM-full 71.1 26.0 69.2 14.6
Oracle-RR 90.7 76.2 89.6 63.4

Table 4.8: Word accuracies and error rate reductions (ERR) in percentages for En-
glish-to-Japanese machine transliteration augmented by transcriptions from Com-
bilex and CELEX. Base, SVM-ngram, SVM-score, SVM-full, and Oracle-RR are as
in Table 4.4. Changes that are only significant at the p < 0.05 level (rather than the
usual p < 0.01) are italicized.

garded as separate corpora, just as was done with the various transliteration lan-
guages in Chapter 4.4. The final test set is the intersection of the English-Japanese
test set and the transcription data.

Table 4.8 presents the results on the intersected test set of 591 entries. Strangely,
Sequitur sees a statistically insignificant decrease in performance with the n-gram
features when used alone, even though they are helpful over the score features. I
attribute this to an “unlucky” test set, as I did observe an increase in performance
during development; by “unlucky” I mean that the particular test set is anomalously
difficult to process using just the n-gram features and Sequitur as the base system.
DirecTL+ behaves more as we have seen before: the n-gram features are more im-
portant than the score features. Both Sequitur’s oracle and SVM re-ranking perfor-
mance are higher than that of DirecTL+ as in Chapter 4.6, but here these differences
are not statistically significant.

Finally, for comparison, I apply the P2P approach that was used in Chapter 4.5;
in this case, that entails using the intersection of the transcription data with the
transliteration data in order to train a phoneme-to-Japanese (P2J) converter. The
overall idea behind this is that, when asked to transliterate a given text to Japanese,
instead of doing so directly we first consult our pronunciation lexicon, retrieve the
transcription for the text, and then convert the transcription to Japanese. Intuitively,
one might expect the high quality of the transcription to be helpful. This approach
does have the deficiency that it can only be applied using a single pronunciation
corpus (at a time). I use Combilex, as it had by far the larger overlap of the two
lexica, and compare this to the SVM re-ranker separately from the main test set since
using only Combilex results in a slightly smaller intersected test set (than using both
Combilex and CELEX).

Table 4.9 shows the results on the intersected test set of 532 entries. As in Chap-
ter 4.5, the P2J approach decreases performance for both systems. This is again par-
tially due to the smaller size of the intersected data: Sequitur and DirecTL+ need to
learn full transduction models from the data while the re-ranker need only learn to
score existing outputs. Under such circumstances, SVM re-ranking provides a clear
performance advantage.
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Sequitur DirecTL+

Base 62.4 65.4
P2J 47.9 53.6
SVM-full 72.2 70.7
Oracle-RR 91.9 88.2

Table 4.9: Word accuracies (%) for English-to-Japanese machine transliteration aug-
mented by transcriptions from Combilex only. Base, SVM-ngram, SVM-score, SVM-
full, and Oracle-RR are as in Table 4.4. P2J is the base system trained to convert
Combilex transcriptions to Japanese.

4.8 Discussion

All experiments show significantly better overall performance over the base sys-
tem using SVM re-ranking; my re-ranking approach also outperforms alternative
approaches of incorporating the supplemental data, which consistently decrease
system performance. This is true for all base systems, demonstrating that the SVM
re-ranking method of incorporating supplemental data applies in general to the
studied tasks; it is not tied to a certain base system. However, the magnitude of
the performance increase is dependent on the base system. Festival has the lowest
base system performance, providing a number of “easy” re-ranking targets (“low-
hanging fruit”). Sequitur and DirecTL+, with their higher base system scores, see
smaller increases than does Festival; the better the base system does, the harder it
is to re-rank its output. As noted in Chapter 4.1, re-ranking treats the base system
as a black box, but we can see that it is limited by how much room the base system
leaves for improvement. Sequitur sometimes shows higher oracle re-ranker perfor-
mance and in these cases the SVM re-ranker does commensurately better, signifi-
cantly outperforming DirecTL+’s re-ranked performance in the G2P/transcription
case (Chapter 4.5).

Moreover, the fact that both Festival and Sequitur show higher error reduc-
tions than DirecTL+ suggests that they were benefiting from the DirecTL+-style
information present in the re-ranker; the n-gram features, after all, are styled after
those used in DirecTL+. Since, despite this similarity, DirecTL+ still sees significant
performance increases, we can surmise that the supplemental data do inherently
provide some useful information. That the score features are usually able to pro-
vide significant performance increases when used on their own is further evidence
of this, as there is no way for DirecTL+-style information to work its way into the
re-ranking through the score features alone.

The Festival and Sequitur results should therefore be taken with a grain of salt.
In particular, note the comparison of the re-ranking performance on core vocabulary
versus names in Chapter 4.4. Using DirecTL+ as the base system allows us to con-
sider the value of the supplemental data independently, and since the improvement
for core vocabulary is insignificant, we can conclude that applying transliterations
to G2P is not just most useful for names, but it is only useful for names (when incor-
porated via SVM re-ranking as presented in this thesis, that is). Of course, this is in
the absence of more data; while insignificant, the small improvement in accuracy
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observed for core vocabulary words suggests (but does not conclusively indicate) a
positive effect for core vocabulary words as well.

