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Abstract

A significant contributor to performance loss in polymer electrolyte fuel cells is the

oxygen reduction reaction (ORR). A major challenge facing researchers is the devel-

opment of a kinetic model that accurately accounts for ORR kinetics. Wang et al.

proposed a kinetic model that assumes the ORR is comprised of four intermediate

steps and two intermediate species. The model can predict the commonly observed

doubling of the Tafel slope. The model had several limitations such as underpre-

dicting Tafel slopes at low overpotentials. In this work, the model is extended to

better account for oxygen depletion and the backward reactions. Parameter esti-

mation is used to determine new kinetic parameters. The new kinetic model and

parameters provide a good match to the experimental data used to obtain the ki-

netic parameters. Implementation of this model into a high-fidelity MEA model

matches experimental data over numerous operating conditions and catalyst layer

compositions.
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Chapter 1

Introduction

1.1 Background and Motivation

Polymer electrolyte membrane (PEM) fuel cells are a promising technology that

is hoped will one day replace the internal combustion (IC) engine as the primary

power system used in automobiles [1]. PEM fuel cells offer numerous advantages

over the current incumbent power system, such as its environmentally friendly op-

eration and the potential for a limitless supply fuel that is not dependent on a

small number of countries, as is the case for fossil fuels. PEM fuel cells also offer

a number of advantages over its chief rival in the race to replace the IC engine,

the battery powered vehicle. These include longer driving ranges, faster start up

times at cold temperatures and shorter ’recharging times’. Other prominent uses

for fuel cells include stationary applications, where large scale fuel cells can provide

back up power. Forklift trucks are increasingly switching from battery power to fuel

cells, due to their fast ’recharging’ ability. Fuel cells are also used to provide small

scale portable power to devices such as laptop computers and phone chargers. To

realize more widespread use, however, the PEM fuel cell must overcome a number

of obstacles, chief among which is the high cost of production, currently making it

uncompetitive, particularly in comparison to the IC engine. A major contributor

to this cost is the platinum catalyst which is used to drive the reactions in the cell.

Reducing the amount of platinum being used in the fuel cells is currently one of the

main areas of research in PEM fuel cell development.

A key component of research in fuel cell development is numerical modeling. Nu-

merical modeling allows researchers to couple several complex mathematical mod-

els that describe the interconnected processes occurring within a fuel cell. These

models can be used to predict fuel cell performance under different operating con-

1



ditions. They also allow for the optimization of the design of the system and can be

used to investigate the fundamental phenomena taking place in the cell. Numerical

modeling is particularly important in this field due to the difficulty in performing

experimental research. Experimental research is limited by the inherit high cost in

the manufacture of the cells and the time-consuming nature of the experiments, pre-

venting ’playful’ or unconstrained experimentation that can often lead to innovative

designs or a deeper understanding of the working of the cell [2].

The spatial dimensions of the fuel cell is another important factor when per-

forming experiments. The length-scales of each of the layers comprising a cell is

typically on the order of tens of microns while the agglomerates that the catalyst

layers are composed of are in the order of 100 nanometers. Such small length

scales, along with other complexities such as the transient nature of the processes

and the complex coupling between the individual processes, makes in situ measure-

ments extremely difficult [3]. This leads to much uncertainty in determining the

governing equations that fully describe the operation of a fuel cell. This is espe-

cially true for the cathode catalyst layer of the fuel cell where losses associated with

the electrochemical reactions significantly lower the performance of a fuel cell.

In the cathode of a fuel cell, the electrochemical reaction that is occurring is

the oxygen reduction reaction (ORR), where oxygen reacts in the presence of the

platinum catalyst with hydrogen ions and electrons to form water, which is ex-

hausted from the cell. This process is a complex, multi-step reaction, involving

the formation of a number of intermediates. However, the process is often mod-

eled using the Butler-Volmer equation, or a simplification of the equation called the

Tafel equation, which was derived to account for simple, single step reactions. A

number of simplifying assumptions need to be made in order to apply this simple

model to a complex reaction such as the ORR and experimental data shows that

the Butler-Volmer model cannot correctly capture the kinetic losses occurring in

the ORR. Recently Wang et al. [4] developed a new kinetic model that assumes

the ORR is comprised of four elementary intermediate steps and accounts for the

production of two adsorbed intermediate species. The model is based on a number

of kinetic parameters, in particular the free energies of activation of each of the steps

and the free energy of adsorption of the intermediate species. This model has been

shown to capture the trends seen in the experimental data more accurately than

the Butler-Volmer equation and also provides a greater understanding of the ORR,
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in particular the effect of the intermediate species on the production of current in

the cathode catalyst layer (CCL). However, assumptions in the derivation of the

model by Wang et al. result in the effect of the local oxygen concentration not

being correctly accounted for.

The aim of this thesis is to investigate the effect of using this new kinetic model

in place of the standard kinetic model, the Tafel equation. The first goal is to

modify the new kinetic model so that the local oxygen concentration at the reaction

site is correctly accounted for. This model will be analyzed ’in isolation’, i.e. the

characteristics of kinetic model itself will be investigated without considering other

physical phenomena present in a fuel cell. Key kinetic parameters upon which the

model is based on will have to be found using parameter estimation strategies, as

the values for these parameters that were provided in the original work by Wang et

al. will no longer be valid due to the change in the model derivation. Further, the

original model was found to capture the general trends observed in experimental

data, however the performance was found to be consistently over-predicted. The

novel kinetic model will be added to a full membrane electrode assembly (MEA)

model that accounts for mass transport, charged particle transport and the uptake

of water in the membrane. This full MEA model will be analyzed using parametric

studies and results will be compared with those found using the Tafel equation and

with experimental data.

1.2 Fuel Cell Background

1.2.1 Fuel Cell Structure

In this work, the fuel cell under consideration is the polymer electrolyte membrane

(PEM) fuel cell. A fuel cell converts the chemical energy contained in the fuel into

electrical energy, in a similar manner to that of a battery. This is achieved using

electrochemical reactions, in contrast to the internal combustion engine where the

combustion process produces heat rather than electrical energy. This results in a

fuel cell not being limited to the Carnot cycle, and therefore a maximum energy

efficiency. The PEM fuel cell uses hydrogen and oxygen as the fuel and exhausts

water according to the following reaction:

1/2O2 +H2 ⇀↽ H2O (1.1)

In order to extract energy from this process, the reaction is split into two half
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cell electrochemical reactions. The first reaction occurs in the anode of the cell. In

electrochemical terms, the anode is the half cell in which an oxidation reaction is

occurring. During oxidation, electrons are produced from the reactant which flow

out of the electrode. In a PEM fuel cell, the fuel being reacted is hydrogen, which

will split into a pair of hydrogen ions (or protons) and a pair of electrons, i.e.:

H2 ⇀↽ 2H+ + 2e− (1.2)

Equation 1.2 is termed the hydrogen oxidation reaction (HOR).

The second half cell reaction occurs at the cathode electrode of the cell. The

reaction in the cathode is the reduction reaction, in which electrons are consumed,

resulting in a flow of electrons into the half cell. The fuel being reacted is oxygen,

which combines with the incoming electrons and hydrogen ions from the anode

reaction to form water i.e.:

1/2O2 + 2H+ + 2e− ⇀↽ H2O (1.3)

Equation (1.3) is termed the oxygen reduction reaction (ORR). Note that the ad-

dition of equations 1.2 and 1.3 will produce the overall equation 1.1.

In order for the reactions to proceed, the cell must ensure that:

1. the reactants reach the reaction sites on both the anode and cathode side.

2. protons must be able to travel from the anode side to the cathode side and

reach the reaction sites.

3. electrons must be able to travel from the anode side to the cathode side and

reach the reaction sites.

4. the product (water) must be removed from the reaction sites so as not to

impede mass transport of the reactants.

These requirements lead to the notion of the triple phase boundary, upon which

the reaction occurs, where a particle of the platinum catalyst is in contact with:

a) an open pore, which allows for the transport of the reactant to the site, b) the

ionic conductor, which allows for the transport of protons and c) the solid phase,

upon which the catalyst is mounted which allows for the transport of electrons.

Hence, there should be three distinct phases required to ensure that the reactions

can proceed. However, this would require that the 2nm particle of platinum be
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Figure 1.1: Layer structure of the PEM fuel cell.

mounted on the surface of a carbon particle and be in contact with the ionomer

phase and void phase. As this would be unlikely, it is assumed at the ionomer

completely covers the platinum particle, forcing the oxygen to dissolve into it and

then diffuse towards to the reaction site.

The basic structure of a PEM fuel cell is shown in Figure 1.1. The cell is typically

composed of individual layers, each playing an important role in the performance of

the cell. The catalyst particles are located in the catalyst layer (CL) so this is where

the reactions occur. The catalyst layer is typically fabricated by preparing an ink

that contains catalyst particles supported on carbon particles, an ionic conductor,

typically Nafion which is a perfluorosulfonated ionomer (PFSI) produced by DuPont,

and a solvent. Through imaging of catalyst layers, it has been found that the carbon

particles will aggregate together to form agglomerates that are wrapped in a film

of Nafion. This agglomerate structure allows for the transport of electrons through

the carbon support, the transport of protons through the Nafion, and transport of

the reactants through the pores between the agglomerates and then, through the

Nafion to the reaction site.

In a PEM fuel cell, the two half cell reactions are separated from one another

using a polymer electrolyte membrane (hence the name polymer electrolyte mem-
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brane fuel cell, though it is sometimes termed the proton exchange membrane fuel

cell). The membrane is impermeable to the reactants and to electrons, but allows

for the transport of protons. When placed between the anode and cathode catalyst

layers, it prevents the oxygen and hydrogen from crossing from one side to the other.

It also allows protons from the anode reactions to travel to the cathode to complete

the overall reaction. As electrons cannot pass through the membrane they must

travel through an external circuit to the cathode side, where they can complete the

reaction. This circuit contains a load that uses the energy produced in the fuel cell.

The micro-porous layer (MPL) is composed of a porous material that is elec-

tronically conductive. Its primary function is to aid the removal of water from the

catalyst layers, therefore it is made so that the pores are hydrophobic. The final

layer is the gas diffusion layer (GDL, sometimes called diffusion media), which is

constructed from a carbon fiber cloth. Its primary function is to help the even dif-

fusion of the reactants in the in-plane direction, so that the reaction sites directly

opposite the current collector are not starved.

These layers, which are present on the anode and cathode side of the cell, on ei-

ther side of the membrane, together form the membrane electrode assembly (MEA).

The final component of the fuel cell is the bi-polar plate. The MEA is pressed be-

tween two bi-polar plates (BPP), forming the completed cell. Channels etched in

the sides of the plate carry the reactants to each of the individual cells. The part of

the plate actually in the contact with the MEA is typically referred to as the land

or current collector. Electrons are transported from the anode, through the MPL

and GDL to the conductive BPP through the load on the external circuit and back

to the BPP on the cathode side where they can reach the cathode catalyst layer.

In this work, the layer of particular interest is the cathode catalyst layer (CCL).

The catalyst layers are where the reactions are occurring, and the reaction in the

cathode, the ORR, is not yet fully understood. It is also a major source of losses

in the fuel cell, especially in comparison to the kinetic losses incurred in the anode.

The HOR overpotential losses are typically of the order of 50mV, while the cathode

losses are 500-600mV [5]. Due to these large losses, the ORR in CCL is therefore

the subject of considerable research. A background on the theory used to analyze

the reaction is presented in the next section.
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Figure 1.2: Figure showing the change in Gibbs free energy with reaction coordinate.

1.2.2 Electrochemical Reactions

The previous section introduced the two half-cell reactions that are occurring in the

anode and cathode of the PEM fuel cell. In order for any electrochemical reaction

at an electrode to proceed an energy barrier must be overcome, called the activation

energy, as is shown in Figure 1.2. This activation energy determines how ’fast’ the

reaction proceeds, as shown by the Arrhenius equation:

k = Ae−Ea/RT (1.4)

The rate constant k is a measure of the speed of the reaction. It is based on a

pre-exponential factor, A, that accounts for the quantity of the reactant available

to participate, their lifetime and the probability of the reactant decaying to the

product. The exponential term accounts for the probability of finding a species in

the activated state (i.e. at the peak of the barrier shown in Figure 1.2) [6].

The height of the barrier will depend on the reaction, a large activation energy

means that the reaction is slow. A reaction is complex if it requires a number of

intermediate reactions, with intermediate species being formed. For example, the

HOR may be comprised of the following steps [6]. First, the hydrogen molecule may

attach to the surface of the electrode (it has been chemisorbed to the surface). The

next reaction involves the absorbed hydrogen molecule splitting into two individual

hydrogen ions attached to the surface, followed by the desorption of the attached
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ion from the surface with the electrons staying in the electrode. This process can

be written as [6]:

step 1: H2 +M →M ·H2 (1.5)

step 2: M ·H2 +M → 2(M ·H) (1.6)

step 3: M ·H → (M + e−) +H+ (1.7)

where M represents a metal electrode surface. Each of these intermediate re-

actions will have their own energy barriers to be overcome, each contributing to

performance losses in the fuel cell. There are two intermediate species formed,

M · H2 and M · H, with three intermediate steps. The intermediate species will

cover a part of the metal surface and prevent the reactant from reacting in that

area. If one of the steps is slower than the others, for example equation (1.6), then

more and more of the metal surface will be covered by the M · H2 species, as the

overall reaction is forced to wait for the second step to fire and clean it off. There-

fore, the ’coverage’ of that species is very high compared to the other intermediate

species and could impede other reactions. The coverage is defined as the number of

adsorption sites on the platinum surface covered by the intermediate species, divided

by the total number of absorption sites on the clean surface. The slow reaction is

termed the rate determining step (RDS), as the overall reaction rate will be limited

by the rate of its slowest intermediate reaction and the kinetic characteristics of the

overall reaction will be determined by the characteristics of the RDS.

The activation energy Ea in equation (1.4) is the standard internal energy of

activation which is normally expressed in terms of the Gibbs free energy. This is

done by noting that the internal energy of a system is equal to the standard energy

of enthalpy of activation plus a mechanical work term:

∆E = ∆H −∆(PV ) (1.8)

where the work term is taken to be zero in a condensed phase reaction. This leads

to ∆E = ∆H. The standard enthalpy of activation can be expressed in terms of the

standard Gibbs free energy of activation and the standard entropy of activation:

∆H = ∆G+ T∆S (1.9)

Substitution of equation (1.9) into equation (1.8) and then into equation (1.4) will

lead to:

k = A′e−∆G/RT (1.10)
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where the A′ contains the contribution from the entropy term e−∆S/R which is a

dimensionless constant, i.e.:

A′ = Ae−∆S/R (1.11)

The Gibbs free energy is used as it can be expressed in terms of the potential applied

to the fuel cell.

Applying a potential difference across the solid electrode/electrolyte interface

will affect the energy barrier. If the potential is made more negative than the

standard Nernst potential, the reduction reaction is favored leading to a net cathodic

reaction. A more positive potential leads to favoring the oxidation reaction and

results in a net anodic current. If the potential is more negative than the standard

Nernst potential by an amount ∆E, then the energy of the electron being consumed

is changed by −F∆E or −F (E −E0), where F is Faraday’s constant and E0 is the

standard Nernst potential. The standard Nernst potential is the potential at which

no net reaction will occur at standard temperature and pressure, i.e. the reaction is

at equilibrium. The energy barriers will be be modified by a fraction of this energy,

which is termed the symmetry factor β. This factor will depend on the shape of the

free energy barriers and may also be a function of the potential applied. Note that

this fraction is also sometimes called the transfer coefficient (denoted α), which is

the apparent symmetry factor of a multi-step reaction based on the assumption of

a rate determining step [7].

A general reduction reaction can be written as O + e− ⇀↽ R, where O denotes

the oxidant being reduced and R is the product. This reaction can be favored by

applying a potential that is lower than its standard Nernst potential. The resulting

change in its activation energy barrier will be given by:

∆Gc = ∆G0
c + βF (E − E0) (1.12)

where ∆Gc is the free energy barrier of the reduction reaction and ∆G0
c is the free

energy at the standard Nernst potential. Note that because the applied voltage E

is less than the standard Nernst potential E0, the energy barrier will be lowered.

Similarly the change in the oxidation energy barrier is given by:

∆Ga = ∆G0
a − (1− β)F (E − E0) (1.13)

Returning to equation (1.10), and substituting in equations (1.12) and (1.13), the
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potential dependent rate constants can be written as:

kf = A
′
fe
−∆G0

c/RT e−βF (E−E0)/RT (1.14)

where subscript f denotes the forward reaction. Similarly, the backward rate will

be written as:

kb = A
′
be
−∆G0

a/RT e(1−β)F (E−E0)/RT (1.15)

The rate of the reaction can then be defined in terms of the rate constant and

the surface concentration of the reactants. The reaction rate per unit area of the

electrode surface in the forward and backward directions are given by:

νf = kfCO (1.16)

νb = kbCR (1.17)

where CO and CR are the concentrations of the oxidant and reductant at the surface

of the electrode. The net rate will be given by:

νnet = νf − νb = kfCO − kbCR =
i

nFA
(1.18)

where i is the current produced in the reaction, n is the number of the electrons

transferred (one in this case) and A is the surface area of the electrode. Substituting

equations (1.14) and (1.15) into equation (1.18) will yield:

νnet = A
′
fe
−∆G0

c/RT e−βF (E−E0)/RTCO −A
′
be
−∆G0

a/RT e(1−β)F (E−E0)/RTCR (1.19)

For the case where the applied potential E is equal to E0, there is no net reaction

and CO will equal CR and the surface concentration will be equal to the bulk con-

centration, far from the surface of the electrode. The bulk concentration is denoted

CrefO and CrefR .The forward and backward reaction rates will therefore be equal:

νf = νb = A
′
fe
−∆G0

c/RTCrefO = A
′
be
−∆G0

a/RTCrefR = k0 (1.20)

where k0 is the standard rate constant, i.e. the rate constant at the standard

Nernst potential. This constant characterizes the reaction at the standard Nernst

potential, which is used as a reference point. The current produced at potential E

in the reaction can therefore be expressed in terms of this rate constant:

i = FAk0(COe
−βF (E−E0)/RT − CRe(1−β)F (E−E0)/RT ) (1.21)
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Note that equation (1.21) defines the current as the departure from standard

Nernst potential, where the concentration of the reactants and products are provided

at standard temperature and pressure. If the reaction is not occurring at standard

temperature and pressure, the Nernst equation gives the potential the system will

equilibrate to:

Eeq = E0 +
RT

nF
ln
CO
CR

(1.22)

This is the equilibrium potential Eeq (or simply Nernst potential) and as the system

is at equilibrium, the current produced is zero, as the forward and backward rates

are equal. The cathodic and anodic current produced will therefore be equal and

are called the exchange current i0. The exchange current density is given as:

i0 = FAk0CrefO e−βF (Eeq−E0)/RT = FAk0CrefR e(1−β)F (Eeq−E0)/RT (1.23)

Dividing equation (1.21) by equation (1.23), will lead to the commonly used current

over-potential equation, also known as the Butler-Volmer equation:

i = i0

(
CO

Cref0

e−βF (E−Eeq)/RT − CR

CrefR

e(1−β)F (E−Eeq)/RT

)
(1.24)

Note that the current is now defined relative to the equilibrium potential Eeq. The

over-potential, η = (E − Eeq), can be considered the departure of the applied po-

tential from the equilibrium potential. The resulting current produced can be con-

sidered as the departure from the exchange current.

For an elementary reaction one electron transfer reaction the Butler-Volmer

equation can be used to model the current produced in the reaction. This is typically

written as:

i = i0

[
CR(0, t)

C∗R
exp

(
−βFη
RT

)
− CP (0, t)

C∗P
exp

(
(1− β)Fη

RT

)]
(1.25)

where i0 is the exchange current density, the current produced at the open circuit

potential, CR(0, t) is the concentration of the reactant at the surface of the electrode,

C∗R is the concentration of the reactant at the surface of the electrode at which the

exchange current density was measured (note the same applies to the subscript P

which denotes the products in the reaction). The transfer coefficient, β, describes

how the forward and backward reaction rates are affected by the change in electrode

potential, and η is the over-potential which is the departure from the open circuit

potential of the cell.
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Figure 1.3: Figure plotting the Butler-Volmer equation (solid line) and the Tafel
approximation (dashed line).

At very high over-potentials and for no mass transport effects, the second term,

which is the contribution of the backward reaction, is negligible and can be dropped

to give :

i = i0exp

(
−βFη
RT

)
(1.26)

which can be written in the form of the Tafel equation, by extracting the over-

potential term:

η = a+ b log(i) (1.27)

where b is the Tafel slope of the equation and is given by:

b =
−2.303RT

βF
(1.28)

This is shown graphically in Figure 1.3.

The Butler-Volmer model was derived for elementary electrochemical reactions,

with a single electron transfer. If more than one electron is involved in the reac-

tion, as is the case for the ORR, then the Butler-Volmer equation can be used if

it can be assumed that there is a single rate-determining step that slows down the

other reactions and therefore characterizes the whole reaction. For the ORR, exper-

imental data has shown that the Butler-Volmer model cannot describe the current

produced in this reaction. There is a change in the Tafel slope at a cell potential

of approximately 0.8V, meaning that the mechanism is too complex to assume a
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single rate determining step throughout the potential range. The change in Tafel

slope is typically doubled leading to higher kinetic losses in the fuel cell that are

unaccounted for by the Butler-Volmer kinetic model. These Tafel slopes have been

widely investigated (see Section 1.3.1) and the two slopes are generally accepted as

being 60 and 120mV/dec. The lower Tafel slope of 60mV/dec occurs at lower over-

potentials η, which result in low current densities. This region is known as the lcd

(low current density) region. The higher Tafel slope occurs at high overpotentials,

that result in high current densities. Hence is known as the hcd region.

The losses incurred in any electrochemical reaction, such as the ORR, can be

reduced with the introduction of a catalyst, which allows the intermediate species to

adsorb, react and/or desorb from the catalyst surface more readily. Using a platinum

group metal as a catalyst is shown to have the optimal bonding characteristics for

hydrogen and oxygen (the metal has an intermediate bond strength, i.e. the bond

strength is not so large that it is difficult for the molecule to desorb from the surface,

but not too weak that the molecule does not adsorb to begin with).

The effect of including a catalyst can be reduced by the adsorption of interme-

diate species onto the reaction sites. Returning to the example of the hydrogen

oxidation reaction shown in equations (1.5)-(1.7), there are two adsorbed intermedi-

ate species M ·H2 and M ·H. These species adsorb onto the surface of the platinum

catalyst and if the desorption steps are kinetically slow compared to the adsorp-

tion steps, then a build up of the intermediate species will occur. This can have

the effect of blocking the platinum catalyst from the reactant or it can change the

activation barrier of the reactions due to the different chemical composition of the

surface. The effect of coverage on the activation barrier is described by adsorption

isotherm [8, 9]. Common isotherms include the Langmuirian isotherm where the

coverage has no effect on the adsorption energy and Temkin isotherm where there

is a linear dependence. The application of these isotherms typically depends on the

extent of the intermediate coverage, for low coverages, the Langmuirian isotherm is

used, while at higher coverages the Temkin isotherm should be used.

The next section will present some of the prior research that investigates the

kinetics of the ORR as well as research that focuses on the numerical simulation of

the cathode catalyst layer.
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1.3 Literature Review

This work is primarily concerned with the kinetics of the oxygen reduction reaction

and its implementation in a cathode electrode model. In section 1.3.1, research on

the fundamental understanding of the ORR is presented, including experimental

work that shows the complexity of the reaction and quantum mechanical studies

on the elementary reactions that the ORR is assumed to be based on. Cathode

catalyst layer models are presented in section 1.3.2 with a focus on how the ORR is

simulated.

