Usage
  • 189 views
  • 347 downloads

Active open-loop control of a backward-facing step flow

  • Author / Creator
    Baugh, Aaron R
  • A robotically-controlled actuation system has been developed and built to perform active open-loop flow control experiments on transitional and turbulent backward-facing step flows in water. Control of the reattaching shear layer used hydraulic suction-and-blowing actuation emanating from 128 individual ports along the separation edge of the step. Each port’s perturbation was periodic in time, but individually controlled to produce either spanwise-invariant (2D) or spanwise-varying (3D) spatial actuation profiles. An image processing system and special aqueous tuft were developed to measure the length of the recirculation bubble. Multiple images of a tuft array were time-averaged to do so. In general, 3D forcing was no more effective in reducing bubble length than 2D forcing. However, greater local spanwise reductions in reattachment length were observed for some cases of spanwise-varying forcing. Backlit dye was used to track the evolution of vorticity in the flow in video and still images.

  • Subjects / Keywords
  • Graduation date
    Fall 2010
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3TW6J
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.