The n-gram features are generally more helpful than the score features. While
this may at first seem counterintuitive—the scores provide some measure of sim-
ilarity, after all—consider that the M2M-Aligner scores themselves are built from
the n-gram alignments. The score and the n-gram features thus both derive from
these alignments. But the n-gram features are far more granular and allow weights
to be put on specific features (n-gram alignments), tuning them specifically for re-
ranking. Then-gram features also include a feature that indicates a failed alignment,
a potentially important indicator of a bad candidate transcription. The SVM re-
ranker can then learn that certain correspondences—such as those found between
phonemes and foreign-language characters—are indicative (or not) of good (or bad)
system outputs. We know, however, that the score features do provide additional
information, since we do usually see some improvement when they are used on
their own; this information comes from M2M-Aligner’s training process, where it
learns the relevant probabilities from the training data.
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Chapter 5

Conclusion

In this thesis, I examined the issue of using supplemental data to improve the per-
formance of a base system on a given task. In particular, I examined grapheme-
to-phoneme conversion and machine transliteration, applying to them related sup-
plemental transcriptions and transliterations. My approach appropriates SVM re-
ranking to re-order output lists from existing G2P and machine transliteration sys-
tems.

Notably, this is (to the best of my knowledge) the first use of disparate tasks
and data. While previous approaches have used intermediate languages for ma-
chine transliteration or incorporated multiple transliteration systems, my approach
is general and can apply both transliterations to G2P and transcriptions to machine
transliteration. The SVM re-ranker includes features based on alignment scores be-
tween candidate outputs and transliterations from a corpus as well as n-grams from
said alignment. The n-gram features demonstrate that the same features used for the
primary task can be helpful post hoc with supplemental data, suggesting similar
possibilities for other NLP tasks.

The positive results achieved demonstrate not only that this approach works,
but that the various supplemental data used do indeed provide useful informa-
tion. With the DirecTL+ state-of-the-art base system, I achieved an error reduction
of 8.6% for G2P using related transliterations and 32.6% using transcriptions from
alternative corpora. Results were similar for machine transliteration: 8.4% error re-
duction for English-Hindi transliteration using corresponding transliterations from
other languages and 14.6% using related transcriptions. These improvements all
provide better performance than other approaches of incorporating the supplemen-
tal data, such as trying to convert directly from the supplemental data to the target
data; such approaches all resulted in decreases in performance.

Finally, an analysis of the results showed that the n-gram features were gener-
ally more important than the score features. In the case of Festival and Sequitur,
the n-gram features provided DirecTL+-style information, which of course was not
present in the base systems. That DirecTL+ still sees significant re-ranking improve-
ment and that the score features usually provide some improvement on their own
is further evidence of the useful information present in the supplemental data. This
also demonstrates that the information is usable in practice, although in some cases
the information is only useful for certain classes: while examining the transliter-
ation-based re-ranking of G2P, for example, I found that the transliterations were
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mainly useful for names and not for core vocabulary.

5.1 Future work

While the work in this thesis uses supplemental data to re-rank outputs, we would
ultimately like to be able to incorporate information from other models. For exam-
ple, a transliteration model encodes all of the necessary information to generate a
transliteration from a given text: this information may be more valuable than the
simple transliteration on its own. If this information could be put to use (rather
than approximated from the transliteration from a corpus), it would allow a system
to benefit when there is no preexisting transliteration available.

Along similar lines, re-ranking approaches are necessarily post hoc, and cannot
help when the output list does not include a correct output at all. This is demon-
strated by the oracle re-ranking results presented here, which show that even with
a perfect re-ranker there is still quite a gap to reaching perfect accuracy. Therefore,
the next step in applying supplemental data is to incorporate them directly into the
base system. Doing so in a system-independent manner may be difficult (or impos-
sible!) but should yield higher performance: giving the system direct access to any
extra information allows it to learn a better model from the beginning.

Finally, note that in addition to transliterations, the Web also provides many ad
hoc transcriptions (e.g., trans-SKRIP-shuns). There is no common structure to these,
but they are intended to help readers pronounce words based on approximately
phonetic character groups that they presumably already know how to pronounce.
As with any Web data, these would be very noisy, but I have shown that a noisy
transliteration corpus can provide useful information; this may be the case for ad
hoc transcriptions as well. An aspect of this includes mining these transcriptions
from the Web automatically.
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Appendix A

The McNemar test

Statistical significance is an important aspect to consider when comparing the per-
formance of two systems, especially when the difference between the two is small
or test data are scarce. In principle, the question being asked is this: what is the
probability that the difference we’re seeing is by chance? The task is to demonstrate
that the null hypothesis—that there is, in actuality, no real difference between the
performance of the two systems—is false. Generally, if the null hypothesis is found
to have a probability of less than 5% of being correct (i.e., p < 0.05), it is said to be
false, and the observed result is said to be statistically significant. The lower the
probability of the null hypothesis, the more certain we can be of the result (and the
more statistically significant it is). One way to interpret the probability is as the ex-
pected number of times the observed result would be seen if the experiment were
repeated 100 times and the null hypothesis were true.