1.3.1 Review of Research into the ORR

1.3.1.1 The double Tafel slope

The oxygen reduction reaction is considered one of the most important reactions in

the field of electrocatalysis, particularly in the field of fuel cell research [10]. Despite

decades of research, its overall mechanism is not yet well understood, nor is the in-

dividual elementary reactions that result in the double Tafel slope [11]. Evidence for

the existence of the double Tafel slope has been found experimentally and studied

extensively over several decades [11–25]. Early techniques for measuring the kinetics

of the oxygen reduction reaction were based on relatively simple electrolytic cells.

An experimenter can monitor one of the half-cell reactions (i.e. the ORR in this

case) by using an ideal reference electrode which is unaffected by the production

of current at the electrode of interest (the working electrode), so its potential re-

mains constant [8]. The electrodes are placed in an acid or base to allow for ionic

transport and the reactants are bubbled onto the electrodes. Using this arrange-

ment, early experimenters, in particular Bockris [12, 13] and Damjanovic [14–16]

were able to show the dual Tafel slope and measured the slopes to have a magnitude

of approx. 50mV/dec and 100mV/dec. These experiments were carried out using

liquid electrolytes that were either acidic or alkaline, with a particular interest on

the effects of pH. This value for the magnitude of the upper slope was lower than

expected as Langmuirian conditions predicted a higher Tafel slope on an oxide free

surface. Paucirova [17] was able to measure upper Tafel slopes with a magnitude of

120mV/dec by accounting for transient effects of the concentration of the reactants

with performing the experiments.

It was thought that the effects of slow oxygen diffusion were affecting the kinetics
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of the ORR, so rotating disk electrodes were used to eliminate the mass transport

effects [18, 26, 27]. A rotating disk electrode (RDE) is a convective electrode system

whose convective and diffusive characteristics are very well understood [8], allow-

ing the experimenter to accurately account for more physical phenomena than the

electrolytic cell. In particular, mass transport effects can be accounted for through

the Koutecký-Levich equation. The basic construction of the RDE consists of a

disk made of the electrode material of interest, mounted on a rod of insulating

material. Rotating the rod, and therefore the disk, in the liquid electrolyte will

induce convective transport of the solution, maintaining a constant concentration

of the reactant at the electrode and removing the product. Using this method,

Tafel slopes of 60mV/dec and 120mV were consistently found and are now widely

accepted [5, 28–30].

More recently Parthasarathy et al. [31, 32], Holdcroft et al. [21, 22, 33] and

Zhang et al. [34] used a solid-state electrolytic cell with a micro-electrode to study

the double Tafel slope. In a solid-state micro electrode cell, instead of using an

liquid electrolyte, a solid Nafion membrane is used, and the size of the electrode is

substantially reduced in order to eliminate mass transport effects. Parthasarathy

was primarily concerned with the determination of kinetic parameters, such as the

reaction order with respect to oxygen and the transfer coefficient in Nafion. Tafel

slopes of approximately 60mV/dec and 120mV/dec were found, in agreement with

previous experimental data. Holdcroft and Zhang investigated the properties of new

membrane materials, in particular those developed by Ballard Power Systems and

Foster Miller Inc., using the Nafion ionomer membrane as a benchmark. In both

cases, the benchmark membrane showed a lcd Tafel slope of approx 60mV/dec, in

agreement with previous research. The hcd slope was found to be lower than the

expected 120mV/dec, with Holdcroft reporting slopes at approx. 100mV/dec while

Zhang reported slopes of 110mv/dec. These deviations were thought to be due to

imperfections in the membrane with both authors stating that the exact cause was

unclear.

More novel experiments include the temperature investigation of the ORR by

Wakabayashi [24] who used a closed channel flow, double electrode system. In this

system, the electrolyte is continuously pumped around a closed channel. The elec-

trolyte first comes into contact with the working electrode and almost immediately

upstream is the counter electrode, with a second counter electrode further upstream.
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This arrangement reduces signal noise compared to the RDE arrangement, fresh

solution can be applied without contamination and can be done at higher temper-

atures. The Tafel slopes were found to be agreement with those reported in the

literature. Dhanda et al. [25] used a novel system to investigate the effect of the

structure of the platinum crystal on the kinetics of the ORR while using a solid state

electrolyte, and analyzed the results using electrochemical impedance spectroscopy

(EIS). The system allowed for good control of mass transport by using a forced flow

of oxygen through a gap in the membrane directly onto a well defined, single crystal

platinum electrode. This technique therefore also allowed for the investigation of the

ORR on platinum crystals of varying orientation. The authors found Tafel slopes

of approx 65mV/dec and 140mV/dec. The variation in the slopes is not discussed.

Using EIS, the experimental data is fitted to a simple mechanism that assumed Oads

and OHads as the intermediate species and rate constants and symmetry factors for

assumed intermediate steps were found.

1.3.1.2 The Mechanism of the ORR

Many of the researchers investigating the oxygen reduction reaction are concerned

with determining the elementary steps by which the ORR proceeds during normal

fuel cell operation and their reaction rates. Using this information, the intermediate

species that are produced can be predicted. Ideally, elementary steps and reaction

rates would be obtained for a wide range of operating conditions (e.g. temperature

and reactant concentrations) and catalyst layer composition (e.g. for all ionomers

and catalyst types and structures). This has proven enormously difficult even for

the narrow range of standard operating conditions that a fuel cell operates on and

for a platinum catalyst and Nafion ionomer.

The first issue addressed was the overall mechanism for the ORR. It is believed

that the ORR can follow two paths, the direct four-electron transfer mechanism or

the series two-electron transfer mechanism, as shown in Figure 1.4.

Yeager [27] describes the paths as follows. The four electron transfer path is

written as:

O2 + 4H+ + 4e− → 2H2O (1.29)

while the the two electron path is written as:

O2 + 2H+ + 2e− → H2O2 (1.30)
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Figure 1.4: The series and direct mechansims of the ORR [26].

followed by either:

H2O2 + 2H+ + 2e− → 2H2O (1.31)

or:

2H2O2 → 2H2O +O2 (1.32)

Advanced RDE experiments have shown that the 2 electron path, with the pro-

duction of the peroxide intermediate H2O2, is dominated by the 4 electron transfer

path [23, 27, 35] under normal fuel cell operating conditions. Yeager [27] found that

peroxide formation was more significant on carbon cathodes or in alkaline solution

while Paulus [23] found that for certain platinum crystal structures peroxide forma-

tion could reach as high as 6% at very low potentials (at 0.1V vs RHE). At standard

FC operating voltages of 0.7-0.8V the formation was significantly lower, in the order

of 0.2%. The formation of peroxide is still an active area of research however, as

its formation can lead to the degradation of the Nafion membrane. Using density

functional theory, Panchenko and Tripkovic [36, 37] investigated the formation of

possible intermediate species, with both authors agreeing that peroxide formation

to be insignificant.

Recently, the main focus of ORR kinetic research has therefore been gaining a

greater understanding of the direct 4 electron path, now widely accepted to be the

dominant pathway for the reaction [5, 30, 38, 39]. Of particular interest are the

intermediate species that are formed during the reaction (and the quantities they

are produced in) for different operating conditions and catalyst layer composition. If

the rates of production of the intermediate species are known, the intermediate steps

that are firing can be determined, as well as their energy barriers. This knowledge
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will lead to better design of catalysts that can favor one reaction over another,

potentially allowing for the reduction of the kinetic losses.

It has long been assumed that the two Tafel slopes are a result of the chang-

ing coverage of the intermediate species on the catalyst [15–17]. The authors note

that at low over-potentials, the intermediate species coverage is high leading to

Temkin adsorption conditions, while at high over-potentials the coverage is signifi-

cantly reduced, leading to Langmuirian adsorption conditions. The main distinction

between the two adsorption conditions is that under Temkin adsorption conditions,

the high coverage of the intermediate species leads to interaction between the ad-

sorbed molecules and the adsorbing molecules, resulting in a dependence of the

absorption energy on the coverage of the species. Under Langmuirian conditions,

the absorption energy is independent of coverage [9]. This change from high to low

coverage coincides with the change in Tafel slope so it is assumed that the coverage

is affecting the mechanism of the ORR.

The change from high to low coverage of intermediate species can be shown ex-

perimentally using cyclic voltammetry (CV), where the working electrode potential

is ramped linearly with time to a set potential, upon which the potential ramp is

inverted [8]. Integration of the Pt-oxide region can be used to find the coverage of

the intermediate species, which is commonly referred to as the oxide coverage in the

literature. Examples of determining the oxide coverage from CVs can be seen in

references [11, 40, 41]. Note that it is inaccurate to use the term ’platinum oxides’

here, as the intermediate species are not necessarily chemically, strongly bonded

oxygen species with the platinum, they are more likely oxygen species that have

been adsorbed on the surface of the reaction sites. Also the total coverage found

using the CV method does not distinguish between different adsorbed species (e.g.

it does not distinguish between Oads or OHads) [42].

This uncertainty over which species were adsorbed onto the surface led to early

researchers attempting to find the mechanism for the ORR by considering a wide

variety of intermediate species and calculating the Tafel slope associated with an

intermediate reaction that would produce the intermediate species. These slopes

could then be matched against the Tafel slopes found experimentally and would then

be attributed to the rate determining step of the ORR. Some of the most common

intermediate adsorbed species considered include Oads, O2,ads, OHads, H2O2,ads,

H2Oads and HO2,ads, with a large number of paths analyzed to determine their Tafel
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slopes. Damjanovic [14] provides a summary of the potential pathways that were

under consideration, 14 in total. Analysis of these steps, with the experimentally

found Tafel slopes, gave rise to the assumption that the first charge transfer step

is the rate determining step in both high and low Tafel slope regions. In a liquid

electrolyte solution, this step is given as [43]:

O2 +H3O
+ + e− → O2H +H2O (1.33)

The change in Tafel slope is attributed to the effect of the intermediate coverage on

the free energy of activation of this step, which is given as the sum of the chemical

and electrochemical contributions:

∆G = ∆Gc + βF∆φ (1.34)

where ∆G denotes the Gibbs free energy of activation, β is the symmetry factor,

normally taken as 0.5 for an elementary reaction, and ∆φ is the potential between

the electrode and the solution. The difference between the Temkin and Langmuirian

adsorption isotherms are given in the dependence of the Gibbs free energy of the

chemical contribution, ∆Gc. Under Langmuirian conditions, the ∆Gc is independent

of coverage θ and potential ∆φ, while under Temkin conditions, ∆Gc is given as

∆Gc = ∆Go + βr(θ − θT ) (1.35)

where β is the symmetry factor, r is an energy factor and θT is the coverage at

which the adsorption conditions change. This assumption that the RDS is the first

charge transfer step is often cited when discussing the ORR [5, 30, 44]. However,

it has not gained universal acceptance, for example, the chemical adsorption of O2

onto the platinum was proposed as the RDS by Yeager [27]. Further, Parthasarathy

found that for a solid state electrolytic cell, the RDS was likely to be a chemical

step followed by the first electron transfer step at low current densities [32]. Hence,

the nature of the ORR is still undecided.

1.3.1.3 Advanced Techniques

Recently, quantum mechanical (QM) models have allowed researchers to simulate

the interaction between different species and catalyst at the atomic level. An ex-

ample of a simulation is a single oxygen atom approaching a cluster of platinum

atoms, where the breaking and formation of atomic bonds are simulated to find the
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most likely adsorption configuration. A commonly used method in quantum me-

chanical modeling is density functional theory (DFT), where the electronic energy

density around the nucleus is solved for. More information on this method is found

in [6, 38, 41, 44]. An early example of using DFT to analyze the ORR, was by Sidik

[45], who modeled the interaction of two platinum atoms with a hydronium ion and

two water molecules. They found that the electrochemical reaction:

O2 +H+ + e− → O2H (1.36)

was the rate determining step with an activation energy of 0.6eV at a cell potential

of 1.23V. Norskov et al. [46] considered a simple dissociative mechanism, with Oads

and OHads as intermediate species and found the free energies of adsorption ranged

between 0.8eV and 1.76eV for OHads and 1.58eV and 2.41eV for Oads where the

range in values is due to the effect of the coverage of the Oads species. Further, a free

energy diagram was presented for this reaction, that showed the variation of the free

energies with change in potential. An associative mechanism was also considered

where the oxygen does not dissociate into individual oxygen atom before the first

charge transfer step. This results in the consideration of the O2,ads and HO2,ads

intermediate species. Again a free energy diagram was constructed that showed the

mechanisms dependence on potential and coverage. Norskov et al. concluded that

both associative and dissociative pathways could contribute to the ORR. Walch

[30] investigated a number of chemical reactions thought to be part of the ORR.

It was found that the size and structure of the simulated platinum cluster played

a large role in determining the barrier energy. It was also noted that the choice of

approximation method could have a large effect on the computed binding energies.

Keith [41] gives a review of DFT models in the literature and notes that while

visualization techniques found that O2 binds to platinum with a binding energy

of 0.3-0.5eV, the range using DFT calculations was 0.1-1.95eV depending on the

model used. Other factors that produced large deviations in results include the

assumed binding site for the intermediate species and the geometry of the reaction

site. In particular, Keith investigated the assumption of the gaseous reactants being

solvated in the water and found that if this assumption is not made, the pathway for

the ORR would proceed via the two electron path rather than the widely accepted

four electron path. Fang [44] notes further complication in properly accounting for

the cell potential in DFT calculations (normally an electrical field is applied to the

20



domain to represent the potential, however the correlation is difficult to quantify).

Complications such as those noted by Walch, Keith and Fang make simulation using

QM difficult and applying results to fuel cell modeling should be done with caution.

However, the technology is still relatively new and it is expected that further research

will eliminate some of these issues so that it becomes a more prominent tool in the

future.

1.3.2 Mathematical Modeling of the ORR

1.3.2.1 Modeling ORR kinetics

Markovic [47] investigated the kinetics of the ORR in a bromide electrolyte using

RDE experiments, as adsorption of OHads onto to platinum sites is suppressed in

the presence of Br− anions. A theoretical model was derived that accounted for the

effects of the coverage of the OHads, in particular, 1) a site blocking effect of the

adsorbates as they compete with the oxygen molecules that try to adsorb onto the

platinum and 2) the alteration of the free energy of adsorption of the intermediates

by the presence of OHads on sites adjacent to the reaction site. These effects are

accounted for by the following equation:

j = nFkcO2(1− θad)xexp(−βFE/RT )exp(−γrθad/RT ) (1.37)

where n is the number of electrons, k is the rate constant for the rate determining

step (again assumed to be the first charge transfer step), cO2 is the concentration

of O2 in the solution, x is the number of Pt sites occupied by the adsorbed ion

(varies from 1-3, i.e. an adsorbed molecule can block up to 3 platinum sites), j is

the observed current density, E is the cell potential, β and γ are symmetry factors

(assumed to be 0.5), and r is an energy parameter for the Temkin isotherm that

defines the effect of the coverage on the free energy of adsorption of the adsorbing

species. Note that there are two additional terms in equation (1.37) with respect to

the standard Tafel equation, namely a pre-exponential factor (1−θad)x that accounts

for the site blocking effect of the intermediates and an additional exponential factor

exp(−γrθad/RT ) that accounts for the change in free energy of adsorption.

Wang [48] derived a novel kinetic model based on the free energies of activation

of four assumed steps and free energies of adsorption of two intermediate species.

This model can show the change in slope (though the slopes predicted are not the

widely accepted 60mV/dec and 120mV/dec) and shows the high coverage of oxides
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in the lcd region and low coverage in the hcd region. This model does not use the

coverage of the intermediate species as an input parameter, as is the case for the

model proposed by Markovic et al., nor is there an assumption of a rate determining

step. The model is instead based on the free energies of activation of the assumed

intermediate steps and the free energies of absorption of the intermediate species.

These free energies could be found using ab-initio techniques such as quantum me-

chanical modeling and would therefore not require the use of experimental data.

The aim of this work is to investigate the model proposed by Wang et al., and

its implementation into a fuel cell model. It is described in greater detail in the

following chapter.

1.3.2.2 The ORR in fuel cell modeling

To date, 1D, 2D and 3D fuel cell mathematical models typically represent the ORR

using either the Butler-Volmer equation or the Tafel equation [49–61]. Authors of-

ten cite Parthasarathy et al. [31, 32] when choosing the kinetic parameters such as

the oxygen reaction order or the transfer coefficient [51, 55, 57, 58, 60, 61]. How-

ever, modelers typically only choose parameters that characterize a single Tafel

slope region, so the doubling of the Tafel slope is not accounted for. Broka et al.

[51] investigated the influence of a number of parameters such as oxygen perme-

ability on polarization curves produced from assuming either a pseudohomogeneous

film or agglomerate CCL model. The hcd Tafel slope and exchange current from

Parthasarathy was used to model the ORR reaction. Um et al. [55] modeled a tran-

sient, multi-component, multi-dimensional MEA using a CFD package and used the

exchange current density and the open circuit potential found by Parthasarathy et

al. Secanell and Dobson [57, 60, 61] used the lcd kinetic transfer coefficient from

Parthasarathy along with parameters such as the exchange current density and oxy-

gen reaction order. Sun et al. [58] investigated structural parameters that character-

ize a catalyst layer agglomerate model and, based on the data from Parthasarathy

et al., switch from a transfer coefficient of one to one half when the cell potential

drops below 0.8V. This switch will approximately return the correct Tafel slopes,

however, the potential at which the switch occurs is constant which is not observed

experimentally. A similar technique is used for the exchange current density and

the value for oxygen diffusivity in Nafion is also taken from Parthasarathy et al.

Despite the extensive research describing the changing Tafel slopes, the majority of
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researchers do not account for the losses from the change in Tafel slope when per-

forming fuel cell simulations. The losses attributed to the change in Tafel slope are

instead considered insignificant compared to other losses, or their existence is not

acknowledged during PEM fuel cell operation. The losses are instead interpreted

as being due to oxygen diffusion through the agglomerate structure of the catalyst

layer or through liquid water [62, 63].

Suzuki [64] used Markovic’s model [47] in a one dimensional fuel cell model that

used the diffusion coefficient for oxygen as a fitting parameter. Linear sweep voltam-

metry (LSV) was used to find the potential dependent oxide coverage in both the

anodic and cathodic directions and with this as an input to the model, the change in

Tafel slope was reproduced. Subramanian [11] also used this model, with CV exper-

iments used to find the change in oxide coverage. The equation was changed slightly

from that presented in equation (1.37) so that the reference exchange current density

was used instead of the rate constant. This, along with γr and the oxygen partial

pressure were fitted to experimental data that accounted for all known transport

losses such as oxygen diffusion and proton transport. Experimental results and re-

sults from the coverage dependent model were compared to a simple constant Tafel

slope kinetic model presented by Neyerlin [63]. Both comparisons show the effect of

the double Tafel slope, where Neyerlin’s model was unable to capture the additional

losses.

1.4 Contributions

The aim of this work is to contribute to the research being done in the area of

fuel cell mathematical modeling by incorporating an accurate representation of the

kinetics of the oxygen reduction reaction. The research will mainly take the form

of the mathematical modeling of a novel kinetic model of the ORR in a fuel cell

simulation. The main contributions to literature are:

1. Reformulation of the novel kinetic model proposed by Wang in order to cor-

rectly account for the local oxygen content at the reaction sites and the back-

ward reactions.

2. Parametric estimation of the kinetic parameters that characterize the kinetic

model, based on data obtained from the literature.
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3. Integration of the kinetic model into an existing, 2D fuel cell MEA model and

analysis of the model in comparison to the commonly used Tafel equation.

1.5 Thesis Outline

The first chapter presents a background on the kinetics of electrochemical reactions

and on the structure and operation of a PEM fuel cell. Chapter 2 describes the novel

kinetic model developed by Wang and the reformulation that correctly accounts for

the oxygen concentration in the layer. The method for fitting the kinetic parameters

to the model is then described, and the kinetics of the ORR are investigated, with

an emphasis on the effect of the assumed intermediate species present in the CCL.

In Chapter 3, the integration of the new kinetic model into a full MEA model

is described. The effect of replacing the standard Tafel equation is investigated by

means of parametric studies on the operating conditions of the cell and the structural

parameters that characterize it. Chapter 4 will present the final conclusions as well

as possibilities for future research.
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Chapter 2

Kinetic Model

2.1 Introduction

In the previous chapter, a review of the research being undertaken in the field of

the electrochemistry of the ORR in a fuel cell was presented. The review was

by no means exhaustive and, as no conclusive consensus has been reached on the

mechanism of the oxygen reduction reaction (ORR), it is clear that this is a complex

and difficult area of research. Most fuel cell mathematical models to date simply use

a Tafel equation to describe the reaction. A simple Tafel equation hides the complex,

multi-step nature of the reaction, which can lead to significant errors in the predicted

performance of the cell. Wang et al. [4], derived a novel kinetic model based on

four intermediate steps, producing two intermediate adsorbed species, that uses the

free energy of activation of the four steps and the free of energies of adsorption of

the intermediate species as unknown kinetic parameters. This model is capable of

predicting a change in Tafel slope and does not assume a rate determining step.

In this chapter, the double-trap, intrinsic kinetic pathway suggested by Wang [4]

is presented. This model can better capture the characteristics of the reaction, in

particular, the change in the Tafel slope and the production of intermediate species.

This model is similar to one of the bifurcation branches in the advanced ORR

kinetic model described by Ruvinskiy et al. [65], that also accounts for the ’series’

pathway and the production of hydrogen peroxide. The first section will introduce

the mathematical model and its derivation, and it will present the final equation that

describes the production of current in the cell as well as expressions for the coverage

of the intermediate species. The second section will present a validation study of the

implementation of the model in the fuel cell modeling software. This validation will

be based on the kinetic parameters presented by Wang et al. and deficiencies in the
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model will be discussed. The third section will describe the parameter estimation

process that will be used to predict the new kinetic parameters for the model and

the results from this process. The final section will present results from a study of

the kinetic model with the new fitted parameters, in particular, examination of the

predicted current, coverages and the energy barriers for each of the intermediate

steps.

2.2 Double Trap Kinetic Model

2.2.1 Derivation

To derive the intrinsic kinetic equation, Wang et al. [4] assumed that there were

four intermediate paths in the ORR and only two strongly adsorbed intermediates

Oads and OHads, as these intermediates are the most stable. The four reactions are

given by:

1/2O2 ⇔ Oads Dissociative Adsorption (DA) (2.1)

1/2O2 +H+ + e− ⇔ OHads Reductive Adsorption (RA) (2.2)

Oads +H+ + e− ⇔ OHads Reductive Transition (RT) (2.3)

OHads +H+ + e− ⇔ H2O Reductive Desorption (RD) (2.4)

The first reaction is the dissociative adsorption of oxygen onto the platinum surface.

This reaction does not involve externally provided electrons and protons so it is as-

sumed that its reaction rate is unaffected by the presence of the potential difference

across the electrode/electrolyte interface. The intermediate produced in the reac-

tion is adsorbed oxygen, Oads. The second reaction is the reductive adsorption (RA)

of molecular oxygen producing the second adsorbed species, hydoxyl (OHads). The

reductive transition (RT) is the reduction of adsorbed oxygen to adsorbed hydroxyl

while the final step is the reduction of adsorbed hydroxyl to produce water. The re-

ductive steps involve the consumption of electrons and are therefore electrochemical

reactions. Unlike the DA step, they will be affected by the cell potential. The DA

and RA steps involve oxygen as the reactant and will depend on the local concen-

tration of oxygen. The electrochemical steps will depend on the local concentration

of hydrogen ions.

Note that these reactions can proceed in either the forward or backward direc-

tion, depending on the applied cell potential, the free energies of activation of the
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Figure 2.1: The assumed paths and intermediate species of the ORR [48].

steps and the free energies of adsorption of the intermediate species. While the free

energies will be fixed values, the cell potential can vary during fuel cell operation,

leading to some steps becoming more dominant than others at different potentials.

Also note that the fractional stoichiometric number used in equations (2.1) and (2.2)

is a simplification that allows for each step to be written as a single electron transfer

reaction. It also removes a quadratic dependence on the coverage. A similar anal-

ysis to that done in Chapter 1 to derive the Butler-Volmer equation can therefore

be used. The adsorption of molecular oxygen onto the platinum site could be a

complex reaction with its own intermediate steps, as is suggested by Ruvinskiy et

al. [65]. This simplification is justified by the original authors who found that the

RT and RD steps were of more importance than the DA and RA steps, therefore

the fractional number was chosen for simplicity. This may lead to inaccuracies in

the model.

From examination of the assumed steps, it is clear that the starting point for the

overall reaction is the adsorption of oxygen onto the platinum reaction site. This

can occur through either the DA or RA step, producing two possible intermediates.

The final step is the production of the water. Water production is achieved by the

RD step only. This must therefore be the final step of the reaction and may only

proceed by the reaction of the hydroxyl intermediate. Therefore, the two potential

ORR pathways are (RA)→(RD) or (DA)→(RT)→(RD) as is shown schematically

in Figure 2.1. Note that these paths can occur concurrently and no assumptions are

made regarding a rate determining step. The rates of each reaction are determined

using transition state theory [8], in a similar manner to the derivation of the Butler-

Volmer equation in Chapter 1.

The reaction rate of each of the steps is given as [8]:

νDA = kDAc
1
2
O2
θPt − k−DAθO (2.5)

νRA = kRAc
1
2
O2
cH+e−βE/kT θPt − k−RAe(1−β)E/kT θOH (2.6)
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νRT = kRT cH+e−βE/kT (θO)− k−RT e(1−β)E/kT θOH (2.7)

νRD = kRDcH+e−βE/kT (θOH)− k−RDe(1−β)E/kT θPt (2.8)

The reaction rate νi, where i denotes one of the four steps, depends on a rate

constant ki and the concentration of the reactant, ci. Note that the concentration

of the adsorbed species is given in terms of the coverage of the species, θi. For

the DA step the reverse reaction rate will depend on the coverage of the adsorbed

oxygen, which is given by the θO term. In the forward direction, the oxygen reacts

with the clean platinum surface. This will have a coverage given by the number of

sites not covered by the two intermediate species, i.e. one minus the two coverages:

(1 − θO − θOH). For brevity, the coverage of the clean platinum surface will be

denoted by θPt.

For a multi-step reaction the current produced is equal to the sum of the reaction

rates of the steps that involve the transfer of an electron times Faraday’s constant.

Therefore, the current density produced in the overall reaction will be given by

equation

jk = F (νRA + νRT + νRD) (2.9)

If the reactions are at steady state, there will be no transient behavior in the pro-

duction of the intermediate species. Then,

dθO
dt

= νDA − νRT = 0 (2.10)

The production of θO will be governed by the relative speeds of the DA reaction

that produces it and the RT reaction that consumes it. Therefore at steady state

these rates must be in equilibrium.

For the θOH intermediate, the RA and RT steps that produce it are in equilibrium

with the RD step that consumes the intermediate.

dθOH
dt

= νRA + νRT − νRD = 0 (2.11)

The substitution of these relationships into equation (2.9), will result in the

kinetic current being given by

jk = 2FνRD = 2jRD (2.12)

where the kinetic current is given by the rate of the RD step only. The reaction

constants, ki, are difficult to determine either theoretically or experimentally so,
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as is done for the Butler-Volmer equation, the kinetic current produced according

to the double trap equation is defined by the departure of the cell potential from

equilibrium.

The equilibrium cell potential Eeq is used as a reference point. The reaction

rate, kinetic current and coverage at this point are termed the exchange rates, ν0,

current j0 and coverage θ0
i respectively. Note that the overall reaction rates are zero

at the reference potential, therefore the forward and backward rates are equal. The

exchange rate is then defined as:

ν0
DA = kDA(crefO2

)
1
2 θ0
Pt = k−DAθ

0
O (2.13)

ν0
RA = kRA(crefO2

)
1
2 cref
H+e

−βEeq/kT θ0
Pt = k−RAe

(1−β)Eeq/kT θ0
OH (2.14)

ν0
RT = kRT c

ref
H+e

−βEeq/kT (θ0
O) = k−RT e

(1−β)Eeq/kT θ0
OH (2.15)

ν0
RD = kRDc

ref
H+e

−βEeq/kT (θ0
OH) = k−RDe

(1−β)Eeq/kT θ0
Pt (2.16)

where crefi is the concentration of either oxygen or hydrogen ions at zero overpo-

tential. As this case of zero overpotential is used as a reference point, the value of

eβEeq/kT is set to one.

Unlike the original authors of the model, here the reactant concentration is not

considered to be constant. The concentration of cref
O2/H+ at zero overpotential is

the reference concentration, as was used in Chapter 1. This addition to the kinetic

model will correctly account for the local oxygen concentration, which is of particular

significant importance when determining the coverage of the intermediate species

[66] and capturing the mass transport limiting region. The modification in the

derivation can produce mass transport limiting effects similar to those found with

the Tafel model. This effect is not seen with the original derivation, mass transport

limiting effects are accounted by assuming a linear relationship between the current

and the oxygen concentration. This approach requires the estimation of the value of

the limiting current which, along with the assumption of the linear dependence of

the current with the oxygen concentration, could result in significant inaccuracies.

The equilibrium free energies of adsorption of the intermediates can be defined

using a Langmuirian isotherm [9]:

e−∆G0
O =

θ0
O

θ0
Pt

(2.17)

e−∆G0
OH =

θ0
OH

θ0
Pt

(2.18)
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The free energies of adsorption are therefore equal to the ratio of the fraction of

sites covered by the intermediate divided by the number of sites that are free of any

intermediates, i.e. are ’clean’. These free energies represent the free energy of the

intermediate once it is formed, i.e. the position of the ’Products’ in Figure 1.2.

Based on the reaction rates at zero overpotential, the exchange currents can be

defined. The original authors defined these currents as being independent of the

coverage and so they are termed the intrinsic exchange currents. Using the formula

ji = Fνi and equations (2.13)-(2.16):

j0
DA =

Fν0
DA

θ0
Pt

= FkDA(crefO2
)
1
2 = j∗DAe

−∆H∗0DA/kT = j∗e−∆G∗0DA/kT (2.19)

j0
RA =

Fν0
RA

θ0
Pt

= FkRA(crefO2
)
1
2 cref
H+ = j∗RAe

−∆H∗0RA/kT = j∗e−∆G∗0RA/kT (2.20)

j0
RT =

Fν0
RT

(θ0
O)

= FkRT c
ref
H+ = j∗RT e

−∆H∗0RT /kT = j∗e−∆G∗0RT /kT (2.21)

j0
RD =

Fν0
RD

(θ0
OH)

= FkRDc
ref
H+ = j∗RDe

−∆H∗0RD/kT = j∗e−∆G∗0RD/kT (2.22)

Here we apply the Arrhenius equation to relate the rate constants ki to the free

energies of activation ∆G∗0i , as was done in Chapter 1. The pre-exponential factor

j∗i will be a combination of the pre-exponential factor A from the Arrhenius equation,

crefi , which is constant and Faraday’s constant F . The pre-exponential factor j∗i is

assumed to be related to the entropy change of the reaction, i.e. j∗i = j∗e∆S0
i /kT ,

where j∗ is termed the reference prefactor for the reaction [4]. This factor can be

considered a scaling factor. G∗0i is the free energy of activation of the ith step and are

unknown variables of the system of equations that will be found using data fitting.

This will be described in more detail in section 2.4. These parameters represent

the height of the activation barrier that must be overcome before the reaction will

proceed, as shown in Figure 1.2.

Now that the reference point and corresponding exchange reaction rates, currents

and coverages are defined, the intrinsic reaction rates, currents and coverages at

other potentials can be obtained. The original reaction rates, i.e. equations (2.5)-

(2.8), are divided by the exchange reaction rates, equations (2.13) - (2.16), to get

the intrinsic reaction rates.

νDA
ν0
DA

=
kDAc

1
2
O2
θPt

kDA(crefO2
)
1
2 θ0
Pt

− k−DAθO
k−DAθ0

O

(2.23)
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νRA
ν0
RA

=
kRAc

1
2
O2
cH+e−βE/kT θPt

kRA(crefO2
)
1
2 cref
H+e−βEeq/kT θ0

Pt

− k−RAe
(1−β)E/kT θOH

k−RAe(1−β)Eeq/kT θ0
OH

(2.24)

νRT
ν0
RT

=
kRT cH+e−βE/kT θO

kRT c
ref
H+e−βEeq/kT θ0

O

− k−RT e
(1−β)E/kT θOH

k−RT e(1−β)Eeq/kT θ0
OH

(2.25)

νRD
ν0
RD

=
kRDcH+e−βE/kT θOH

kRDc
ref
H+e−βEeq/kT θ0

OH

− k−RDe
(1−β)E/kT θPt

k−RDe(1−β)Eeq/kT θ0
Pt

(2.26)

Note that unlike the original derivation, there is now a ratio between the local species

concentration and the reference species concentration. Due to the presence of the

ionomer film that conducts the protons, it can be assumed that the concentration

of protons is constant through the layer and that it will be equal to the reference

concentration. Hence equations (2.23)-(2.26) become:

νDA
ν0
DA

=

(
cO2

crefO2

) 1
2 θPt
θ0
Pt

− θO
θ0
O

(2.27)

νRA
ν0
RA

=

(
cO2

crefO2

) 1
2 e−βE/kT θPt

e−βEeq/kT θ0
Pt

− e(1−β)E/kT θOH

e(1−β)Eeq/kT θ0
OH

(2.28)

νRT
ν0
RT

=
e−βE/kT θO

e−βEeq/kT θ0
O

− e(1−β)E/kT θOH

e(1−β)Eeq/kT θ0
OH

(2.29)

νRD
ν0
RD

=
e−βE/kT θOH

e−βEeq/kT θ0
OH

− e(1−β)E/kT θPt

e(1−β)Eeq/kT θ0
Pt

(2.30)

Rearranging and noting that ji = Fνi, the previous system of equations can be

written as:

jDA =
Fν0

DA

θ0
Pt

( cO2

crefO2

) 1
2

θPt −
θ0
Pt

θ0
O

θO

 (2.31)

jRA =
Fν0

RA

θ0
Pt

( cO2

crefO2

) 1
2

e−βη/kT θPt − e(1−β)η/kT θ
0
Pt

θ0
OH

θOH

 (2.32)

jRT =
Fν0

RD

θ0
O

(
e−βη/kT θO − e(1−β)η/kT θ

0
Pt

θ0
OH

θ0
O

θ0
Pt

θOH)

)
(2.33)

jRD =
Fν0

RD

θ0
OH

(
e−βη/kT θOH − e(1−β)η/kT θ

0
OH

θ0
Pt

θPt

)
(2.34)

Note that the two exponential terms have been combined to give a single exponential

term that depends on the overpotential, (where the overpotential is defined as the

cell potential minus the equilibrium potential, η = E − Eeq).
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Now substituting equations (2.19)-(2.22) and (2.17)-(2.18) into the previous

equations, the equations describing the current produced by each step can be written

as:

jDA = j∗

(
cO2

crefO2

) 1
2

e−∆G∗DA/kT θPt − j∗e−∆G∗−DA/kT θO (2.35)

jRA = j∗

(
cO2

crefO2

) 1
2

e−∆G∗RA/kT θPt − j∗e−∆G∗−RA/kT θOH (2.36)

jRT = j∗e−∆G∗RT /kT θO − j∗e−∆G∗−RT /kT θOH (2.37)

jRD = j∗e−∆G∗RD/kT θOH − j∗e−∆G∗−RD/kT θPt (2.38)

where the potential-dependent free energies of activation ∆G∗i are:

∆G∗DA = ∆G∗0DA ∆G∗−DA = ∆G∗0DA −∆G0
O (2.39)

∆G∗RA = ∆G∗0RA + βeη ∆G∗−RA = ∆G∗0RA −∆G0
OH − βeη (2.40)

∆G∗RT = ∆G∗0RT + βeη ∆G∗−RT = ∆G∗0RT −∆G0
OH + ∆G0

O − βeη (2.41)

∆G∗RD = ∆G∗0RD + βeη ∆G∗−RD = ∆G∗0RD + ∆G0
OH − βeη (2.42)

where e is the charge of a single electron and is used to convert the units from volts

to electron-volts.

The kinetic current produced in the reaction is given by equation (2.12) jk =

2jRD:

jk = 2j∗e−∆G∗RD/kT θOH − 2j∗e−∆G∗−RD/kT θPt (2.43)

where here the backward rate is included. The original authors omitted the back-

ward rate, as it was found to be insignificant. However, as the kinetic parameters

will be fitted to the model, the backward step may become significant as the kinetic

parameters are modified during the fitting process.

An expression for the coverages of the intermediate species can be found by re-

turning to the steady state equations (2.10) and (2.11) and substituting in equations

(2.35) to (2.38), again noting that ji = Fνi:

CgDAθPt − g−DAθO − gRT θO + g−RT θOH = 0 (2.44)

CgRAθPt − g−RAθOH + gRT θO + g−RT θOH − gRDθOH + g−RDθPt = 0 (2.45)

where gi = e−∆G∗i /kT and:

C =

(
cO2

crefO2

)1/2

(2.46)
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These equations can be rearranged into a pair of linear equations:

0 = (CgDA + g−DA + gRT )θO + (CgDA + g−RT )θOH − CgDA (2.47)

0 = (CgRA − gRT + g−RD)θO + (CgRA + g−RA + g−RT + gRD + g−RD)θOH

− (CgRA + g−RD) (2.48)

Solving these equations will give the following expressions for the OHads and Oads

coverages:

θOH = CgDA(CgRA+g−RD−gRT )−(CgRA+g−RD)(CgDA+g−DA+gRT )

(CgDA−g−RT )(CgRA+g−RD−gRT )−(CgRA+g−RA+g−RT +gRD+g−RD)(CgDA+g−DA+gRT )

(2.49)

θO = CgDA(CgRA+g−RA+g−RT +gRD+g−RD)−(CgRA+g−RD)(CgDA−g−RT )

(CgDA+g−DA+gRT )(CgRA+g−RA+g−RT +gRD+g−RD)−(CgRA+g−RD−gRT )(CgDA−g−RT )

(2.50)

The final system of equations that needs to be solved is given by:

• equation (2.43), which describes the current produced in the cell.

• equations (2.49) and (2.50), which describe the coverage of the intermediate

species.

• equations (2.39)-(2.42), which are the potential-dependent activation energies

for each of the intermediate steps.

2.3 Preliminary Results

The system of equations presented in the previous section were implemented in

an in-house PEM fuel cell simulation software, the Fuel Cell Simulation Toolbox

(FCST). This software is described in Chapter 3, along with the full set of equations

that describe fuel cell operation. Before implementing the model in a full fuel cell

simulation, the kinetic model was investigated in isolation in order to analyze the

kinetics of the ORR. The first step was to validate the implementation of the model

in the FCST code, using data from the original authors.

2.3.1 Model Implementation

In order to analyze this kinetic model, Wang et al. first obtained values for the

unknown kinetic parameters, i.e. the free energies of adsorption of the two adsorbed

species and the free energies of activation of the intermediate steps. Kinetic data
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Table 2.1: Free energies of activation and adsorption as fitted by Wang et al. from
RDE experiments [4]. Units are in eV .

∆G∗0DA ∆G∗0RA ∆G∗0RT ∆G∗0RD ∆G∗0O ∆G∗0OH
0.258 0.459 0.502 0.455 -0.477 -0.12

was obtained from RDE experiments and the model was fitted to the resulting

polarization curve [4]. The authors note the difficulty in fitting the parameters,

noting large uncertainties for the adsorption free energies. This was due to the lack

of experimental data describing the coverage of the individual intermediates. The

OHad free energy was fixed to −0.12eV to ensure that the total coverage at low

overpotentials was close to unity, while the RD step activation free energy was fixed

to 0.455eV , as it ensured a close fit to the kinetic data, allowing the other four

parameters to vary. Table 2.1 shows the results from the parameter fitting.

Wang et al. further investigated this model by fitting the parameters to kinetic

data obtained from PEM fuel cell experiments [48]. Experimental data was obtained

from a fuel cell running on hydrogen and air at 80℃ and 100% humidity, in order

to obtain a polarization curve. Kinetic data was extracted from the experimental

data by accounting for the major losses incurred in a fuel cell. Many of the losses,

such as the membrane resistance, were not considered significant by the authors so

only the losses due to the cathode kinetics and oxygen depletion were taken into

account. The kinetic losses are the losses being extracted from the data, while the

oxygen depletion was accounted for by assuming a linear dependence of the oxygen

concentration with the produced current

cO2

crefO2

= 1− j

jL
(2.51)

where crefO2
is the reference oxygen concentration and jL is the limiting current, i.e.

the maximum current that can be produced before the oxygen is entirely consumed

in the catalyst layer. Again, this equation is needed as the original model cannot

correctly account for oxygen depletion. This is not the case with the modified

derivation presented in this work.

The resulting polarization curve is shown in Figure 2.2(a). As is clear from the

figure, the experimental data is best captured using the double kinetic model, with

the commonly used Tafel kinetic model resulting in significant over-estimation of

the cell performance.
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Figure 2.2: a) Polarization curve recreated from reference [48] showing the effect
of using the double-trap kinetic model as compared to the Tafel kinetic model. b)
Comparison of the polarization curve presented by Wang et al. and that computed
using the model implemented in the FCST code.

35



Figure 2.3: a) Kinetic data recreated from reference [48] where the kinetic current
is plotted on a log scale. b) Comparison of the kinetic presented by Wang et al. and
that computed using the model implemented in the FCST code.
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In addition, Figure 2.2(b) also shows the results from the simulation of the kinetic

model using the FCST code. This was done to ensure that the model was correctly

implemented. The close agreement between the kinetic model as presented by Wang

et al. and that from the FCST code shows that the model is working properly.

Figure 2.3(a) shows the case for removing the losses due to mass transport

effects, i.e. equation (2.51) is used in post-processing. Note that the Tafel kinetic

model shows a constant slope, computed assuming a transfer coefficient of one, as

is commonly done in fuel cell modeling. It fails to match the experimental data

which incurs additional kinetic losses. The double-trap is able to follow this trend

due to the change in slope. Figure 2.3(b) shows a comparison of Wang’s results and

the results from the FCST code, which matches the trend. The small difference is

due to numerical error from extracting the data from the figures presented in the

original work. The results presented above are for purely kinetic losses, hence there

are no mass transport or ohmic losses. In particular, the ratio of cO2/c
ref
O2

will be

one for this case, which leads to the model presented by the original authors.

2.3.2 Comparison with Experimental Data

The main feature of this model is that it can capture the change in the Tafel slope

that is evident in experimental data. Wang et al. present little experimental

data in their work, so this section will compare the model to data presented by

Parthasarathy et al. [31, 32]. These papers present kinetic data obtained using a

solid state micro-electrode, as discussed in section 1.3.1. This data was chosen as

it shows the change in Tafel slope from a lower slope of approximately 60mV/dec

to an upper slope of approximately 120mV/dec. Further, the kinetic data was pre-

sented over a range of operating conditions making it ideal for parameter estimation,

and was obtained using a solid state micro-electrode. This experimental setup bet-

ter represents the ORR kinetics in a fuel cell in comparison to RDE experiments,

as a solid Nafion membrane is used instead of a liquid electrolyte. This approach

has also been used to obtain kinetic parameters by [21, 22, 33, 34]. The data from

Parthasarathy et al. is also widely cited by researchers in the area of fuel cell model-

ing, as the authors reported several kinetic parameters, such as the exchange current

density or oxygen reaction order. These parameters are then used by researchers

in the area of fuel cell modeling to predict the produced current using the Tafel

equation . In Chapter 3, a comparison between this commonly used method and
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using the double-trap kinetic model will be presented. Kinetic data for a number of

different temperatures and cell pressures in Figures 2.4(a) and 2.4(b), for both the

experimental and numerical data.

Neither plot shows very good agreement between the numerical and experimental

data, most likely due to the difficulties in trying to capture an experimental process

numerically. However, the change in Tafel slope is apparent, in both data sets.

The change from one slope to another happens very suddenly in the experimental

data, whereas the kinetic model predicts a much smoother transition. This gradual

change in slope is evident in other experimental data, for example that presented

by Holdcroft et al. [22, 33]. Of particular interest is the location of the change in

slope and the values of each Tafel slope.

For the experimental data, the potential at which the change in Tafel slope is ob-

served (i.e. the ’changeover potential’) is different for the temperature and pressure

studies, whereas the kinetic model has the same changeover potential. The experi-

mental data shows a changeover potential at approximately 0.75V and 0.85V for the

temperature study and pressure study respectively. The kinetic model changeover

potential appears to lie between the two values shown in the experimental data, at

approximately 0.8V.

The experimentally and numerically obtained Tafel slopes are presented in Tables

2.2(a) and 2.2(b). The numerical Tafel slopes were obtained by plotting the cell

potential against the log of the current density. A linear trend-line was inserted in

the lcd region over four or five data points, from a potential equal to the equilibrium

potential up to 0.1V above changeover potential. Similarly, the hcd Tafel slope was

obtained by inserting a trend-line that started from a cell potential at 0.1V below

the changeover potential to the lowest potential. A gap of 0.2V was maintained

around the changeover potential to ensure that only the linear region was captured.

The slope of the inserted trend-lines was equal to the Tafel slopes. The experimental

Tafel slopes used were reported by Parthasarathy et al.

The experimental data shows a lot of variability in the Tafel slopes, most likely

due to the difficulties in obtaining kinetic data experimentally. Both the temper-

ature and pressure studies show increasing lower Tafel slopes for increasing tem-

perature and pressure, which is reproduced by the kinetic model in the tempera-

ture dependent case but not for the pressure case. The values for the numerically

obtained slopes are consistently lower than the experimentally obtained slopes by
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Figure 2.4: Kinetic data for a) different cell temperatures at a constant oxygen
partial pressure of 5 atm and b) different cell pressures at a constant cell temperature
of 50℃. The dashed lines are the kinetic data presented by Parthasarathy [32], while
the solid lines are the data computed using the double-trap kinetic model.
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Table 2.2: Comparison between experimentally and numerically obtained Tafel
slopes for varying: a) temperatures (left) and b) pressures (right).

Temp. Experimental Numerical
[K] [mV/dec] [mV/dec]

313 -67.6 -54.4
-113.86 -121.4

323 -68.33 -54.3
-119.53 -124.6

333 -69.35 -54.1
-110.49 -127.7

343 -71.24 -53.9
-113.76 -130.5

353 -76.22 -53.8
-115.89 -133.0

Press. Experimental Numerical
[atm] [mV/dec] [mV/dec]

0.21 -64.8 -49.9
-121.2 -123.1

0.56 -68.9 -51.1
-111.1 -123.6

1.05 -69.9 -51.9
-125.1 -123.9

1.46 -71.9 -52.4
-143.2 -124.1

1.88 -69.5 -52.8
-138.7 -124.2

15-20mV/dec in the lcd region. For the upper Tafel slope, the large variability

in the slopes makes generalization difficult, however the kinetic model consistently

returns a value between 120-130mV/dec, which is the commonly assumed value.