The McNemar test is one test to determine if a difference between two systems is
statistically significant. The McNemar test looks specifically at the number of cases
in which one system gets the answer right and the other system does not (and vice
versa). In Table A.1, these are b and c. The McNemar test statistic is:

χ2 =
(b− c)2

b+ c

and has a chi-squared distribution with one degree of freedom. The value of χ2 is
used to determine the significance level of the difference between the two systems
in question, with the various levels (p < 0.05, p < 0.01, etc.) obtainable from a
chi-squared distribution CDF table.

The formula for the McNemar test statistic has the important property that a
stable error reduction is more significant than an unstable error reduction of equal
magnitude. By stable, I mean the degree to which the error reduction is due only to
improvements. For example, consider the following two cases:

1. System 2 gets five items correct that System 1 gets incorrect (c = 5). There are
no items that System 1 handled correctly that System 2 handles incorrectly
(b = 0).

2. System 2 gets 10 items correct that System 1 gets incorrect (c = 10). There are
five items that System 1 handled correctly that System 2 handles incorrectly
(b = 5).

43



System 1

Incorrect Correct

System 2 Incorrect a b
Correct c d

Table A.1: Values relevant for the McNemar test, which uses only the b and c values.

The error reduction in terms of the number of items is the same in both cases: 5,
making the numerator in the test statistic 25 in both cases. Because of the additional
incorrect items in the second case, however, the denominator in the test statistic is
different between the two; in case 1 it is 5 and in case 2 it is 15. Case 1 will then be
found to be statistically significant, while case 2 will not.
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Appendix B

G2P system comparison

Here I present a brief comparison of the G2P systems used in Chapter 4. The pur-
pose is to provide an independent comparison of the three systems (Festival, Se-
quitur, and DirecTL+) on a common data set while considering not just their word
accuracies but other aspects such as oracle re-ranker accuracies, runtime, model
size, etc.

B.1 Experimental setup

As in Chapter 4, I use 10% of the data for testing and 10% for development; CELEX
contains 66 372 unique entries while Combilex has 25 575. Since here I am not evalu-
ating with any extra data, the full sets can be used rather than a subset. This allows
us to see the performance of each system on the full data as well as consider the
overall re-ranking potential using an oracle re-ranker. As in Chapter 4, an oracle
re-ranker is one that simply selects the correct output in the n-best output list if it
exists, which is what a perfect re-ranker would do.

As before I use 10-best output lists. System parameters such as the joint n-gram
order for Sequitur or the maximum number of iterations for DirecTL+ are deter-
mined during development. Other than enabling the 10-best outputs, I use default
settings for Sequitur and DirecTL+ and enable all features for the latter. As in Chap-
ter 4 I construct Festival’s output list manually from the list of possibilities provided
for each character in the input word. All experiments were performed with an Intel
Core i3-350M 2.26 GHz CPU with 4GB of RAM running Ubuntu 10.10.

B.2 Results

For both corpora, the patterns are the same: in terms of accuracy, Festival is far
behind Sequitur, which in turn is significantly bested by DirecTL+, although the
somewhat higher oracle re-ranking accuracy for Sequitur (also observed variously
throughout Chapter 4) suggests higher re-ranking potential for Sequitur than for
DirecTL+. Sequitur and DirecTL+’s increased word accuracies come at the cost of
significantly higher training times, while DirecTL+ also has models that are one to
two orders of magnitude larger than either Sequitur’s or Festival’s.

With no limiting factors, DirecTL+ provides the best performance, but if space
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WA PA OR ttrn ttst MS

Festival 70.8 94.1 91.7 112 86 6.8
CELEX Sequitur 91.9 98.1 98.7 1603 933 20.0

DirecTL+ 93.0 98.3 98.2 1576 718 678

Festival 57.8 89.9 83.9 27 27 3.2
Combilex Sequitur 70.8 92.4 93.8 185 13 8.6

DirecTL+ 75.3 93.6 92.4 222 186 400

Table B.1: G2P system comparison on CELEX (6 637 unique entries) and Combilex
(2 802 unique entries) test sets. WA is word accuracy (%); PA is phoneme accuracy
(%); OR is oracle re-ranker accuracy (%); ttrn is training time (minutes); ttst is testing
time (s); and MS is model size (MiB).

is an issue then Sequitur may be the better choice. DirecTL+ stores its models in
plain text, which suggests room for improvement via storage in a binary format
(and/or with compression), but there is only so much that the size can be reduced
given the large number of string-based features and their weights. It may be possi-
ble to reduce the DirecTL+ model sizes by (for example) removing the features that
have weights close to zero, but this has not been explored and may have negative
effects on the system’s accuracy. Of course, Festival is more than just a G2P system
and provides end-to-end speech synthesis, but if it is being used as part of another
system, Festival’s use for G2P cannot be recommended unless training time is ex-
tremely limited (which is seldom the case; testing time may be a factor but once a
model is trained it can be used repeatedly).
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