However, the highest current predicted by the numerical model is almost an order

of magnitude higher than that of the experimental data. This effect is a result of

the underprediction of the lcd Tafel slope, which leads to large errors in the hcd

region.

The parametric study on the cell temperature for experimental and simulated

data show individual I-V curves (current-voltage curves) that are quite close to-

gether. The kinetic model underpredicts the spread of the data due to the changing

temperature, this may be due to the temperature causing other effects in the exper-

iment that are not captured in the kinetic model.

The Tafel slope b is computed according to equation (1.28). This equation can

be rearranged to find the transfer coefficient, α:

α =
−2.303RT

bF
(2.52)

where the apparent transfer coefficient α is used instead of the symmetry factor β,

as the ORR is a multi-step reaction. Comparison of the transfer coefficients for the

numerical and experimental data can give a insight into whether the temperature

dependence of the ORR has been correctly predicted. For the experimental data,

Parthasarathy et al. argue that the lower Tafel slope increases monotonically with

temperature, meaning that the transfer coefficient is independent of temperature.

For the numerical data, there is a consistent decrease, however it is very minor,
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so the slope can be considered constant. Because the temperature is changing,

the transfer coefficient must also change to maintain the constant Tafel slope (see

equation (2.52)). Similarly, the upper Tafel slope for Parthasarathy was considered

constant, leading to a non-constant transfer coefficient. The kinetic model predicts

a constant increase in Tafel slope, so the transfer coefficient is considered constant.

The transfer coefficient was found to be one in the lower Tafel slope region for

the experimental data, while the model predicts a range of 1.14 to 1.30. For the

upper Tafel slope, Parthasarathy found a transfer coefficient ranging from 0.5 to 0.6,

while the model predicts a constant value of approximately 0.51. The results are in

reasonable agreement, so the trends with changing temperature can be considered

to be captured by the kinetic model.

For the pressure dependent case, the main difference between the simulated and

experimental plots is the spread of the I-V curves. Both show the I-V curves for

the two highest pressures bunching together, compared to the lowest pressure curve.

However, the difference in performance between the lowest and highest pressure is

clearly greater for the experimental case. This spread can be characterized by the

reaction order with respect to oxygen. The mass transport corrected Tafel equation

is given by:

i = i0

(
pO2

P refO2

)γ
e−αF (E−Eeq)/RT (2.53)

where pO2 is the partial pressure of oxygen (note that concentration was used in

Chapter 1, however they are related via the ideal gas law). γ is the reaction order

with respect to oxygen. At a constant overpotential and temperature, equation

(2.53) can be rewritten to give:

log(i) = log(C) + γlog(PO2) (2.54)

where C accounts for all constants, i.e. the exponential term and the exchange

current density. Plotting this equation will result in a linear profile, with a slope

equal to the reaction order. An example of the linear profile is shown in Figure

2.5 for the experimental data only. The figure plots the current densities obtained

at a constant overpotential of 0.5V (i.e. using the Nernst equation to account

for the changing equilibrium potential) for the five oxygen partial pressures used

in Table 2.2. The slope of the linear trend-line approximating the data points is

equal to the oxygen reaction order at that overpotential. The Pearson correlation

coefficient (commonly known as the R value) gives an indication of the strength of
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Figure 2.5: Example reaction order plot from the experimental data presented by
Parthasarathy et al. [31]. The points are the experimental data points from the five
pressure I-V curves. The dashed line shows the linear trend-line approximating the
data points.

the correlation between the two variables. For the case shown in Figure 2.5, this

value was at 0.92. Over the overpotential range for the experimental data shown

in Figure 2.6, the R-value ranged from 0.86-0.96 where a value of 1 indicates a

perfect fit. The deviation from 1 shown in the experimental data is likely due to a

combination of experimental error and error occurring from extracting data from a

journal article. The same method was used for the numerical data.

Figure 2.6 plots the reaction order obtained by this method for the kinetic model

over a range of overpotentials at a constant temperature. The kinetic model unable

to compute the reaction order at or close to zero overpotential. This was likely

due to the very small current densities being computed, with values in the order of

1×10−12 being returned. Machine accuracy is at 1×10−16 which may impact on the

results. Parthasarathy et al. obtained the reaction order at zero overpotential only,

by extrapolating the I-V curves in the Tafel plots back to the equilibrium potential

(and therefore finding the exchange current density). A similar extrapolation of

the curve in Figure 2.6 to zero overpotential indicates that the model is returning
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Figure 2.6: Variation of the oxygen reaction order with changing overpotential for
the kinetic model (dashed line) and experimental data from Parthasarathy et al.
[31] (solid line).

a value between 0.15 to 0.2. The reaction order reported by Parthasarathy et al.

is one, obtained by extrapolating both the upper and lower Tafel slopes back to

the equilibrium potential. The kinetic model therefore shows a significant deviation

from the experimental data. This value is in agreement with data from Beattie [22]

and Zhang [34]. More recent research into ORR kinetics by Neyerlin et al. [63]

predicts a value of 0.54 for the reaction order, which is in better agreement with the

kinetic model, however there is still significant error.

The numerical results obtained by the kinetic model show large variability in the

reaction order, in particular at an overpotential of 0.2V to 0.3V where the reaction

order is close to zero. Given that the equilibrium potential of the simulation is at

approximately 1.2V, this reaction order exists at a cell potential of 0.9V to 1.0V.

The effect of such a low reaction order can be seen in the lcd region in Figure 2.4(b)

where the numerically obtained pressure curves are closer together than is seen in

the hcd region. At lower potentials, or higher overpotentials, the reaction order

rises to close to 0.45. This value is similar to that shown by Neyerlin et al. at zero

overpotential, however the kinetic data shows that the reaction order changes with
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increasing overpotential so comparing the value at different overpotentials is not

recommended. Neither Neyerlin nor Parthasarathy et al. report the reaction order

with changing overpotential, Figure 2.6 was obtained by extracting data from the I-

V curves in Figure 2.4(b). There was insufficient data to determine whether a steady

state value is obtained. There will be some error in Figure 2.6, as the equilibrium

potential for the I-V curves was not reported and the current densities had to be

extracted from the Tafel plot taken from the article. However, extrapolating the data

back to zero overpotential returns the reported value of unity. The experimental

data shows a linear decrease in reaction order with increasing overpotential, such

that there is closer agreement between the experimental and numerical value at hcd.

Figure 2.4(b) also illustrates that choosing a single reaction order to characterize

the entire overpotential range can induce significant errors, for the same reasons as

choosing only a single Tafel slope.

The comparison with experimental data shows that the kinetic model can predict

a change of slope at the correct cell potential, with Tafel slopes reasonably close to

the expected values. However, closer inspection of the results from the kinetic model

shows that key characteristics of the ORR kinetics are not captured, in particular

the oxygen reaction order. These results were obtained by analyzing the model

using parameters presented by Wang et al. In section 2.4, parameter estimation is

used to fit the kinetic model to the data presented by Parthasarathy which should

increase the accuracy of the model.

2.3.3 Analysis of Model

A key component of this model is the computation of the coverage of the intermediate

species. The change in Tafel slope is attributed to the change from a high coverage

of the intermediates to a low coverage, as was discussed in Chapter 1. Figure

2.7 shows the computed coverages of the OHads and Oads species as well as the

total coverage. The profiles show the high total coverage of the two species at low

overpotentials and low total coverage at high overpotentials. The individual profiles

shows the dominance of the Oads species at low overpotentials, which decreases

rapidly with increasing overpotential. The OHads species is initially at negligible

coverage, however rises to a constant value of approximately 26% with increasing

overpotential. The change-over from a mostly covered, to an oxide-free reaction

surface occurs between overpotentials of 0.3V and 0.5V, corresponding to a cell
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Figure 2.7: Coverage of the OHads and Oads species as well as the addition of the
two coverages.

potential of 0.6V and 0.8V. These values match with the potential at which the

Tafel slope change occurs as is seen in the literature [22, 31–34].

The change in the dominant species is indicative of a change in the dominant

mechanism of the ORR as predicted by the double-trap model. With the change

in potential, the energy barriers as described in equations (2.39)-(2.42) will change,

resulting in a change in the relative dominance of each of the reactions. The change

in the energy barriers with cell overpotential is shown in Figure 2.8. For the ini-

tial adsorption of oxygen to the reaction site, the DA reaction dominates at low

overpotentials, as the RA reaction has a higher energy activation barrier at low

overpotentials. This dominance results in the higher production of the Oads inter-

mediate in comparison to OHads. Unlike the DA reaction, the RA reaction is an

electrochemical reaction so the energy barrier decreases with increasing potential.

At high overpotentials, the RA reaction is dominant, leading to a higher coverages

of the OHads intermediate.

The high coverage of the Oads species can also be attributed to the RT reaction.

In particular, the backward step for this reaction is dominant over the forward re-

action at low overpotentials. The RT reaction proceeds by reacting with an Oads
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Figure 2.8: Potential dependent activation energy barriers for each of the four reac-
tions for the forward and backward reaction. Note that the backward rates for the
DA and RA reactions have been omitted.

molecule on the reaction surface, forming OHads. Therefore the backward reaction

will react OHads to form Oads, further reducing the OHads coverage and increasing

the Oads coverage. The change in the coverage of the intermediates is most pro-

nounced around an overpotential of 0.4V, due to a change in dominance from: i)

the DA to the RA reaction and ii) the backward RT reaction to forward RT reaction,

as is shown in Figure 2.8. This change in dominance leads to the change coverage

conditions and to a change in the Tafel slopes produced by the model.

In Figure 2.8, the backward reactions for the DA and RA were omitted. This

was due to the high energy barriers for these reactions, making the reaction rates in-

significant compared to the other reactions. This predicts that the absorbed species

will not react to form oxygen at any potential. The backward RD reaction (dashed

black), which would cause water to react to form the OHads intermediate, is ini-

tially smaller than the forward reaction. However, the reaction quickly increases

and becomes insignificant even at very low overpotentials.

In Figure 2.9(a) and 2.9(b) the two potential paths of the ORR are plotted.

The relevant dominance of each reaction can be seen by looking at the distance in
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Figure 2.9: Reaction coordinate plot at a) a cell potential of 1.0V corresponding to
the upper Tafel slope region, and b) a cell potential of 0.5V corresponding to the
lower Tafel slope region. Note that both paths overlap for the RD reaction. The
solid line denotes the path whereby the oxygen first desorbs onto the platinum as a
Oads species, while the dashed line denotes the case where OHads is formed first.

47



the y-direction between each stable species. Each of the peaks corresponds to a

reaction: reading from left to right, the height of each peak denotes the forward

energy of activation for the reaction. Reading from right to left, each peak height

is the activation energy of the backward reaction. Note that water takes an energy

of formation value of zero and all other species are measured relative to this. Oxy-

gen also has an energy of formation of zero, however the oxygen is reacting with

the hydrogen ions and electrons which will change its position on the figure. The

absolute values are not of particular interest here however, the relative differences

are of more importance.

The main difference between the two plots is the relative difference between

the reactant of the ORR, O2, on the left of each figure and the product, H2O, on

the right of each figure. It is clear that increasing the overpotential increases the

distance between the positions of the two species (note the change in range on the

y-axis between the figures). Figure 2.9(a) and 2.9(b) also shows the change in the

positions of the adsorption energies of the intermediate species. The reason for high

coverage of the Oads species at low overpotentials is immediately apparent as it

occupies the lowest energy configuration in Figure 2.9(a). Again the DA step shows

a smaller energy barrier than the RA reaction, so Oads is more likely to be formed.

Any OHads that is formed is more likely to undergo a transition to Oads via the

backward RT reaction than complete the reaction and form H2O. This is due to

the greater energy barrier for the forward RD reaction compared to the backward

RT reaction. It is clear that the low energy configuration of the Oads species forms

a ’hole’ that is difficult to escape from, leading to high Oads coverage.

Figure 2.9(b) shows the case for a higher overpotential. Now all the forward

reactions are dominant compared to the backward reactions, leading to the greater

relative distance between reactant and product. Most importantly, the OHads now

has a lower energy configuration than the Oads species, so the ’hole’ in Figure 2.9(a)

is not there. Indeed, the RA reaction is now more favorable than the DA reaction,

so the Oads is being produced in smaller quantities.
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2.4 Fitting of Kinetic Parameters

2.4.1 Introduction

Figures 2.4(a) and 2.4(b) show significant differences between the experimental data

presented by Parthasarathy et al. and the kinetic current computed by the double

trap model. In particular, the maximum predicted current is an order of magni-

tude higher for the numerical data compared to the experimental data. Further,

significant differences are observed in the Tafel slopes predicted by the double trap

model. Tables 2.2(a) and 2.2(b) show Tafel slopes for experimental and numerical

data, the numerical Tafel slopes in the lcd region in particular are significantly lower

than those observed experimentally. The reaction order with respect to oxygen also

shows significant errors. The experimental data shows a reaction order of unity,

while Figure 2.6 shows that the double trap model does not match this value, with

a predicted value of 0.2. Also, the high coverage at high overpotentials is not in

agreement with the upper Tafel slope occurring on a clean platinum surface, for

example as is presented by Subramanian et al. [11].

The performance of the model is dictated by the free energies of adsorption of

the intermediate species and the free energies of activation of the four intermediate

steps. The results in the previous section were obtained using values presented by the

original authors, and significant errors are found when comparing the numerical data

to experimental data. This section will attempt to improve the accuracy of the model

by fitting the kinetic model to the experimental data presented by Parthasarathy et

al.

In this work, the free energies on which the model is based will be termed

the ’kinetic parameters’. Their values are not known as they are very difficult

to determine experimentally. Theoretical investigation of these parameters is only

possible using methods like DFT. Such methods are still in their infancy so they can

not yet consistently predict such values, as discussed in section 1.3.1.3. Ideally the

values for the kinetic parameters would be found theoretically or experimentally,

however as this is not possible, parameter estimation will be used instead.

Parameter estimation can be used to determine unknown model parameters by

comparing results from the model to experimental data. The numerical data can be

adjusted to better fit the experimental data by systematically varying the unknown

parameters. In the case of the double trap kinetic model, the current produced by the
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model is compared to the experimental current density presented by Parthasarathy

et al. The functional minimized will be the normalized least-square difference be-

tween the numerical and experimental current density produced in the solid state

cell. If a good fit to the data can be found, then the kinetic parameters such as

the reaction order and Tafel slope should also match. The kinetic model is highly

nonlinear in terms of the kinetic parameters, so a nonlinear optimization method

will be used. The optimization methods are provided by an open source library

developed in Sandia National Laboratory called the DAKOTA (Design Analysis Kit

for Optimization and Terascale Applications) toolkit [67]. The FCST code has been

coupled to this library, such that the FCST code behaves as an analysis package.

The coupling allows the Dakota library to modify variables in FCST (e.g. the ki-

netic parameters) and read in the results from FCST (e.g. the current density). The

coupling of Dakota and FCST is described in greater detail in references [68] and

[69].

2.4.2 Least-Square Parameter Estimation Problem Formulation

The least square parameter estimation problem is defined as:

Minimize f(x̄) =
1

2

N∑
i=1

[
jexpi − jmodeli (x̄)

jexpi

]2

(2.55)

w.r.t.: x̄ = ∆G0
OH ,∆G

0
O,∆G

∗0
DA,∆G

∗0
RA,∆G

∗0
RT ,∆G

∗0
RD (2.56)

s.t.: −0.8 < ∆G0
m < −0.1 (2.57)

0.1 < ∆G∗0n < 0.8 (2.58)

0.8 < (θOH(0.85V ) + θO(0.85V )) < 1.0 (2.59)

0.0 < (θOH(0.4V ) + θO(0.4V )) < 0.2 (2.60)

In equation (2.55), f(x̄) is the objective function to be minimized. N is the number

of experimental data points taken from the experimental data curves. For each

curve (where a curve corresponds to a particular set of operation conditions, over

a range of potentials), eight data points were taken. Four data points were taken

in the lcd region and four data points were taken in the hcd region to ensure that

one Tafel slope region was not favored over the other. The experimental current is

given over several orders of magnitude, so the difference between the experimental

and numerical data are weighted to ensure that data in the lcd region (which will

be orders of magnitude smaller than the current in the hcd region) are given equal

importance. The final objective function, f(x̄), is the root mean square of the data

set.
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In equation (2.55), the objective function is a function of the design variables

x̄ (due to the dependence of jmodeli on x̄). These are the parameters to be varied.

These variables are the free energies of activation of the intermediate species and of

adsorption of the intermediate species, as is shown in equation (2.56).

Equations (2.57) and (2.58) show the bounds for the free energies of adsorption

and activation respectively. m is the number of absorbed species (two in this work)

and n is the number of intermediate reactions (four in this work). Keith et al. [41]

presents a review of density functional theory calculations of the binding energy of

oxygen to a platinum crystal. The results range from 0.1eV to 1.95eV depending on

the assumptions of the model. The lower bound is set to 0.1eV in agreement with

the range found by Keith et al. This also prevented the free energy reaching a value

of zero, which was found to make the optimization unstable. The upper bound was

set to 0.8eV instead of 1.95eV based on the results of a sensitivity analysis. The

kinetic parameters were varied over a wide range to see which parameters had an

effect on the produced current and the coverage of the intermediate species. An

example of this sensitivity analysis is shown in Figures 2.10 a) and 2.10 b). The

analysis shows that for high values for the activation energies, there is no change in

the values of the current or coverages. For example, the current is unaffected if the

DA activation energy is changed from 0.6eV to 0.8eV . The gradient returned to the

optimization software at this point will be close to zero, which can make it difficult

to move the design variables such that the residual is minimized. The upper bound

was restricted to 0.8eV so as to exclude most of these ’flat’ regions. Some of the

flat region was still included however, as these regions may shift slightly with the

changing design variables. A similar sensitivity analysis for the absorption energies

was performed and bounds of −0.8eV to −0.1eV were chosen.

The final part of the optimization formulation are two non-linear constraints.

Matching the experimental data presented by Parthasarathy et al. should result in

the model returning the correct Tafel slopes and other kinetic characteristics such as

the oxygen reaction order. The coverages returned by the kinetic model should also

match commonly observed trends, i.e. high coverage at low overpotentials and low

coverage at high overpotentials. Parthasarathy et al. do not present experimental

data that can be matched in the same way as the current, so two general constraints

are added, i.e. equations (2.59) and (2.60). Equation (2.59) imposes that at low

overpotentials, the total coverage returned by the kinetic model is greater than 80%.
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Figure 2.10: Sensitivity of the current density and total coverage as predicted by
the double trap model to a) the free energy of activation of the DA reaction (left)
and b) the RA reaction (right). This is done for a constant cell potentials of 0.5V
(high overpotential), 0.7V and 0.9V (low overpotential). Note that current density
plots are normalized by the average value of the current produced over all values for
the design variable.

At high overpotentials, equation (2.59) imposes that the total coverage has to be

lower than 20%. When first attempting the data fitting, the values at which the

constraints were evaluated were varied in order to find the value that gave the lowest

residual with a coverage profile that matches profiles seen in the literature. It was

found that the high overpotential constraint was not significant as the coverages

at high overpotential tended to be very close to zero. The optimizer also tended

to return coverages that were very close to the low overpotential constraint. The

potential at which this constraint was evaluated at was varied and it was found that

using a cell potential of 0.85V gave the lowest residual with a coverage profile very

similar to that produced by Subramanian et al. [11] (see Figure 2.14).
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2.4.3 Solution Procedure

An interior-point, gradient-based nonlinear optimization method is used to solve

the problem. The method, known as OPT++ [70], can be used for non-linear

constrained optimization. The main reason for choosing this method was its quick

convergence and its ability to apply non-linear constrains to the problem. One of the

main weakness of this model is that it is a local model, i.e. it will find the closest

minimum in the variable space. In order to guarantee that a global minimum is

obtained, in this work numerous starting points are used and the results from the

simulation that return the lowest residual are used. Gradients are required for this

method, so numerical derivatives computed using central differencing are used, with

a relative step size of 1 × 10−3, or 0.1%. Implementing the analytical derivatives

would be time consuming, and as an individual function evaluation typically takes

in the order of half a second, the extra function evaluations needed to compute the

derivatives are not computationally expensive.

2.4.4 Results

A number of experimental kinetic data curves from Parthasarathy et al. were chosen

as the input data. Ideally, several curves would be chosen with varying pressures

and temperatures, so that changing pressure and temperature trends could be cap-

tured. However, inspection of the two sets of data show that the data reported

by Parthasarathy et al. in the temperature study does not match the data in the

pressure study. In particular, the open cell potential and the potential at which

the change in Tafel slope occurs is not consistent between the two sets of data (ac-

counting for the changing operating conditions). Therefore, the temperature plots

were not used in the parameter fitting as inconsistent data will result in the non-

convergence of the optimization simulations. The data in the pressure study was

chosen, as it was ’cleaner’ than that of the temperature study (i.e. it was easier

to extract the data points). The pressure dependence was also considered to be

more important than the temperature dependence due to the closer agreement of

the model with the transfer coefficient than the reaction order as shown in section

2.3.2.

I-V curves at three different pressures were chosen as the experimental data.

The I-V curves chosen were for cell pressures of 0.56atm, 1.05atm and 1.88atm. The

1.05atm curve was chosen to be the reference condition for the parameter fitting.
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Table 2.3: Starting points for the design variables. The first two are parameters
presented by Wang et al., the third are the results from the single curve parameter
fitting, while the final two are random starting points.

Case G∗0DA G∗0RA G∗0RT G∗0RD G0
O G0

OH

1 0.358 0.531 0.578 0.5 -0.524 -0.12
2 0.25 0.45 0.5 0.46 -0.47 -0.12
3 0.3598 0.6008 0.5846 0.562 -0.66 -0.3948
4 0.1424 0.6967 0.6237 0.5301 -0.3417 -0.3917
5 0.3467 0.3402 0.4780 0.4990 -0.1230 -0.1321

The curve will provide the reference oxygen concentration for the parameter fitting,

which would be the oxygen concentration provided at an oxygen partial pressure

of 1.05atm. As a result of this, the fraction cO2/c
ref
O2

, shown in equation (2.46),

will be equal to one when the oxygen partial pressure is at 1.05atm. The changing

equilibrium potential for the changing oxygen partial pressures is also accounted for.

The parameter estimation problem is solved with five starting points in order

to ensure that the global minimum is found. The first two sets of starting points

used are the free energies provided by Wang et al. Wang obtained the parameters

by fitting to experimental current densities found using a fuel cell and an RDE.

These are cases one and two respectively. Case three is a data set found from fitting

to a single curve only. The model was initially fit to a single curve to test the

optimization formulation. While convergence was achieved, the resulting kinetic

parameters were not able to capture the trends shown by the experimental data

for changing oxygen pressure. Fitting to multiple curves is used to ensure that this

trend is captured. Cases four and five are data sets that were generated randomly.

Table 2.3 gives the values for the starting points for each of the five cases.

Table 2.4: Optimization results from fitting to multiple pressure curves.

Case G∗0DA G∗0RA G∗0RT G∗0RD G0
O G0

OH f(x̄) θT,hcd θT,lcd
1 0.391 0.609 0.590 0.254 -0.343 -0.376 1.059 0.0005 0.800
2 0.391 0.609 0.590 0.278 -0.343 -0.376 1.059 0.0005 0.800
3 0.391 0.609 0.590 0.273 -0.345 -0.376 1.059 0.0005 0.800
4 0.391 0.609 0.590 0.128 -0.354 -0.376 1.059 0.0005 0.800
5 0.388 0.608 0.379 0.573 -0.208 -0.382 1.136 0.1714 0.804
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2.4.4.1 Results from Parameter Estimation

The results from the parameter estimation are given in Table 2.4, where the nonlin-

ear constraints are denoted θT . For the first three cases, convergence was achieved,

with the optimizer terminating due to the norm of the gradient of the design vari-

ables with respect to the objective function being less than the relative gradient

tolerance (set to 1 × 10−4). Three converged cases all returned design variables

that are very similar. For these cases, two parameters showed small differences

which were restricted to the second significant digit (for the G∗0RD parameter). The

largest difference between the returned G∗0RD parameters is ∼8%, which resulted

in insignificant differences between the final objective function and constraints. A

post sensitivity analysis, such as that shown in Figure 2.17(a) and 2.17(b), was per-

formed. The study shows that the objective function and the constraints were not

sensitive to these parameters, so the differences in Table 2.4 area not significant.

Cases four and five did not result in convergence. The fourth case terminated

due to many backtracks, which indicates that the simulation is stuck in a location

that is not a minimum, but any attempts to move out of it are blocked by the

constraints. To move out, the simulation would have to go back on itself (i.e. in

the direction of increasing the residual). However, the returned kinetic parameters

are very similar to those returned by the converged simulations, with the exception

of the G∗0RD parameter. Inspection of the G∗0RD returned for previous iterations

show the optimizer reducing the parameter down from an initial value of ∼ 0.5eV

to 0.1234eV. From here it tries to raise it again, however it got ’stuck’ due to

the lcd non-linear constraint and terminated. So this simulation would likely have

converged to a similar solution as the first three points. Case five terminated due

to too many function evaluations and shows significant differences in the kinetic

parameters. These results highlight the sensitivity of the optimization algorithm to

the initial solution, therefore either the use of several starting points or the use of a

global optimization algorithm such as genetic algorithms is highly recommended.

The final overall residual is 1.059. This cumulative residual is the addition of all

of the individual weighted differences between each experimental data point and its

corresponding numerical data point. These individual residuals were generally less

than 10%, with four points out of the 24 having a value of 30% to 45%. Therefore,

there is good agreement between the numerical simulation and the experimental
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Figure 2.11: Kinetic data for different oxygen partial pressures at a constant cell
temperature of 50℃. The points are the experimental data from Parthasarathy et
al [31]. The lines represent the simulated data.

data points, barring a small number of errant data points that are likely due to

the difficulty in performing solid-state cell experiments. It is also encouraging that

none of the returned design parameters are close to their bounds. It shows that the

chosen bounds did not interfere significantly with the optimization simulation.

The free energies chosen for this work are those returned by case two. Between

the three cases that converged, case one shows the largest difference for the G∗0RD

parameter, while case three shows the largest difference for the G0
O parameter.

2.4.4.2 Effect of Oxygen Partial Pressure

Using the results from case two as the input parameters to the kinetic model, the

updated kinetic model is compared to the experimental data. Figure 2.11 shows

the comparison between the simulated current density and the experimental data

for varying oxygen partial pressures. The figure shows that the pressure curves are

reproduced accurately. The maximum and minimum current densities are now the

same for the simulated and experimental data as appears to be the case for the

equilibrium potential.

The experimental data shows an increase in current with increasing oxygen par-
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Figure 2.12: Variation of the oxygen reaction order with changing overpotential for
the kinetic model (dashed line) using parameters from this work and experimental
data from Parthasarathy et al. [31] (solid line).

tial pressure. The simulated data does not exactly reproduce the trend, with the

simulated pressure curve at 1.88atm being consistently ’under’ the experimental data

points, especially in the lcd region. The reaction order with changing overpoten-

tial, computed using the same method described in section 2.3.2, is shown in Figure

2.12 for the kinetic model and the experimental data. The simulation was unable

to return values close to zero overpotential, however extrapolation of the reaction

order plot indicates that the value at zero overpotential is tending towards a value

of 0.5. This is a clear improvement over the original parameters, however, it is still

smaller than the value of unity found in the experimental data at zero ovepotential.

In the hcd region, the experimental reaction order reduces to a value around 0.4

which is closer to the hcd value predicted by the kinetic model. Figure 2.12 shows a

significant decrease in the reaction order to approximately 0.33 at an overpotential

of 0.3V to 0.4V. As will be shown in Figure 2.14, this value corresponds with the

changeover potential at which the local coverage conditions change.

The kinetic parameters were found by fitting to pressure curves only, so the dis-

crepancy in the reaction order at zero overpotential may indicate that the model

simply cannot reproduce this reaction order. This could be due to the assumed DA
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Table 2.5: Comparison between experimentally and numerically obtained Tafel
slopes for varying oxygen partial pressures.

Press. Experimental Numerical
[atm] [mV/dec] [mV/dec]

0.21 -64.8 -64.4
-121.2 -137.9

0.56 -68.9 -64.9
-111.1 -135.1

1.05 -69.9 -65.5
-125.1 -134.9

1.46 -71.9 -65.9
-143.2 -131.9

1.88 -69.5 -66.3
-138.7 -131.1

and RA intermediate steps (equations (2.1) and (2.2)) using one half oxygen stoi-

chiometry. This assumption means that the model does not simulate the cleaving of

the oxygen-oxygen double bond. The ORR model used by Ruvinskiy et al. [65, 66]

does not make this assumption by adding additional intermediate steps whereby

molecular oxygen absorbs to the platinum surface before electrochemically reacting

to form the Oads and OHads intermediates. Adding these additional intermediate

reactions may improve the accuracy of the model and return a reaction order of

unity. However, the reaction order predicted by the kinetic model appears to be

in reasonable agreement with the experimental data at hcd. Further, a zero over-

potential reaction order of 0.54 was experimentally obtained by other researchers

such as Neyerlin et al. [63], which closely matches with the value obtained in this

work. Therefore, the reaction order of 0.5 at zero overpotential may not be an error.

Unfortunately, neither Neyerlin or Parthasarathy report the reaction order at other

overpotentials so it is difficult to directly compare the experimental and numerical

data with confidence.

The Tafel slopes returned by this model are shown in Table 2.5 and show good

agreement with the experimentally found Tafel slopes. In particular, the lower Tafel

slopes show better agreement than those found using the parameters presented by

Wang et al. The upper Tafel slopes show some deviation from the experimental

data. The general trend for the experimental data is for increasing Tafel slope with

increasing oxygen pressure, the opposite is found with the kinetic model. This trend

results in Tafel slopes being greater than the experimentally found slopes for low

58



Figure 2.13: Kinetic data for different cell temperatures at a constant oxygen partial
pressure of 5atm. The points are the experimental data from Parthasarathy et al
[32]. The lines represent the simulated data.

oxygen pressures, which are also the oxygen pressures that are modeled in Chapter

3 and compared with experimental data. The kinetic model will therefore slightly

overpredict the kinetic losses in the hcd region.

2.4.4.3 Effect of Cell Temperature

Polarization curves at different temperatures obtained experimentally and numer-

ically, are shown in Figure 2.13. The comparison between the experimental and

numerical data show significant errors. However, it is important to note that the

experimental data for the pressure and temperature studies, reported in different

articles by the same authors [31] and [32], are inconsistent. Therefore, only the trend

with temperature is of interest. Further, the temperature dependent I-V curves were

not used to estimate parameters.

The main difference is the changeover potential from one Tafel slope region to

the other. The simulated results show a change over point at a cell potential of

approximately 0.9V. In contrast, the experimental data shows a change over point

at approximately 0.775V. The experimentally observed changeover potential in the

temperature study is not consistent with the changeover potential from the pressure

study. In addition to the data shown in his work, the pressure study also reports
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Table 2.6: Comparison between experimentally and numerically obtained Tafel
slopes for varying cell temperatures.

Temp. Experimental Numerical
[K] [mV/dec] [mV/dec]

313 -67.6 -67.9
-113.86 -123.9

323 -68.33 -69.6
-119.53 -127.6

333 -69.35 -71.3
-110.49 -131.2

343 -71.24 -72.9
-113.76 -134.7

353 -76.22 -74.6
-115.89 -138.1

kinetic data for oxygen pressures between 2-7atm, which includes data at 5atm. This

is the pressure used in the temperature study. The changeover potential is observed

to be at approximately 0.9V, in agreement with the value shown in by the kinetic

model. The discrepancy between the changeover potentials makes comparing the

two data sets difficult, however it can been seen in the low Tafel slope region that

the spacing between I-V curves appears consistent for both the experimental and

numerical data. This is not as clear in the high Tafel slope region, where the 353K

temperature curve for the experimental data crosses the 313K temperature curve.

this is likely showing losses that are not kinetic which will not be reproduced with

the numerical model.

Table 2.6 shows the Tafel slopes that are found for the experimental and sim-

ulated data. Again, the lower Tafel slopes are showing good agreement, while the

upper Tafel slope region is showing significant errors. The numerical upper Tafel

slopes are consistently higher than the experimental ones, in particular in the area

of high temperature. The trend seen in the numerical data is for increasing Tafel

slope with increasing temperature, which is not observed in the experimental data.

The literature is not consistent on this trend, Beattie [22] and Zhang [34] provide

experimental data that is consistent with the numerical model (i.e. increasing Tafel

slope with increasing temperature). Mani et al. [33] provide data that shows a

constant Tafel slope with increasing temperature, which is consistent with the data

from Parthasarathy et al. To better capture the hcd temperature trends, data that

is consistent and accurate is required. Chapter 3 contains comparisons to experi-
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Table 2.7: Percentage error between the Tafel slopes reported the experimental data
in the temperature study and those predicted by the kinetic model using either the
parameters from Wangs et al. or those fitted in this work.

Low Tafel slope region High Tafel slope region

This work -0.4 -1.9 -2.8 -2.3 2.1 -8.8 -6.8 -18.7 -18.4 -19.2
Wang et al. 19.5 20.5 22.0 24.3 29.4 -6.6 -4.2 -15.6 -14.7 -14.8

mental data at high temperatures (80℃ and 95℃ ) so the kinetic losses in the high

Tafel slope region may be slightly overestimated. The changes of the Tafel slopes

with changing temperature can be encapsulated by looking at the apparent transfer

coefficient the model predicts. Parthasarathy et al. showed a constant transfer coef-

ficient of unity in the low Tafel slope region, the double trap model predicts a value

from 0.91 to 0.94. In the high Tafel slope region, a transfer coefficient of 0.5-0.6 is

found by Parthasarathy, while a constant value of 0.5 is found by the kinetic model.

Again, the transfer coefficient appears to be reasonably well captured.

Tables 2.7 and 2.8 shows the percentage difference between the Tafel slopes

predicted using the original parameters reported by Wang et al. and the estimated

parameters from this work. It is clear that the new parameters can accurately

reproduce the experimental data, particularly in the lcd region. There are some

errors in the hcd region, for both sets of estimated parameters. These errors are

within the variations reported in the Tafel slopes given by Parthasarathy. Taking

an average of all the high Tafel slope percentage errors returns a value of 12% for

the new estimated parameters compared to an average error of 9% for the original

parameters. However, in the low Tafel slope region, the average of the errors are 3%

for the new parameters and 24% for the original parameters. This major discrepancy

shifts the result in favor of the new parameters, with an overall average error of

8% compared to 16% for the original parameters, showing a clear improvement in

accuracy. This result along with the improvement in the predicted reaction order and

the range of predicted current density, show that the kinetic parameters obtained

in this work significantly improve the overall accuracy of the kinetic model. Further

comparison of the data sets will be made in Chapter 3, when both data sets are used

in a full MEA model that simulates a fuel cell operating under realistic conditions.
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Table 2.8: Percentage error between the Tafel slopes reported the experimental
data in the pressure study and those predicted by the kinetic model using either the
parameters from Wangs et al. or those fitted in this work

Low Tafel slope region High Tafel slope region

This work 0.6 5.8 6.3 8.3 4.6 -13.8 -21.6 -7.8 7.9 5.5
Wang et al. 23.0 25.8 25.8 27.1 24.0 -1.6 -11.3 1.0 13.3 10.5

2.4.4.4 Effect on Coverage of Intermediate Species

Changing the free energies may change the relative dominance of the intermediate

reactions, resulting in different mechanisms dominating and different profiles for the

intermediate species. Therefore, the results and conclusions discussed in Section

2.3.3 may not apply to the updated model. Note that while coverage conditions

were imposed when fitting the experimental data, the conditions were imposed to

the total coverage, or summation, of the two intermediate species. No conditions

are imposed relating to the profiles of the individual species.

Figure 2.14 shows the profiles of the intermediate species, as well as the total cov-

erage. The total coverage profile is consistent with experimentally found coverages,

where the lcd coverage is very high and the hcd coverage is very low. Experimental

data was taken from work by Subramanian et al. who found the coverage profile

given by the points. The kinetic model shows remarkably good agreement with

the experimental data, in particular, the very sharp decrease in the coverage pro-

file between an overpotential of 0.3V and 0.5V. It was found that by varying the

potential at which the low overpotential constraint (equation (2.59)) was evaluated,

the location of the sharp decrease region could be shifted to the right or left. For

example, evaluating the constraint at 0.9V would maintain the very high and very

low overpotential coverages at 0% and 100% respectively, but the onset of the drop

in coverage would occur at a lower overpotential. Similarly, the onset of drop would

occur at a high overpotential if the potential at which the constraint was evaluated

was increased to 0.8V . However, the residual for both of these cases was higher than

that for the case were the constraint was evaluated 0.85V . The fit the current den-

sity was deemed to be more important than matching exactly the coverage profile,

so the constraint was evaluated at 0.85V . Note that this general formulation of the

constraints on the coverage were deliberately kept general due to the lack of kinetic

data in the literature. The close agreement of the kinetic model with the unrelated
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Figure 2.14: Coverage of the OHads and Oads species as well as the addition of the
two coverages. Experimental data points taken from Subramanian et al. [11].

coverage experimental data adds further validation to the accuracy of the kinetic

model.

Figure 2.14 also shows the individual profiles of the intermediate species. The

OHads intermediate is clearly the dominant species, covering the entire platinum

surface at very low potentials, before quickly decreasing to zero. The Oads interme-

diate is less prevalent, however still rises to over 30% in the sharp decrease region

before reducing to zero. This is in contrast to the coverage profiles found by Wang et

al. shown in Figure 2.7. Using the kinetic parameters provided by Wang et al., the

Oads was the dominant species, with the OHads intermediate only becoming promi-

nent at higher overpotentials. However, the OHads coverage is non-zero at very high

overpotentials using the original kinetic parameters, which is not consistent with the

coverage profile given by Subramanian et al. Using the fitted parameters from this

work, the very high overpotential coverage is zero, giving more confidence in the va-

lidity of the updated model. Note that this zero coverage at high overpotentials was

not rigorously imposed during the data fitting. The second non-linear constraint

imposes a total coverage of 0% to 20% in this region, so the optimizer is not overly

constrained in this region. That the model will naturally return a zero coverage
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profile at high overpotentials gives further confidence to the enhancements made to

the original model, in particular, correctly accounting for oxygen depletion.

Figure 2.15 shows the profiles of the total coverage as well as the individual

species for different oxygen partial pressures. The total coverage profile shows

small changes over the four different oxygen pressures, which are over a wide range

(0.01atm to 5 atm). Interestingly the coverage of the intermediate species shows

significant changes. At zero overpotential, the OHads species entirely covers the

reaction sites, however diminishes to zero with increasing overpotential. At very

high oxygen partial pressures, this occurs very rapidly, due to the rapid increase in

the Oads intermediate which achieves coverages as high as 60% at 5atm of oxygen

pressure. These results show that experimenters should exercise caution when try-

ing to determine the intermediate species that dominates the ORR, as the dominant

species may change with changing oxygen pressure.

2.4.4.5 ORR Mechanism

Wang et al. report that Oads is the dominant species in the lcd region, whereas this

work predicts that the OHads species will be dominant. This change in dominance

is due to the differences in the free energies used by Wang et al. and those used in

this work. As the absorption and activation energies have changed, the conclusions

reached in section 2.3.3 using Wangs parameters are not valid here. Figures 2.16(a)

and 2.16(b) show the changing energy barriers for the intermediate reactions in

the lcd and hcd regions respectively using the fitted parameters from this work.

The general trend for the energy barriers is the same as for the trends found using

the original kinetic parameters, at low overpotentials the energy barriers are higher

than those for high overpotentials. However, for the new kinetic parameters the

OHads intermediate occupies the lowest energy state in contrast to Oads in the

original work. This accounts for the change in dominance from Oads to OHads with

the change in parameters. The new parameters show that at low overpotentials,

any water in the layer will spontaneously form OHads (i.e. the backward RD energy

barrier is negative, meaning that there is no barrier to the formation of OHads). This

dominance of the OHads intermediate due to the absorption of water predicted by

the kinetic model is also seen experimentally in the research performed by Murthi et

al. [71]. Rotating ring disk electrode experiments in oxygen-free sulphonic acid were

performed and the current density was recorded. The reaction proceeded by reacting
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Figure 2.15: Coverage of the OHads and Oads species and the total coverage for
changing oxygen partial pressures.
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the water introduced into the acid in varying amounts. When very low quantities of

water were introduced into the acid, the doubling of the Tafel slope was not present

and a CV showed lower coverage of intermediate species. The experimental results

in [71] agree very well with the results obtained using the kinetic model.

Figure 2.16(b) shows that H2O occupies the lowest energy state at high overpo-

tentials, hence the ORR can now be completed. This is facilitated by the forward

RD reaction becoming dominant over the backward reaction, indeed, the forward

reaction is now spontaneous, so any OHads produced will quickly form water. This

accounts for the rapid decrease in the OHads shown in Figure 2.14. The small rise

and then decrease in the Oads intermediate can be accounted for by noting that the

forward RT reaction barrier is initially higher than that of the forward DA reaction.

As the overpotential increases, the RT barrier reduces in size until it is smaller than

the DA barrier, leading to the Oads being cleaned from the surface. This is further

facilitated by the RA forward reaction barrier reducing in size relative to the DA

barrier, leading to greater production of OHads compared to Oads.

The change in the Tafel slope with increasing overpotential is most likely due to

the change in dominance from the backward RD reaction to the forward RD reaction,

along with the change in dominance of the RA reaction pathway compared to the

DA reaction pathway. This leads to the change in the coverage profile from high

coverage to low coverage, which leads to a different Tafel slope. The reason for the

low value for the Tafel slope in the lcd region compared to the high Tafel slope

in the hcd region is difficult to determine. The Tafel slope is generally given in

units of mV/dec and therefore describes how much additional overpotential must be

applied to achieve an increase of a decade in the current density. It can therefore be

considered the sensitivity of the produced current density to a change in the applied

overpotential. At low overpotentials, each of the reactions is likely to be important.

The DA barrier is less than the RA barrier so will dominate, yet the considerable

RT barrier must still be overcome, before both reaction paths must overcome the

smaller RD barrier. A change in overpotential in this regime will reduce the energy

barrier of the RA and RT barrier(recall that the DA reaction is not electrochemical,

see equation (2.1)). Therefore a small change in overpotential will result in the

simultaneous lowering of energy barriers in both reaction pathways, resulting in the

’overall’ reaction rate requiring little overpotential to make a large change in current.

By contrast, at high overpotentials, the RA pathway is more active than the
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Figure 2.16: Reaction coordinate plot at a) a cell potential of 1.0V corresponding
to the lower Tafel slope region, and b) a cell potential of 0.5V corresponding to the
upper Tafel slope region. Note that both paths overlap for the RD reaction. The
solid line denotes the path whereby the oxygen first desorbs onto the platinum as a
Oads species, while the dashed line denotes the case where OHads is formed first.
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DA reaction, removing the importance of the RT reaction at the same time. At

this overpotential, the forward RD barrier now dominates the backward RD barrier,

however the forward barrier is now negative, resulting in a spontaneous reaction.

As there is no barrier to be overcome, increasing the overpotential will not increase

the rate at which this reaction occurs. Therefore only a reduction in the RA barrier

will produce a meaningful change in the current density. So, because increasing the

overpotential will only reduce a single important barrier, the value of the Tafel slope

is greater at high overpotentials compared to at low overpotentials where a change

in overpotential produced a meaningful decrease in the barriers of three reactions.

Finally, the changing energy barriers can shed some light on the reason for the

shape of the reaction order plot as shown in Figure 2.12. The figure shows that at low

and high overpotentials the reaction order has a value of 0.5, with a decrease to 0.33

at an overpotential around 0.35V. A value of 0.5 matches the 1/2 stoichiometry of the

assumed intermediate reactions that involved molecular oxygen (i.e. equations (2.1)

and (2.2)). At low overpotentials, the DA reaction has a lower energy barrier than

the RA reaction, so the molecular oxygen reacts primarily along the DA pathway.

At high overpotentials, the RA reaction has the lower energy barrier. The one half

reaction order reflects that all the molecular oxygen is reacting via one pathway

only, i.e. the RA pathway, corresponding to the one half stoichiometry. At medium

overpotentials, the DA and RA energy barriers are closer in value such that both

pathways are simultaneously reacting the molecular oxygen. A rise in coverage of

the Oads intermediate is seen in this potential region which is not being reacted by

the RT reaction to form OHads. The Oads is therefore blocking the overall reaction

so the oxygen used to form the Oads is ’wasted’. Hence, the reaction order drops

in this region, which is indicative of the reaction using the provided oxygen in a

less ’effective’ manner. This reduction in the oxygen reaction order, coupled with

the value of 0.91-0.94 for the apparent transfer coefficient, would indicate that the

overall ORR does not have a rate determining step at low current densities. If one of

the steps was the RDS, then the overall transfer coefficient and reaction order would

mirror the transfer coefficient and reaction order of the step. This is clearly not the

case at low current densities. At high current densities, the reaction appears to be

absorption limited, as the reaction order is one half, as is the transfer coefficient.

This leads to the conclusion that the reductive absorption step is the RDS. This is

also apparent in the energy barrier diagram at high overpotentials, the RD reaction is
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spontaneous and the DA energy barrier is higher than that of the RA energy barrier

so the RA reaction will dominate. Note that these conclusions are the result of

the simplifying assumption that the initial reaction of the ORR can be simplified to

1/2O2 being reacted on the platinum. If the assumed intermediate steps are changed

to include the reaction steps presented by Ruvinskiy et al., where oxygen with a

stoichiometry of one participates in the initial reaction, then the reaction order may

also change to one, matching with the experimental data. Further research in this

area is needed to investigate this possibility.

The conclusions reached here should be treated with caution. Figures 2.17(a)

to 2.17(d) shows sample results from a post-sensitivity analysis, where the sensitiv-

ity of the current density and the non-linear constraints to changes in the design

variables is plotted. The current density is normalized by the average of the cur-

rent produced over a single curve. The current densities are produced in different

orders of magnitude depending on the cell potential, so normalization is required to

compare each of the curves. The results are shown for a cell potential of 1.0V and

0.85V corresponding to the low overpotential region, and at 0.4V which is in the

high overpotential region. The 0.4V and 0.85V are also the potentials at which the

nonlinear constraints are evaluated.

Figure 2.17(b) and (d) shows the change of the current current density with the

changing free energy of adsorption of the OHads species. The value for this param-

eter returned by the optimizer is shown with a solid vertical line. The figure shows

that a change in the OHads absorption free energy will produce significant changes

in the current density at low overpotential. The optimizer could potentially change

this parameter in order to further reduce the objective function. However, the low

overpotential constraint (the bound of which the optimizer was very close to) shows

some sensitivity to the changing OHads absorption free energy, so the optimizer is

constrained. This gives very little room for any variance in this parameter, giving

some confidence in the final value chosen by the optimizer for the the value of the

free energy of the OHads intermediate.

In contrast, Figure 2.17(a) and (c) shows the dependence of the free energy of

activation of the RD reaction. The optimizer chose a value of 0.278eV for this pa-

rameter, however increasing or decreasing that value by 0.1eV (a 35%) change will

produce no change in the computed current at any overpotential. The high over-

potential has constraint some sensitivity to this parameter, however this constraint
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Figure 2.17: Sensitivity of the current density, hcd coverage constraint (0.4V) and
lcd constraint (0.85V) as predicted by the double trap model to a) the free energy
of activation of the RD reaction, a) and c), and to the free energy of adsorption
of the OHads intermediate b) and d). The current density sensitivity analysis is
done for a constant cell potentials of 0.4V (high overpotential), 0.85V and 1.0V
(low overpotential). The solid vertical line shows the value of the fitted parameter.
Note that current density plots are normalized by the average value of the current
produced for a single curve.

was not close to its upper bound, so its importance is less than that of the low

overpotential constraint, which shows no sensitivity. This trend shows that the RD

free energy could be changed significantly but show no appreciable effect on the

final result as far as the optimizer is concerned. The potential for large variance

in this parameter gives less confidence to the value chosen by the optimizer. While

changing this parameter will not vary the final objective function or constraint, it

may effect the results shown in Figures 2.16(a) and 2.16(b) by changing the size of

the energy barriers.
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This analysis shows the difficulties in attempting to draw conclusions on the fun-

damental nature of the ORR based on the results of parameter fitting. Parameter

insensitivities can hide the significant variability of the kinetic parameters which

may effect the energy barriers show in Figures 2.16(a) and 2.16(b). More rigorous

analysis is needed in order to investigate the mechanism of the ORR with confidence.

This would require improvements in the experimental data such as performing the

parameter fitting with more data that covers a wider range of operating conditions,

providing data that is ’cleaner’, i.e. shows clear trends with minimal experimental

error and providing more data on the nature of the coverage of the intermediate

species. The optimization would need to be improved by probing the design space

with a greater number of initial points or using different optimization methods such

as global methods to ensure that the global minimum is found. Nevertheless, the ki-

netic model with the fitted parameters from this work has significantly improved the

accuracy of the model in comparison to the kinetic parameters provided by Wang

et al. With the new parameters, the model was shown to better capture the ex-

perimental Tafel slopes, oxygen reaction order and also show remarkable agreement

with experimentally obtained coverage profiles.
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Chapter 3

PEM Fuel Cell Modeling

3.1 Introduction

Kinetic losses, such as those presented in the previous section, are due to the energy

barriers that must be overcome in order for the half cell reactions described in equa-

tions (1.2) and (1.3) to proceed. A fuel cell operating under realistic conditions will

incur a number of other losses that will limit its performance, such as the transport

of reactants to the reaction sites. This chapter will describe a mathematical model

that accounts for the main mass and charge transport losses that are incurred in a

fuel cell.

The main aim of this chapter is to examine the effect of using the kinetic model

described in Chapter 2 to describe the kinetic losses incurred by the ORR in cathode

catalyst layer of the fuel cell. The new kinetic equation will be implemented in the

fuel cell model and compared to the same fuel cell model with the commonly used

Tafel equation that does not account for the doubling of the Tafel slope. The relative

importance of the doubling of the Tafel slope can then be investigated in relation to

some of the major losses incurred in a fuel cell, namely the ohmic losses incurred in

the membrane and the mass transport limitations (when the fuel cell cannot provide

enough oxygen to maintain the reactions). The accuracy of the model will be judged

based on comparison to experimental data.

3.2 Membrane Electrode Assembly (MEA) Model

3.2.1 Overview

Figure 3.1 shows a schematic of the PEM fuel cell that is modeled in this work.

The model is based on the MEA model developed by Secanell [68], and further

72



Figure 3.1: An across-the-channel section of a single PEM fuel cell. The computa-
tional domain is shown by the solid purple line.

extended by Dobson [69]. The model is a 2D, across-the-channel model. The model

accounts for the transport of gases from the channel towards the reaction site, with

the species transport occurring in the in-plane and through-plane directions. This

model assumes steady state operation. The basis for this assumption is that the fuel

cell has been operating for a sufficient length of time to allow the cell to equilibriate.

In this model, the transport of five species is considered. The first are the

reactants, hydrogen and oxygen, which are delivered to the fuel cell via the gas

channels etched into the bipolar plate. The hydrogen is delivered on the anode side

of the cell, while oxygen is delivered on the cathode side. The reactant must travel

through the gas diffusion layer (GDL) and the micro-porous layer (MPL) in order

to reach the catalyst layer (CL) where the reactions can occur. Hence, the transport

of the reactants is considered only in the GDL, MPL and CL on both the anode

and cathode side, and their consumption occurs in the CL.

The presence of water is also considered in the model. It is assumed that the
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reactants are provided to the cell as a humidified gas. Oxygen is delivered in the

form of humidified air, so that the cathode gas is a mixture of nitrogen, oxygen

and water vapor. Hydrogen is delivered as a binary mixture of pure hydrogen and

water vapor. Water is also produced in the cathode catalyst layer as the product

of the ORR, hence a source will be included to account for its production. Water

is assumed to be produced in vapor form and its condensation is not considered.

Modeling water in liquid and vapor form adds major complexity to the model, as

two phase models are required. The assumption that water exists only in vapor form

can be justified by the interest of this work on the kinetic region, i.e. low current

densities, and by limiting the study to a low relative humidities (RH) for the input

gases and high cell temperatures, i.e. 80℃ and 95℃.

The input gases need to be humidified to ensure adequate hydration of the

membrane and ionomer in the CL. The membrane is a polymer-electrolyte that will

absorb and desorb water during operation. The relative humidification level of the

membrane will affect its ability to conduct protons from the anode to cathode cat-

alyst layers. Therefore, the MEA model accounts for water adsorption, desorption

and transport in the electrolyte. Once water is absorbed into the membrane, it can

travel from one side to another based on a chemical gradient or due to electrochem-

ical drag. The water will therefore exist throughout the cell, as water vapor in the

anode and cathode side GDL, MPL and CL, and as absorbed liquid water in the

membrane and CL.

The fuel cell is assumed to operate at a constant temperature and pressure. This

assumption, coupled with the assumption that the gases behave as ideal gases, result

in the total concentration of all species being constant in the anode and cathode.

The molecular volume of a single species can therefore be expressed as a fraction of

the total molecular volume present in each side of the cell. This fraction is called

the mole fraction. The addition of the mole fractions for each species for a gaseous

mixture will equal one. As such, only the mole fraction of water vapor is solved for,

as the mole fraction of hydrogen can be found by subtracting the mole fraction of

water vapor from one. Similarly, water vapor and oxygen only are solved for in the

cathode side. This reduces the number of equations needed in the fuel cell model.

The transport of the charged species is also considered. Protons are produced in

the anode side of the cell and will travel from the anode catalyst layer, through the

membrane to the cathode catalyst layer. It is assumed that there is sufficient anion
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Table 3.1: Table of unknown variables solved for in the MEA model.

Electrode Anode Cathode

Unknown variable GDL MPL CL PEM CL MPL GDL

O2 molar fraction, xO2 X X X
H2O molar fraction, xH2O X X X X X X
Electron potential, φs X X X X X X
Proton potential, φm X X X
Water absorbed by ionomer, λ X X X

groups present in the membrane and the ionomer in each CL to allow for the free

transport of protons. This assumption leads to the uniform concentration of protons

in the membrane and CLs such that the transport of protons is dependent on the

electrolyte potential only. The electrolyte potential will be solved in the membrane

and both CL.

Electrons produced in the anode CL cannot travel through the membrane and

must travel back through the anode GDL and MPL to the bipolar plate, through

the external load and the cathode side bipolar plate, GDL and MPL to the cathode

catalyst layer. These layers are assumed to be electronic conductors. This assump-

tion leads to the transport of electrons being dependent on the electronic potential

only. The electronic potential is therefore solved for in each layer, apart from the

membrane.

There are therefore five unknowns that will be solved for. Table 3.1 provides

a summary of these variables, along with which layers each unknown is present

in. The composition and structure of the individual layers are varied in order to

accommodate each of the species present in the layer.

3.2.2 Governing Equations

The governing equations for the five solution variables can be found by performing

a mass balance across an infinitesimal control volume:

dci
dt

+∇ ·Ni = Si (3.1)

where ci is the molar concentration of the i th species, Ni is the molar flux of the i th

species and Si denotes the source/sink term for the species. This model is assumed

to operate at steady state, therefore the time dependent term is zero. The system
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of equations will therefore take the form of

∇ ·NO2 =SO2

∇ ·NH2O=SH2O

∇ ·NH+ =SH+

∇ ·Ne− =Se−

∇ ·Nλ =Sλ

(3.2)

3.2.2.1 Gaseous Species

The fluxes for the gaseous species are assumed to be described by Fick’s first law of

diffusion, i.e.

Ni = −Dij∇ci (3.3)

where Dij is the diffusion coefficient of a species i in a binary mixture with species

j. The anode is fed with a binary mixture of hydrogen and water vapor so this

assumption is valid provided there is no convection. The no-convection assumption

arises from the assumption that the cell is isobaric, resulting in no driving force for

convective flow. At the anode, only an equation for the water vapor mole fraction

is solved for. The mole fraction of the hydrogen is found using xH2 = 1 − xH2O.

The cathode side of the cell is fed with humidified air, i.e. a mixture of nitrogen,

oxygen and water vapor. This is a multi-component mixture and should therefore

be described by the Maxwell-Stefan equations. This set of equations can describe

the flux of species i by considering its interaction with all other species. However,

air can be considered a dilute mixture, due to the high mole fraction of nitrogen

in comparison to the other species. Because the oxygen and vapor are provided

in much lower mole fractions than that of nitrogen, the interactions between the

oxygen and vapor should be negligible. The system can therefore be considered a

pair of binary mixtures of vapor in nitrogen and oxygen in nitrogen.

The Fick’s law assumption will lead to the flux of the oxygen and water vapor

being described using:

NO2 = −cgDO2,N2∇xO2 (3.4)

and

NH2O = −cgDH2O,N2∇xH2O (3.5)

where xO2 is the mole fraction of oxygen, xH2O is the mole fraction of water vapor

and cg is the total gas concentration is the anode/cathode (note that the multiplica-

tion of xi and cg will give the concentration of species i, ci). The diffusion coefficients
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Dij are found using Chapman-Enskog theory. Note that the coefficients returned

by Chapman-Enskog theory will be bulk diffusion coefficients, i.e. applicable when

the mixture is in a free space. The fuel cell layers are porous materials so diffusion

coefficients will have to be adjusted to account for the tortuosity and porosity of the

layers in which the species are found. This is described in section 3.2.4.

3.2.2.2 Charged Species

The transport of protons and electrons is considered in this model. Assuming an

infinitely dilute electrolyte, the flux of protons is governed by the Nernst-Planck

equation:

NH+ = −DH+∇cH+ − zH+F

RT
DH+cH+∇φm + cH+~v (3.6)

For a solid electrolyte, the velocity term ~v will be zero. Due to the presence of

ionomer chains through the catalyst layers and membrane, it can be assumed that

the concentration of protons will be evenly distributed throughout the domain and

equal to the number of sulphonic acid groups in the polymer electrolyte. The gradi-

ent of the proton concentration will therefore be zero. Equation (3.6) then reduces

to the following equation:

NH+ = −zH+F

RT
DH+cH+∇φm (3.7)

where zH+ is the valency of a proton (i.e. +1). DH+ is the diffusion coefficient of

the protons in the electrolyte, cH+ is the concentration of protons in the ionomer

and φm is the ionomer potential, one of the solution variables. Many of the terms

can be grouped together to find the proton conductivity of the ionomer:

σm =
z2
H+F

2DH+cH+

RT
(3.8)

where σm is the conductivity of the the ionomer. The final form of the proton flux

in the ionomer will be given as:

NH+ = − σm
zH+F

∇φm (3.9)

For an electronic conductor, Ohm’s Law will give a similar result:

i = ze−FNe− = −σs∇φs (3.10)

where ze− is the valency of an electron (and is equal to −1) and φs is the solid phase

potential, one of the solution variables.
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3.2.2.3 Absorbed Water

The final equation in the system of equations (3.2) governs the transport of absorbed

water in the polymer electrolyte. The model used in this work is the same as that

presented by Springer et al. [50]. The model accounts for the transport of water

due to electro-osmotic drag and diffusion due to a concentration gradient. The

transport of water due to electro-osmotic drag relates to protons traveling from the

anode to the cathode and dragging water molecules with it due to their polarity. It

was found experimentally that a single ion will drag 2.5 molecules of water across

the membrane when it is fully hydrated and in equilibrium with liquid water. The

amount of water available in the membrane to be moved by the protons is given by

the water content, λ, which is expressed as the ratio of water molecules per sulphonic

acid group, (SO−3 ), present in the polymer electrolyte.

λ =
cH2O

cSO−3

(3.11)

where cH2O is the concentration of water molecules that have been absorbed into the

membrane and cSO−3
is the concentration of sulphonic groups. This concentration

can be approximated using the density of the dry membrane and the equivalent

weight of the ionomer. The equivalent weight (EW) is defined as the dry mass of

the membrane per mole of SO−3 , and is specified by the membrane manufacturer.

Hence, cSO−3
can be found using

cSO−3
=
ρm.dry
EW

(3.12)

where ρm.dry is the dry membrane density. Springer et al. found experimentally

a maximum water content of 22 when the membrane is immersed in liquid water

at 100℃. It was assumed that the number of water molecules dragged with each

proton was linearly proportional to the water content in the membrane, so the drag

coefficient ndrag was expressed as:

ndrag =
2.5

22
λ (3.13)

based on experimental data [50]. The water flux can then be described by:

Nw,drag = ndragNH+ (3.14)

where the proton flux NH+ is given by equation (3.9).
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The diffusion of water in the membrane takes the same form as that used by for

the transport of gaseous species. The flux of water due to diffusion is given by:

Nw,diff = −DH2O∇cH2O (3.15)

where DH2O is the diffusion coefficient of water in the ionomer. Using equations

(3.11) and (3.12), the concentration of water can be replaced with the gradient of

the water content:

Nw,diff = −Dλ
ρm,dry
EW

∇λ (3.16)

where Dλ is now the water content diffusion coefficient.

3.2.3 Source Terms

Having derived expressions for the fluxes in each of the governing equations, they

can now be expressed as:

∇ · (−cgDO2,N2∇xO2) =SO2

∇ · (−cgDH2O,N2∇xH2O) =SH2O + Sλ

∇ ·
(
− σm
zH+F

∇φm
)

=SH+

∇ ·
(
− σs
ze−F

∇φs
)

=Se−

∇ ·
(
ndrag

σm
zH+F

∇φm +Dλ
ρm,dry
EW

∇λ
)

=−Sλ

(3.17)

The right hand side terms Si for each of the equations will now be defined. There

are two types of source terms that are considered in this model. Sλ refers to the

absorption/desorption of water in the membrane. This will affect the water equation

and the water content equation. The remaining source term relate to the current

produced in the cell.

3.2.3.1 Current Production

The current produced in the cell will act as a sink for the oxygen, electrons and

protons, and a source for the water equation on the cathode side of the cell. On the

anode of the cell, the current produced will act as a source for electrons and protons.

Therefore the source terms for the first four equations in equation (3.17) will depend

on the current produced in the cell. The current is a flow of protons/electrons flowing

in the electrolyte/carbon phase respectively.
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The current produced in the ORR is related to the flux of a charged species by:

Ni = − si
nF

i (3.18)

where si is the stoichimetry of the species i, n is the number of electrons transferred

in the reaction (four in the ORR) and i is the volumetric current density, i.e. the

current produced per cm3 catalyst layer. Applying this to the first four equations

in equations (3.17):

NO2 =− 1

4F
i

NH2O=
2

4F
i

NH+ =− 4

4F
i

Ne− =− 4

4F
i

(3.19)

Similarly, in the anode side of the cell, the HOR will provide the source terms for

the protons and electrons:

NH+=
2

2F
i

Ne− =
2

2F
i

(3.20)

Note that the signs have changed, as the HOR is producing the species, rather than

consuming them, as is the case for water vapor in the ORR.

As shown in equations (3.2), the gradient of the species flux is equal to the source

term for each equation. Therefore, equations (3.17) can be written as:

∇ · (cgDO2,N2∇xO2) =
1

4F
∇ · i

∇ · (cgDH2O,N2∇xH2O) =− 1

2F
∇ · i + Sλ

∇ ·
(σm
F
∇φm

)
=

1

F
∇ · i

∇ ·
(σs
F
∇φs

)
=− 1

F
∇ · i

∇ ·
(
ndrag

σm
F
∇φm +Dλ

ρm,dry
EW

∇λφs
)

=−Sλ

(3.21)

where the valency of the charged species zi is accounted for. Note that there is a

sign change on the source term for the water equation, due to the production rather

than consumption of the species in the overall reaction. There is also an additional

source term in the water equation due to the absorption of water into the membrane.

This source term will be equal but opposite to the source term in the fifth equation

in equations (3.17). The equations for the proton/electron transport will have the

opposite signs to those shown when solved on the anode side.
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The volumetric current i in the CCL is typically computed using the Tafel equa-

tion, as was derived in equation (1.26):

i = i0

(
co2

crefO2

)γ
exp

(
−αFη
RT

)
(3.22)

where oxygen depletion is accounted for with the inclusion of the cO2/c
ref
O2

term.

The overpotential η is computed using:

η = (φs − φm)− Eeq (3.23)

where the equilibrium potential Eeq is computed using the Nernst equation (1.22).

In this work, this equation will be compared to the double-trap intrinsic kinetic

equation that was derived in Chapter 2 (equation (2.43)):

jk = 2j∗e−∆G∗RD/kT θOH − 2j∗e−∆G∗−RD/kT (1− θO − θOH) (3.24)

An advanced kinetic model can also be used to account for the anodic current

produced in the cell. The Butler-Volmer model is commonly used to account for the

anodic current, as the overpotentials are smaller than those in the cathode and the

backward reaction is important, so the Tafel equation cannot be used. In this work,

the dual-pathway kinetic model developed by Wang et al. [72] is used to model the

hydrogen oxidation reaction. The model assumes a single absorbed intermediate

PtH and three intermediate steps giving two potential pathways for the overall

reaction. The absorption of hydrogen onto the platinum can occur due to a Tafel

or Heyrovsky reaction, while the Volmer reaction accounts for the desorption. The

equation is given by

jk =
cH2

crefH2

[
j0T (1− e−2Fη/γRT ) + j0H(eFη/γRT − e−Fη/γRT e−Fη/2RT )

]
(3.25)

where the exchange current density for the Tafel-Volmer and Heyrovsky-Volmer

pathways are given by j0T and j0H respectively and γ is a potential constant.

Note that each of the above equations will return the current per cm2 of platinum

surface rather than the volumetric current required in equations (3.21). To convert

to the volumetric current, both equations (3.22), (3.24) and (3.25) need to be scaled

by the active area. This term relates the unit area of platinum surface available to

the reaction per unit volume. Hence the units of cm2Pt
cm3CL

. The active area, Av is

given by equation:

Av = A0VPt (3.26)
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where VPt is the volumetric loading of platinum per cm3 of catalyst layer and will

be a property of the ink used to produce the catalyst layer. A0 is the catalyst

surface are per unit mass of catalyst particle and describes how much surface area

is available to the reaction for a given mass of catalyst. Data provided by E-TEK

[73] was used to do a least squares fit in order to find an equation that depends on

the platinum to carbon weight ratio Pt|C:

A0 = 7.401× 106(Pt|C)4 − 1.811× 107(Pt|C)3 + 1.545× 107(Pt|C)2

−6.453× 106(Pt|C) + 2.054× 106 (3.27)

3.2.3.2 Membrane Water Sorption

The adsorption and desorption of water in the membrane is governed by a sorption

isotherm. This water sorption between the CL and membrane will ensure that

the membrane water content and the CL water vapor are in equilibrium, as the

model is steady state. Based on the cell temperature, the humidification level of the

membrane, and the activity of the water vapor in the catalyst layer, water vapor

will either be absorbed from the CL gas pores into the ionomer or will be desorbed

from the ionomer into the CL gas pores. The equilibrium sorption isotherm is given

by Liu [74]:

λeq =

[
1 + 0.2352a2

w

T (◦C)− 30

30

]
(14.22a3

w − 18.92a2
w + 13.41aw) (3.28)

where aw is the activity of the water vapor in the CL and is given by:

aw =
pH2O

psat
= RH (3.29)

pH2O is the partial of the water vapor at the ionomer/CL interface and is obtained

with the multiplication of the mole fraction of the water vapor by the cell pressure.

The water saturation pressure is temperature-dependent and is provided by Springer

et al. [50] as:

log10(psat) = −2.1794+0.02953Tcell−9.1837×10−5T 2
cell+1.4454×10−7T 3

cell (3.30)

A difference between the equilibrium water content and the local membrane water

content will result in water absorption/desorption. The sorption rate, Sλ is given

by:

Sλ = kλ
ρm,dry
EW

(λeq − λ) (3.31)
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where the rate constant kλ is set to 100000 to ensure a strong coupling between the

CL and ionomer.

The final system of equations solved in this work can be written as:

∇ · (cgDeff
O2,N2

∇xO2) =
1

4F
∇ · i

∇ · (cgDeff
H2O,N2

∇xH2O) =− 1

2F
∇ · i + kλ

ρm,dry
EW

(λeq − λ)

∇ ·

(
σeffm

F
∇φm

)
=

1

F
∇ · i

∇ ·

(
σeffs

F
∇φs

)
=− 1

F
∇ · i

∇ ·

(
ndrag

σeffm

F
∇φm +Dλ

ρm,dry
EW

∇λ

)
=−kλ

ρm,dry
EW

(λeq − λ)

(3.32)

3.2.4 Layer Properties

The effective properties that are used as the coefficients to the Laplacian equations

in equations (3.32) are properties of the layers that comprise the fuel cell. The first

four equations are solved in different layers, each having different composition and

structure. Note that in this work, the layers in both the anode and cathode side

are assumed to have the same composition and structure, so any effective properties

will apply to both sides.

Figure 3.2 shows the micro-structure of each of the layers. The gas diffusion

layers must transport gaseous species and electrons. They are assumed to be com-

posed of a network of carbon fibers, arranged in a random anisotropic manner. The

carbon fibers allow for the transport of electrons, while the space between the fibers

(i.e. the pore space) allows for the transport of gaseous species. The micro-porous

layers also transport gaseous species and electrons. Their structure is assumed to

be composed of an random isotropic arrangement of carbon particles bound with

PTFE. The carbon particles allow for the transport of electrons, while the pore

space transports the gaseous species. The catalyst layer must transport gaseous

species, electrons and protons. Similarly to the MPL, the CL is composed of car-

bon particles and pore spaces. However, ionomer (usually Nafion) is added to allow

for the transport of protons. The membrane is assumed to be composed of a solid

polymer-electrolyte (usually Nafion) which allows for the transport of protons and

also absorbs water in liquid form.

In the presence of the ionomer and a solvent, the carbon particles agglomerate
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into a network of spherical agglomerates as shown in Figure 3.2. The agglomerate

model of the catalyst layer is an active area of research [61, 75, 76]; however, it

adds additional complexity to the model. For this work, each layer is assumed to be

macro-homogeneous, i.e. they can be characterized by averaged quantities across the

layer. This assumption does not, therefore, take into account the micro-structure of

the layers.

Each layer, besides the membrane, is assumed to be a porous media. Due to the

macro-homogeneous assumption for each of the layers, they can be characterized

by the volume fractions of each of the phases that compose the layer. The GDL

is constructed from a matrix of carbon fibers, with pore space between the fibers.

Two distinct phases are present: pore space and solid phase. The porosity (or pore

volume fraction) of the layer is defined as the fraction by volume of the pore space

to the total volume of the layer. The remaining volume fraction accounts for the

solid phase. A similar analysis can be used for the MPL. The CL is composed

of pore space, the electrolyte and the carbon particles. Therefore, three volume

fractions need to be considered. The GDL and MPL porosity is typically given by

the manufacturer. The solid volume fraction can be found using εS = 1− εV , where

εS and εV is the volume fraction of the solid and the porosity respectively.

The CL volume fractions can be computed with the knowledge of the composition

of the ink that was used to create the layer. The CL is typically made by preparing

an ink that contains carbon particles coated with platinum, ionomer and a solvent.

This ink can then be painted onto a membrane in a layer typically 10-20 microns

thick. The ink composition is commonly reported based on the mass of the catalyst,

Figure 3.2: The micro-structure of each of the layers in the MEA.
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carbon and ionomer used. The mass of carbon used in the layer is reported as a

percentage of the platinum mass and is denoted Pt|C.

The volume fraction of the solid phase can be computed using [77]

εS =

(
1

ρPt
+

1− Pt/C
Pt/Cρc

)
VPt (3.33)

where ρPt and ρc are the densities of the carbon and the platinum respectively.

The volume fraction of the ionomer can be determined with knowledge of its mass

fraction, XN . The ionomer fraction is computed using

εN =
XN

ρN,dry(1−XN )

1

Pt/C
VPt (3.34)

where ρN,dry is the density of the dry ionomer. The remaining volume fraction will

be porosity of the layer and is given by

εV = 1− (εS + εN ) (3.35)

With the volume fraction defined, the equation coefficients can be scaled to ac-

count for the reduced volume in which the species can be transported. The most

commonly used method for computing effective properties is the Bruggemann rela-

tion given by

Deff = ε1.5D (3.36)

where Deff is the effective property of the layer, D is any bulk property (examples

include diffusion coefficients, the conductivity of bulk ionomer or bulk carbon) and

ε is the volume fraction of the phase in which the species is being transported.

One of the weakness of the Bruggemann relation is that transport will occur even

for very low volume fractions. Percolation theory can also be used to account for

layer porosity and tortuosity. Percolation theory states that there exists a volume

fraction below which the species transport will not occur. An extreme example is

considering the flow of gas through a porous material with a porosity of 1%. Gas

transport will not occur unless the very small pore space forms a continuous network

through the material, which is highly unlikely for such a small porosity in a random

and homogeneous material. The Percolation equation is written as:

Deff = D

(
ε− εth

1− εth

)µ
Θ(ε− εth) (3.37)

where D is any bulk property, εth is the threshold volume fraction below which

transport will not occur and µ is the network constant that accounts for the char-

acteristic shape of the curve described by the equation. The Heaviside function is
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used to enforce that transport will not occur below the threshold value:

Θ(ε− εth) =

{
0 for (ε− εth) < 0

1 for (ε− εth) ≥ 0
(3.38)

The ’effectiveness’ of a layer can be defined with the specification of the threshold

volume fraction and the network constant. These values are generally found from

fitting to experimental data.

3.2.4.1 Gas Diffusion Layer

The GDL is considered an anisotropic layer, as the stacking arrangement of the

fibers results in large pores in the through-plane direction, facilitating gas transport

but impeding electron transport, as electrons must jump between fibers. Electron

transport is improved in the in-plane direction, as the electrons can move along

individual fibers. Gas transport is impeded however. To account for anisotropic gas

transport in the GDL, Tomadakis et al. [78] used an equation similar to percolation:

Deff
O2,i

= DO2ε

(
ε− εth

1− εth

)µi
Θ(ε− εth) (3.39)

where the subscript i denotes the in-plane or through-plane direction. Tomadakis

performed numerical simulations of overlapping fibers and found values of 0.118

for the percolation threshold and 0.785 and 0.521 for the network constant in the

through- and in-plane respectively. Again, bulk diffusion coefficients are computed

using Chapman-Enskog theory, which will also be used in the MPL and CL. Electron

transport has not been extensively studied to date due to the relatively small losses

incurred. Secanell [68] fit a Bruggemann type relation to experimental data provided

by Toray for the TGP-H series GDLs. Bulk values of 16.02S/cm and 272.78S/cm

were found along with exponentials of 1.0 and 1.5 for the in- and through-plane

respectively.

3.2.4.2 Micro-Porous Layer

The MPL is a random isotropic arrangement of carbon particles, so in- and through-

plane values are not needed. Here, the bulk conductivity of the solid phase is given

by that of the carbon particles, which is given as 88.9S/cm. Values of 0.118 and

2.0 are used for the threshold volume fraction and network constant respectively for

both pore and solid phases. Due to the similar composition and structure of the

MPL to the CL, these values were taken from the fit to experimental data performed

by Secanell [68] to packed carbon black particles.
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3.2.4.3 Catalyst Layer

The CL is also a random isotropic arrangement of carbon particles, however the

volume fraction of ionomer must also be considered. To find the effective transport

properties of oxygen in the CL, Dobson [69] fit the percolation equation to experi-

mental data provided by Yu and Carter [79]. A threshold value of 0.3 and 4.0 was

found.

When considering the transport of the reactants to the reactions sites, it is as-

sumed that the reaction sites are covered with an infinitely thin layer of ionomer.

The dissolution of oxygen into the ionomer is governed by Henry’s Law. The partial

pressure of the reactant at the pore/ionomer interface will determine the concentra-

tion of the reactant in the ionomer. For example for the cathode side:

cO2 =
xO2(cgRT )

HO2,N
(3.40)

where cO2 is the oxygen concentration at the reaction site, which is used in the

equations (3.22) and (3.24) to compute the current density. cg is the total species

concentration in the cathode, its multiplication by the molar fraction and the gas

constant times the temperature will give the partial pressure for oxygen at the

ionomer/pore space interface. Henry’s constant is denoted HO2,N , which controls

the dissolution rate of the gas into the ionomer. The oxygen also has to diffuse

through the ionomer film to the reaction site. In this work, it is assumed that the

film is infinitesimally thin so the diffusion of oxygen in Nafion is not accounted for.

The same analysis is used for the anode side, where here hydrogen is the reactant.

This will result in a different value for Henry’s constant.

Data for the conductivity of the electrolyte phase was taken from Iden et al.

[80, 81]. To measure the proton conductivity in a CL, two MEA samples were

prepared. The first was a standard MEA, however it was manufactured by the decal

transfer of a catalyst layer onto one side of a membrane. This was repeated, and the

two half catalyst coated membranes (CCM) were then hot pressed together. The

reason for this unusual manufacturing technique was that the second sample included

a pseudo-catalyst layer (PCL) in between the two CCMs. The PCL was made in

the same manner as the anode and cathode, however no platinum was used in its

manufacture. It was not electrochemically active, however it still shared the same

structure and composition of the actual catalyst layers. By comparing the ohmic

losses in each of the samples, the effective proton conductivity of the PCL could
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Figure 3.3: Fit to experimental data provided by Iden et al. [80].

be determined at different RH conditions. In this work, a third order polynomial

expression for the effective proton conductivity with respect to the relative humidity

was used to fit the experimental data from Iden [80] in order to estimate the effective

proton conductivity

σeffm = 1.329×10−7RH3−1.767×10−5RH2+9.058×10−4RH−1.349×10−2 (3.41)

Note that this value was found at a constant temperature of 80℃ and an ionomer

volume fraction of 0.19. Values in the area of 0.19 for the ionomer volume fraction

are typically found in catalyst layers. It is assumed that any deviation from ionomer

loading should be minor. Figure 3.3 shows the fit between the experimental effective

values and those computed using equation 3.41. The parameters used in the MPL

for electron conductivity are also used in the CL.

3.2.4.4 Membrane

Finally, while the membrane is not a porous media, some properties of the layer need

to be specified. A temperature and water content dependent fit to membrane bulk

conductivity was performed by Dobson [69], using data for an NRE211 membrane

taken from BekkTech LLC [82]:

σm = (0.020634 + 0.01052λ− 1.0125× 10−4λ2)exp

(
752

(
1

T0
− 1

T

))
(3.42)

where T0 = 30oC.
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The diffusion coefficient of liquid water in the membrane is provided by Motu-

pally et al. [83] which depend on the water content and cell temperature.

Dλ =


DH2O = 3.10× 10−3λ(−1 + e0.28λ)exp

(
−2436.0

T

)
if 0 < λ ≤ 3

DH2O = 4.17× 10−4λ(1 + 161e−λ)exp

(
−2436.0

T

)
if 3 < λ ≤ 17

(3.43)

3.2.5 Solution method

The system of partial differential equations in (3.32) characterizes the physical phe-

nomena occurring in a fuel cell under operation. The system is highly nonlinear due

to the current density source term so the system will be solved numerically using

an iterative method. The method used in this work is Newton’s method, where the

system of equations is linearized about a perturbation in the solution variables. The

generic formulation for Newton’s method is given as:

∂R(un)

∂u
(−δu) = [R(un)] (3.44)

where R(un) denotes the system of equations given in equations (3.32) which depend

on the solution variables u. n denotes the step of the iterative solver, while δu is the

perturbation on the solution variables. Taking a Laplace equation as an example

(each of the governing equations are Laplacians):

R(un) = ∇ · (k∇un)− f(un) = 0 (3.45)

Perturbing the equation and then performing a Taylor series expansion:

R(un+1) = R(un + δu) = R(un) +
∂R

∂ui

∣∣∣∣
u=un

δui +O(δu2
i ) (3.46)

where the ∂R
∂ui

is the Jacobian of the residual, i.e. its derivative with respect to each

of the solution variables. The second term is the variation of the residual R(u) and

is given by:
∂R

∂u
δu = ∇ · (k∇δu)− ∂f(u)

∂ui

∣∣∣∣
u=un

δui (3.47)

This assumes that the coefficient k does not depend on the solution variables, as is

the case in the majority of the governing equations being solved in this work. The

objective of an iterative solver is to drive the residual to zero i.e. R(un+1) = 0.

Therefore, the final equation will take the form:

∇ · (k∇δu)− ∂f(u)

∂ui

∣∣∣∣
u=un

δui = ∇ · (k∇un)− f(un) (3.48)
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Figure 3.4: Graphical representation of Newtons method.

This system of equations is linear in terms of δu and so can be solved using a PDE

solver.

An initial solution u0 is required, about which the initial linearization can be

applied. Equation (3.48) is then solved to find the solution perturbation δu. The

solution can then be updated according to:

un+1 = un + δu (3.49)

The system is linearized about the updated solution and the process is repeated

until convergence is achieved. This is shown graphically in Figure 3.4.

Equation (3.48) represents a system of linear equations. To solve this system of

PDEs, the finite element method is used. Using this method, the domain of interest

is broken into elements over which the system of equations are solved individually.

An example of a grid used in this work is shown in Figure 3.5, where each quadrilat-

eral represents a single element. In this work, a Bubnov-Galerkin method is used to

obtain the weak form of the equations and continuous, second order Lagrange ele-

ments are used. The integrals over each element are evaluated using Gauss-Legendre

quadrature. The system matrix and right hand side vectors can then be evaluated

for each element, and because neighboring elements will share the same nodes, a

global system matrix and right hand side vector will need to be assembled. The so-

lution to the global system matrix will ultimately return the solution perturbation

δu, which is then returned to the Newton solver which will update the solution and
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linearize the system of equations again.

Once the Newton solver has converged, the mesh is refined to achieve a grid

independent solution. Adaptive refinement is used, where the refinement occurs

only in the cells that are producing the largest error. This is in contrast to global

methods, where the entire grid is refined equally. A single refinement will refine the

30% of cells that have the highest error and will coarsen 3% of cells that produce

the smallest error. Refinement to a single cell will generate four additional cells,

so a single adaptive refinement will roughly double the number of cells. However,

they will be localized in the area of greatest error (typically where the gradients are

steepest), the equivalent localized refinement achieved using global refinement will

result in significantly more cells. The error estimator is provided by Kelly et al.

[84].

The solver for the global system matrix is the direct solver UMFPACK [85]. A

direct solver is needed as the system of equations will be unsymmetric due to the Ja-

cobian of the source term, so iterative solvers such as the conjugate gradient method

cannot be used. Finite element information is provided by the deal.II (Differential

Equations Analysis Library) libraries [86, 87]. The libraries provide the implemen-

tation of the direct solver, handlers for the grid, finite elements and the degrees of

freedom, as well as adaptive refinement capability and the post-processing routines.

The FCST (Fuel Cell Simulation Toolbox) code [68] provides the local system and

RHS vector assembly, as well as libraries describing physical phenomena and prop-

erties commonly found in fuel cells. The FCST code is an open-source in-house

code that provides interfaces to the deal.II libraries and the DAKOTA optimization

libraries.

3.2.5.1 Boundary conditions

Figure 3.5 shows an example mesh used to discretize the computational domain.

Note that the domain includes only half of one of the current collectors and half of

one of the gas channels. An actual fuel cell will have several channels, and therefore

current collectors, in parallel in the in-plane direction. This model takes into account

the symmetry of the computational domain about the top and bottom surfaces as is

shown in Figure 3.1. There are six boundaries to be considered in this model. The

top two boundaries are symmetric boundaries, hence a no-flux boundary is applied

to each of the equations. The other four boundaries represent the location of the
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Figure 3.5: Grid used to discretize the computational domain.

gas channel, where the reactants are provided, and the current collector, where the

electrons are provided.

At both of the current collectors, a Dirichlet boundary condition is imposed on

the solid phase potential solution variable, while Neumann conditions are applied

to the others. Each of the boundaries fluxes are set to zero, representing zero flux

through the surface. The solid phase potential is set to zero on the anode side of the

cell, while a potential of φs = Vcell is applied to the cathode side. Vcell represented

the voltage difference across the cell, i.e. the operating voltage. From this voltage,

the resulting current is computed by the model and the performance of the cell can

be investigated.

At both of the gas channels, a Dirichlet boundary condition is imposed on the

gaseous species solution variables, while Neumann conditions are applied to the

others. Again, each of the boundaries fluxes are set to zero. At the cathode side,

the oxygen mole fraction solution variable is set to to x0
O2

, while at the anode side,

the water vapor mole fraction solution variable is set to to x0
H2O

. These values are

computed based on the operating conditions of the cell. In particular, they will

depend of the pressure and relative humidity at which the anode and cathode gases

are provided, as well as the cell temperature. The oxygen mole fraction is computed

on the assumption that it is delivered in air, where its fractional content is at 21%.
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Table 3.2: GDL, MPL and CL structural and composition properties

Parameter Value

Structural dimensions

CCL thickness, [cm] 1× 10−3

CMPL thickness, [cm] 5× 10−3

CGDL thickness, [cm] 2.5× 10−2

Membrane thickness, [cm] 2.5× 10−3

AGDL thickness, [cm] 2.5× 10−2

AMPL thickness, [cm] 5× 10−3

ACL thickness, [cm] 1× 10−3

Current collector width, [cm] 0.1
Channel width, [cm] 0.1
Layer Composition

GDL porosity 0.6
MPL porosity 0.4
Percentage platinum by weight 0.46
Platinum loading per unit volume, [ mg

cm3 ] 400
Electrolyte loading 0.3

3.2.6 Input Parameters

The input parameters are described in this section. The input parameters described

here are taken from references [68, 69] and are chosen so that they describe a realistic

fuel cell MEA operating under typical operating conditions. The model is accurate

enough that the results can be compared to experimental data. Table 3.2 gives the

structural parameters for each of the layers that comprise the cell. In particular the

dimensions of the layers are given, as well as their composition.

The properties of the materials that the layers are composed from are described

in Table 3.4, while the parameters used to determine the effective properties of the

layers are given in Table 3.3. Finally the operating conditions for the model are

given in Table 3.5. The parameters given in these tables describe the base case.

3.3 Results and Discussion

3.3.1 Base Case

This section will compare the results from an MEA simulation, using the input pa-

rameters in Tables 3.2 to 3.5, with three different ORR kinetic models in the cathode

catalyst layer. The first source term uses the commonly used Tafel kinetic model

based on parameters taken from the experimental data presented by Parthasarathy
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Table 3.3: GDL, MPL and CL transport properties

Parameter Value

Structural dimensions

Gas transport properties

GDL porosity threshold 0.11
GDL porosity network const. 0.785
MPL porosity threshold 0.118
MPL porosity const. 2
CL porosity threshold 0.3
CL porosity network const. 4
Solid transport properties

GDL solid threshold X 0.0
GDL solid network const. 1.5
GDL solid threshold X 0.0
GDL solid network const. 1.0
MPL solid threshold 0.118
MPL solid const. 2
CL solid threshold 0.118
CL solid network const. 2
Ionomer transport properties

CL effect. ionomer transport Experimental data [80]

et al. [31, 32]. A transfer coefficient of one is commonly used in the literature

[57, 60, 61], giving a constant Tafel slope of approximately 70mV/dec over the en-

tire potential range at a temperature of 80℃. The second model (denoted Wangs

parameters in the figures) is the double-trap kinetic model developed by Wang et

al. using the kinetic parameters provided by Wang et al. [48]. The final source

term (denoted This work) will be the double-trap kinetic model using the kinetic

parameters fitted in this work to the experimental data provided by Parthasarathy

et al.

Figure 3.6 shows the obtained polarization curves using each of the kinetic mod-

els. The drop in performance from the doubling of the Tafel slope is evident in the

curve from this work. In the high overpotential region, the current density is signif-

icantly lower than that returned by the Tafel kinetic model. As expected, the low

overpotential regions are quite similar. The Tafel kinetic model takes its parameters

from the experimental data given by Parthasarathy et al. in the low overpotential

region. The fitted parameters for the double trap model were fitted to the same

data and the errors found when reproducing the kinetic data were small in the low

overpotential region. The double-trap model actually out-performs the Tafel model
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Table 3.4: Material properties

Parameter Value

Nafion 1100

HO2,N , [Pa · cm3 ·mol−1] 3.1664× 1010

DO2,N , [cm2 · s−1] 9.726× 10−10

HH2,N , [Pa · cm3 ·mol−1] 6.94× 1010

DH2,N , [cm2 · s−1] 12.8× 10−10

Equivalent weight, [g ·mol−1] 1100
Dry membrane density, [g · cm−3] 2.0
Water sorption time const., [s−1] 10000
Platinum

Cathodic transfer coefficient (Tafel) 1
Oxygen reaction order (Tafel) 1
Exchange current density (Tafel), [A · cm−2] 2.47× 10−8

Reference O2 conc. (Tafel), [mol · cm−3] 7.25× 10−6

Reference O2 conc. (Double-Trap), [mol · cm−3] 3.36× 10−6

Anodic potential range const. (Dual-Path) 1.2
Reference H2 conc. (HOR), [mol · cm−3] 0.59× 10−6

Exchange current density OH, [A · cm−2] 0.01
Exchange current density OT, [A · cm−2] 0.47
Carbon

Particle electrical conductivity, [S · cm−1] 88.9
Fiber electrical conductivity X, [S · cm−1] 16.03
Fiber electrical conductivity Y, [S · cm−1] 272.78
Density, [g · cm−3] 2

Table 3.5: Operating conditions

Parameter Value

Input conditions

Cell temperature, [K] 353
Cathode pressure, [Pa] 101325
Cathode relative humidity 0.7
Anode pressure, [Pa] 101325
Anode relative humidity 0.7
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in this region, as the experimental Tafel slopes were slightly less than the 70mV/dec

used in the Tafel model. The small gains here are quickly lost with the change in

Tafel slope however.

By contrast, the double-trap model with the parameters taken from Wang et al.

predict a higher overall performance than that shown by the Tafel model. These

parameters returned significant errors in the low overpotential region when compared

to the data from Parthasarathy et al. The lower Tafel slope returned in this region

results in significantly higher performance over Tafel kinetics. The curve then falls

to meet the Tafel curve, as the doubling of the Tafel slope begins to reduce the

double-trap model performance. The limiting current is reached before the two

curves crossover however.

Figure 3.7 shows a Tafel plot for each of the cases over the potential range.

The match in the Tafel slopes between the Tafel model and the fitted parameters

is clear in the low overpotential region, while the smaller Tafel slope of the Wang’s

parameters curve causes the higher performance. At currents of approximately 100

Figure 3.6: Polarization curve for the base case using three source terms. The solid
line is the results from using Tafel kinetics. The double-trap model with Wang’s
parameters are shown in fine dash, while the dashed line uses the parameters from
this work.
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(1Acm−2), the Tafel slope changes for the double-trap model causing the drop in

performance, as evidenced in the deviation from the linear slope. Other effects such

as ohmic losses in the membrane and oxygen depletion cause further changes in

slope, which is also seen in the Tafel kinetics curve.

The exchange current density for the double-trap model is not specified as an

input parameter, as is the case in the Tafel kinetic model. However, its value can

be found with extrapolation of the curve back to the open cell potential, which is

1.16V for the operating conditions used in the base case. It can be seen that using

Wang’s parameters will result in an exchange current density that is over an order of

magnitude smaller than the other curves. However, the model quickly overtakes the

other curves due to its smaller Tafel slope. This shows the importance of accurately

capturing the low overpotential region. The region exists over several decades of

current density so a small differences in Tafel slope (units of mV/dec) can have

major effects in the performance of the overall model, as seen in the significant

difference between Wang’s parameters and parameters from this work. By contrast,

upper Tafel slope is seen only over a single decade of current production and occurs

Figure 3.7: Tafel plot for the base case using three source terms. The solid line is the
results from using Tafel kinetics. The double-trap model with Wang’s parameters
are shown in fine dash, while the dashed line uses the parameters from this work.
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Figure 3.8: Comparison between the three kinetic models and example experimental
data. Points represent the experimental data, while the solid line is the results from
Tafel kinetic model. The dashed line is the results from the double model model
using parameters from this work, while the dash-dot line uses parameters from Wang
et al.

in the area where other losses are also significant. Using the base case with the

source term from this work as an example, the predicted exchange current density

is of the order of 1 × 10−6. At a cell potential of 0.8V (where the change in Tafel

slope occurs), the current produced is of the order of 1 × 10−1, leading to the low

Tafel slope being applied over 5 decades of current density. At a cell potential of

0.2V, the computed current is of the order of 1× 100 (the current is approximately

3A/cm2). The upper Tafel slope is therefore applied only over a single decade of

current. As a further example, if the lower Tafel slope was 70mV/dec instead of

60mV/dec and the upper Tafel slope was 140mV/dec instead of 120mV/dec, then

the percentage error in both regions for the Tafel slopes are the same. However, the

lcd region will overpredict the losses by a total 50mV, while the hcd region losses are

only overpredicted by 20mV. Hence, a better approximation of the lcd Tafel slope

is preferred.

A final comparison between the double-trap model with Wang’s parameters and

the fitted parameters from this work can be made against experimental data. Figure
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Figure 3.9: Tafel plot showing the current density per cm2 platinum surface. The
dashed line is the results from using the Tafel kinetic model, while the solid line is
the double-trap model with the fitted parameters from this work.

3.8 compares the results from each of the source terms to experimental data provided

by NRC-IFCI [69] (see Section 3.3.2.1). The resulting polarization curves show that

the closest match is to the double trap kinetic model with the parameters from

this work. The experimental data shows significant kinetic losses, with the ohmic

losses only becoming significant at a cell potential of approximately 0.7V (the kinetic

region is characterized by the exponential shape at the start of the curve, whereas

the ohmic losses take a linear form in the middle region). The parameters from

Wang et al. have low kinetic losses in the low overpotential region, while the Tafel

model does not have the increased kinetic losses in the high overpotential region so

neither can match the losses in the kinetic region. The ohmic region for both of these

source terms becomes significant at a higher cell potential (compared to the source

term from this work) of approximately 0.8V leading to high overall performance.

Further discussion on the comparison with experimental data is presented in section

3.3.2.1. Figure 3.8 shows that the kinetic parameters from this work better fit

the experimental data compared to the parameters from Wang et al. so Wang’s

parameters will not be considered for rest of this work.
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The reduced performance predicted by the double-trap kinetic model is due

to the increase in Tafel slope at high overpotentials. This results in the need for

greater overpotentials to produce the same amount of current in comparison to

Tafel kinetics. This is shown in Figure 3.9, which shows the current density per

centimeter squared of platinum surface. This can be considered the ’effectiveness’ of

the platinum at completing the ORR, i.e. how much current density each centimeter

squared of platinum can produce. In the low overpotential region, both models have

a similar performance. In the high overpotential region, the double trap model shows

a significant drop in performance. If both models were producing the same amount

of current, e.g. 10−4Acm−2Pt (corresponding to approximately 2Acm−2CL), the

double trap model would need a greater amount of platinum surface to produce the

current at the same overpotential.

The differences in the effectiveness can also been seen with the investigation of

the profiles of the solution variables and current density across the CCL. Figures

3.10 and 3.11 shows the solution profiles for the oxygen and water vapor molar

fraction, overpotential, membrane water content and current density in the CCL for

the double trap model and the Tafel kinetic model respectively. The intermediate

species are also shown for the double trap model. The profiles are taken at constant

current densities of 0.07A cm−2, 1A cm−2 and 3A cm−2, taking from Figure 3.8. The

first current density is in the low overpotential region where kinetic losses are the

most significant. The second is in the high overpotential region, where ohmic losses

dominate. The third is in the high overpotential region where oxygen depletion is

responsible for the loss in performance.
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Figure 3.10: Profiles of the oxygen and water vapor molar fraction, overpotential,
membrane water content, current density and intermediate solution profiles for the
double trap model using the fitted parameters. The top profiles are for a current
density of 0.07A cm−2, the middle is at 1A cm−2 and the bottom is 3A cm−2.
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Figure 3.11: Profiles of the oxygen and water vapor molar fraction, overpotential,
membrane water content and current density for the Tafel kinetic model. The top
profiles are for a current density of 0.07A cm−2, the middle is at 1A cm−2 and the
bottom is 3A cm−2
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Of particular interest is the distribution of the current density across the CCL.

At low overpotentials the current shows a very similar profile in both kinetic models,

due to the very similar Tafel slopes. The overpotentials are very similar and show

little variation across the layer. At the medium current density, there is some

distinction between the profiles. The Tafel model shows a higher range of current

densities in the layer and is less homogeneous than that of the double trap model.

The overpotentials are greater for the double trap model, as the higher Tafel slope

results in higher kinetic losses throughout the layer. The trend is clearer in the

highest current density profiles. In both cases, the current distribution is produced

entirely in a small region at the CCL/MPL interface, due to the lack of oxygen in

the layer. Because of the higher effectiveness of the Tafel model, the upper limit

of the current density range, 21888Acm−3, is significantly higher than that of the

double trap model. This allows the Tafel model to produce all the current in a

smaller region, with most of the CCL producing no current. The double trap model

can produce a maximum current density of 15315.8Acm−3 so is forced to use more

of the CCL. Higher overpotentials are needed, with the difference in the ranges at

approximately 150mV .

The figures also show the mole fraction of water in both catalyst layers as well

as membrane water content. The mole fraction of water in the anode CL does

not change significantly during fuel cell operation, as water is not produced in the

anode. Hydration is provided by the relative humidity of the hydrogen gas and by

the diffusion of water across the membrane. Even at the highest current density,

the anode hydration level is not significantly raised from the base level provided by

the RH of the input gases. This lack of hydration can be explained by looking at

the membrane water content, at medium and high currents there is a large gradient

across the layer, with the anode side at a constant lambda value of 5. By contrast,

at the cathode side there is an increasing water content with increasing current

due to the production of water in the CCL. At medium currents, the CCL shows a

maximum water vapor molar fraction of almost 44%. At a temperature of 80℃, the

saturation pressure of water is 47311Pa. Once the partial pressure of the water vapor

reaches this value, the vapor will condense and form liquid water. The presence of

liquid water in the catalyst layer will impede the transport of oxygen to the reaction

site and will incur major losses in performance. This effect is not accounted for in

his work so the results presented in this section may not be valid after liquid water
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Table 3.6: Operating conditions for the experimental data.

Case Pressure (atm) Temperature (℃) RH (%)

1 1 80 50
2 1 80 70
3 1 95 50
4 1 95 70
5 2 80 50
6 2 80 70
7 2 95 50
8 2 95 70

begins to form. The total pressure in the cell is at 101325Pa, so the saturation

pressure will be reached when mole fraction of water vapor is at 46%. At medium

current (1Acm−2), the mole fraction of almost 44% is close to the formation of liquid

water, so results after 1Acm−2 should be discounted as significant losses are known

to be unaccounted for.

3.3.2 Comparison with experimental data

3.3.2.1 Operating conditions

To further validate the model, the double-trap kinetic model, using parameters

fitted in this work, was compared with the Tafel kinetic model against experimental

data previously published by our research group in collaboration with the National

Research Council Canada - Institute for Fuel Cell Innovation (NRC-IFCI) [69]. The

data is a series of polarization curves over a number of operating conditions obtained

using a 48.4cm2 MEA. The MEA catalyst layers were prepared with a platinum

loading of 0.4mg/cm2 and a Nafion loading of 30% weight. These were coated onto

an NRE-211 membrane to form a catalyst coated membrane (CCM). The resulting

CCM was then inserted between two SIGRALET 24BC GDLs and the cell was

assembled between straight flow-through channels. The MEA is very similar to that

described by the base case in the previous section, with catalyst layers being slightly

thicker at 1.1µm. Further, the active area was measured experimentally and was

found to be approximately 2 × 105 cm2Pt
cm3CL

by cyclic voltammetry. The single cell

was tested using excess stoichiometries to reduce mass transport limitations. Pure

hydrogen and air were fed to the cell at various relative humidities, temperatures

and pressures. Eight cases tested were at the operating conditions shown in Table

3.6 and the results were found to be highly reproducible.
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These cases were simulated using the two ORR kinetic models. The resulting

polarization curves are given in Figures 3.12 and 3.13. At higher current densi-

ties, for all cases, the experimental data shows higher losses in the mass transport

region that are not accounted for by this model. These losses are likely due to

the simplifying assumptions made in the formulation of the MEA model, such as a

macro-homogeneous catalyst or that there is an infinitesimally small layer of ionomer

around the catalyst particles. The additional losses at higher current densities are

not likely to be a result of the kinetic model so the discussion will be kept to the

low current density region (up to approximately 0.5A/cm2) where kinetic losses are

most pronounced.

At lower current densities, Figure 3.12 shows that the double-trap model better

follows the trends in the experimental data. Both the Tafel and the double-trap

model have similar profiles up to a cell potential of approximately 0.8V , at which

the change in Tafel slope for the double-trap model incurs greater losses across the

ohmic region. These additional losses are also seen in the experimental data, leading

to a close match with the double-trap model. There is a slight overprediction of the

kinetic losses at approximately 0.5Acm−2, the upper Tafel slope may be slightly

overpredicted at this temperature. The fit to the data is improved with the increase

in relative humidity, this is most likely due to the proton conductivity being better

modeled at higher RH. At 50% RH, there is a higher slope in the experimental

data from 0.5A/cm2 to 1A/cm2, corresponding to the ohmic region, than at 70%.

The numerical model does not show the same change in slope with changing RH.

The figure also shows that the performance trend with increasing cell pressure is

better captured with the double trap model. At both relative humidities, the double

trap model very slightly overpredicts the performance at low current densities. This

slight overprediction is also seen at the higher pressure.

The Tafel model, in contrast, slightly underpredicts the performance at 1atm and

slightly overpredicts at 2atm for both relative humidities. These trends indicate that

the oxygen reaction order is better modeled with the double-trap kinetic model. The

reaction order for the Tafel model is at a constant value of one and is based on the

zero overpotential reaction order found by Parthasarathy et al.. The double-trap

model reaction order will vary with changing overpotential depending on the relative

dominance of the intermediate steps. In the low current density region discussed

here, the reaction order will vary from 0.3 to 0.5 as shown in Figure 2.15. At higher

105



Figure 3.12: Polarization curves for cell pressure of 1atm and 2atm and relative
humidities of 50% and 70%. The cell temperature is constant at 80℃.

pressures, the numerical data also better matches the experimental data over a

greater range of current densities, as the higher cell pressure delays the onset of the

condensation of liquid water.

Figure 3.13 shows the polarization curves at different cell pressures and relative

humidities at a constant temperature of 95℃. The figure shows that over the four

operating conditions there is a very slight, but consistent, increase in the difference

between the experimental data and the double-trap model (i.e. the minor overpre-

diction in performance is slightly greater at 95℃ than it is at 80℃). This is not

surprising, given that when fitting the double-trap model, there was no tempera-

ture dependence on the fitted experimental data. However, the double-trap model

predicts cell performance remarkably well, especially when compared to the Tafel
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Figure 3.13: Polarization curves for cell pressure of 1atm and 2atm and relative
humidities of 50% and 70%. The cell pressure is constant at 95℃.

model. At 80℃, the Tafel model is in reasonable agreement with the experimental

data at low overpotentials. However, at 95℃, the model significantly under predicts

the data, indicating that it cannot capture the temperature dependence of the ORR.

The close agreement of the double-trap model to the experimental data at low cur-

rent densities further validate the accuracy of the model, here under realistic fuel cell

operation where many other physical phenomena are also occurring. The closeness

of the match is remarkable considering that the experimental data is unrelated to

the data that the kinetic model was fit to, and that the accuracy is maintained over

a large number of operating conditions.

The accuracy of the model in the high current density region could be improved

by taking into account that the micro-structure of the catalyst layer may increase
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the losses in the ohmic/mass transport region and therefore lead to better agreement

of the experimental data with the MEA model. An example of modeling the ag-

glomerate structure of the catalyst layer is given by Dobson [69], who assumed that

the agglomerates take a spherical form and are wrapped in a thin film of ionomer.

The structure of the agglomerates is difficult to characterize, so Dobson attempted

to use parameter estimation to find the agglomerate radius and porosity, as well as

the active area of the catalyst layer. The data used is the same as is presented in

this work. In general, the fitted parameters were able to capture the greater losses

in the ohmic region, however, this was achieved by fitting the agglomerate radius

to a value of 250nm, which was the upper bound of the optimization formulation.

Agglomerates of these sizes are not commonly found in microscopy studies of the

catalyst layer structure. It was thought that the optimizer was trying to capture

the experimental trends by reducing the pore volume fraction and therefore increase

the mass transport losses. It was also found that while the ohmic region was well

captured, the kinetic region was consistently overpredicted. The inclusion of the

double-trap model into this agglomerate model would better capture the kinetic

region and add additional losses throughout the ohmic region due to the doubling

of the Tafel slope. The additional losses would likely allow the optimizer to set the

agglomerate radius to a smaller value to capture the high ohmic region losses and

therefore return an agglomerate radius more consistent with those seen the imag-

ing of the catalyst layer. The implementation of the double-trap model into the

agglomerate model is a very promising area for further research.

3.3.2.2 Platinum loading

Figure 3.9 showed the effectiveness of the platinum catalyst as predicted by the

two kinetic models. The double-trap model shows lower effectiveness in the high

current density region, so at the same ovepotential, the platinum cannot produce the

same current as predicted by the kinetic model. To further investigate this effect,

the ultra-thin CLs fabricated by Saha et al. [88] were simulated using the full MEA

model with the two kinetic models and the model predictions were compared to their

reported experimental data. The experimental data is presented as polarization

curves found using catalyst layers of varying areal platinum loading. The areal

platinum loading, in units of milligrams per centimeter squared of catalyst layer,

describes how much of the platinum catalyst is present in the layer. The loading can
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be varied by reducing the thickness of the layer, as the volumetric platinum loading

(i.e. milligrams per centimeter cubed of catalyst layer) is kept constant. Saha et

al. investigated low platinum loadings in catalyst layer by preparing catalyst layers

that were two to ten times smaller than those presented in the base case.

The polarization curves were obtained at 60℃ and an anode and cathode pres-

sure of 1.35atm, using a single 25cm2 cell with an MEA with varying cathode catalyst

layers. Excess stoichiometries were used to at the anode and cathode to reduce mass

transport losses. Using a constant Nafion loading, platinum/carbon ratio and near

constant volumetric platinum loadings, the areal platinum loading is varied by vary-

ing the thickness of the layer. The catalyst is fabricated using a piezoelectric printer,

where successive layers of 0.5µm are deposited onto a membrane. CCLs were made

using 2, 5, 7 and 10 layers, corresponding to thicknesses of 1, 2.5, 3.5 and 5µm

respectively. The loading for each layer is given as 0.02, 0.06, 0.08, 0.12mgPt/cm
2.

respectively. The obtained experimental polarization curves are compared to the

MEA model using double-trap kinetics in Figure 3.14(a) and using Tafel kinetics in

Figure 3.14(b).

Neither model shows a good direct fit to the experimental data. This may be

in part due to the fuel cell fixture used which does not guarantee uniform temper-

ature and pressure. In addition to the ohmic region losses not accounted for using

the MEA model, as were discussed in the previous section, the MEA model does

not accurately characterize the homogeneous structure of the catalyst layer at the

thicknesses used in the experimental data. In particular, the porosity of the layer

as computed by the expressions from Wang et al. [77], was found to be at approxi-

mately 70%. This is significantly higher than the value of approximately 45% found

in-house experimentally for a similar layer using intrusion porosimetry. However,

the experimental data shows a wide spread between individual curves, showing sig-

nificant variation in the performance of the different catalyst layers. This trend is

not captured by the Tafel model, which shows little variation between the layers.

Due to the reduced effectiveness of the double-trap kinetic model, as is shown in

Figure 3.9, a much greater spread in the individual curves is predicted in comparison

to the Tafel kinetic model.

Figure 3.15, shows the low current density region of Figure 3.14(a), where losses

should be mainly due to the ORR kinetics. The figure shows closer agreement

between the spread of the two data sets. Using the experimental data points close
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Figure 3.14: Comparison between experimental and simulated polarization curves
for CCLs of varying areal platinum loadings. The points are the experimental data,
while the lines represent the simulated data. The data was simulated using a)
double-trap kinetics and b) Tafel kinetics.
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Figure 3.15: Kinetic region of Figure 3.14(a). The points are the experimental data,
while the lines represent the simulated data using double-trap kinetics.

to current densities of 0.02A/cm2 and 0.06A/cm2, the difference between the 2 and

10 layer curves is a potential of 0.1V for both experimental and simulated data.

The Tafel model predicts a difference of only 0.05V, for both points, so there is

little difference in performance with changing loading. At the adjacent data points

corresponding to a current density of 0.1A/cm2, the potential different is 0.14V

compared to 0.1V for the double-trap model. Again, the Tafel model difference is at

0.05V. It is likely that other effects, such as ohmic losses, are impacting on the results

at the higher current density so it is difficult to determine the agreement between the

data sets. However, it is clear that the double-trap model better captures the loss

in performance shown in the experimental data for varying areal platinum loadings

when compared to the Tafel model.

The effect of reducing the layer thickness can be investigated further by plotting

the profiles of the oxygen molar fraction, overpotential and current density. These

plots are presented in Figures 3.16(a) and 3.16(b) for the ten layer CCL and Figures

3.17(a) and 3.17(b) for the two layer CCL. The profiles are shown at low, medium

and high overpotentials, corresponding to the same current densities of 0.02A/cm2,

1A/cm2 and 3.85A/cm2, for both kinetic models in the kinetic, ohmic and mass

transport limited regions respectively.

In Figures 3.16(a) and 3.16(b), both kinetic models show similar profiles at low
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current, with the double-trap model showing slightly higher overpotentials due to

the higher Tafel slope. There is little variation in the profiles across the layer. For

the medium current case, there is much greater variation across the layer. The

oxygen profiles are the same for both, as the current produced is the same in both

layers. The difference between the maximum and minimum overpotential is also

the same. However, the actual values for the overpotentials are significantly higher

for the double-trap model producing a major drop in performance compared to the

Tafel model. At the highest current, both cases are in the mass transport limited

region, as is clear from the shift in the current density to the right side of the layer

(the CCL-MPL interface).

The current density profile shows major variations however. Due to the higher

effectiveness of the Tafel model, all the current can be produced in a very thin

region at the CCL-MPL interface, negating the need for much of catalyst layer.

By contrast, the double trap model still shows some distribution across the layer.

At the top of the layer, almost half of the layer is producing appreciable current,

while approximately one fifth of the layer is producing current at the bottom of the

layer. If this layer was reduced by over a half, then there would be a drop in the

performance. In contrast, the Tafel model could lose over 90% of the layer without

a noticeable decrease in performance. Note that in this case, two-phase flow would

occur in the cell since the partial pressure of the water vapor is greater than the

saturation pressure. However, this is neglected in the model.

The effect of lower Pt activity in the double trap model, compared to the Tafel

model, can be seen in Figures 3.17(a) and 3.17(b). In this case, the catalyst layers

are 80% thinner than used in Figures 3.16(a) and 3.16(b), i.e. 1µm and 5µm. Due

to the low effectiveness, the double-trap model predicts that almost all of the layer

is used in the high current case. The model is only just about to produce the same

current as the Tafel model, as evidenced in Figure 3.18, where the polarization

curves show that the mass transport region is significantly smaller for the double-

trap model. Any further reduction in the thickness and it will not be able to match

the current density produced by the Tafel model. For the Tafel model, the current is

again shifted almost towards the CCL-MPL interface, allowing further reduction in

the thickness of the layer with a relatively small reduction in the produced current.

This difference in the effectiveness as predicted by the two models accounts for

the major loss in performance in Figure 3.14(a) for the double trap model with
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Figure 3.16: Comparison between solution profiles in the ten layer CCL as computed
by a) double-trap kinetics (top) and b) Tafel kinetics. Profiles are plotted for current
densities of 0.02 Acm−2, 1.5Acm−2 and 3.85Acm−2 (bottom).
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Figure 3.17: Comparison between solution profiles in the two layer CCL as computed
by a) double-trap kinetics (top) and b) Tafel kinetics (bottom). Profiles are plotted
for current densities of 0.02 Acm−2, 1.5Acm−2 and 3.85Acm−2.

114



Figure 3.18: Full polarization curve for the two layer and ten layer CCL, as simulated
by the double trap kinetic model from this work and the Tafel kinetic model.

the layer reduction, as compared to the minor drop in performance for the Tafel

model as shown in Figure 3.14(b). A major drop in performance is predicted by the

experimental data from Saha et al. [88], further validating the double-trap kinetic

model.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This work was primarily focused on the investigation of one of the two half-cell

reactions that occurs in a PEM fuel cell. In particular, the kinetics of the oxygen

reduction reaction on a platinum catalyst was analyzed using an advanced kinetic

model first proposed by Wang et al [48].

The literature review shows that the two Tafel slopes have been experimentally

observed for several decades. Early experiments using relatively simple liquid elec-

trolyte cells succeeded in determining the values of the slopes to be 60mV/dec in

the low current density region and 120mV/dec in the high current density region.

These values were further investigated and validated by later experiments using ring

disk electrodes and solid-state micro-electrodes leading to general acceptance of the

values of the Tafel slopes. It was also determined that the low Tafel slope occurs on

a reaction surface that is covered by indeterminable absorbed intermediate species.

At higher currents, these species are cleaned from the surface leading to the higher

Tafel slope of 120mV/dec. The literature study also revealed that fuel cell modelers

rarely account for the complexity of the ORR when performing high-fidelity simula-

tions. It is commonly assumed that the change in Tafel slope was not significant due

to losses stemming from proton transport through the membrane, oxygen depletion

in the catalyst layer and the formation of liquid water. Hence, the ORR is commonly

modeled using simple Butler-Volmer kinetics that cannot account for the change in

Tafel slope. Kinetic parameters such as the apparent transfer coefficient and oxygen

reaction order were taken from experimental data and generally characterized the

low Tafel slope region only. This approach fails to account for the increased kinetic

losses due to the doubling of the Tafel slope.
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An advanced kinetic model was presented by Wang et al. [48], which assumed

that the ORR could be broken into four intermediate reactions with two absorbed

intermediate species, PtO and PtOH, resulting in two potential pathways. This

model could capture the change in Tafel slope and predicted a high coverage of the

intermediates at low current densities. However, it failed to predict very low coverage

at high current densities. The model was based on determining the energy barriers

of the intermediate reactions and how they changed with changing overpotential.

The unknown parameters in the model were the height of the energy barriers at zero

overpotential, which were found by fitting to experimental data. The accuracy of the

model was investigated by comparison with kinetic data presented by Parthasarathy

et al. [31, 32]. It was found that the model underestimated the Tafel slope at low

current densities leading to an over-prediction in the overall kinetic performance. It

was also found that the model did not correctly capture the dependence on oxygen

partial pressure, as evidenced by the low oxygen reaction order.

In order to improve the accuracy of the model, the proposed kinetic model by

Wang et al. [48] was re-formulated by including oxygen depletion effects and the

backward reactions. The updated model was then fit to the kinetic data from

Parthasarathy et al. [20], in order to find the unknown parameters, namely the

height of the energy barriers and the absorption energy of the intermediates at low

ovepotentials. The updated model was implemented into an in-house fuel cell simu-

lation code (the FCST code) [68] that includes an interface to an open-source opti-

mization library. Using a local, interior-point, gradient based optimization method

(OPT++, [70]), the kinetic parameters were determined using multiple starting

points to ensure that the global minimum was found. Using the new estimated pa-

rameters, the model was again compared to the kinetic data from Parthasarathy et

al. A closer fit to the Tafel slopes was found, in particular in the low current den-

sity region. The coverage of the intermediate species was found to show remarkable

agreement to experimental data, and given the general nature of the optimization

formulation, this agreement adds to the validity of the improved kinetic model. The

model predicts that at high current densities, the ORR is absorption limited, with

the reductive absorption of oxygen being the rate determining step. At low current

densities, it is shown that the assumption of a rate determining step is incorrect, as

the two pathways are equally dominant.

The improved model was then implemented into a high-fidelity, two dimensional,
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macro-homogeneous PEM fuel cell model that accounted for the transport of the

reactants as well as water vapor. Proton and electron transport as well as the up-

take of water in the membrane were also accounted for. The advanced kinetic model

was compared to the commonly used Tafel equation. By comparing to experimental

data at varying relative humidities, cell temperatures and pressures, it was found

that the double-trap model could closely match the low current density region over

all operating conditions. The Tafel equation could not capture the dependence on

the changing operating conditions and significantly overpredicted the cell perfor-

mance. At higher current densities, both models were found to overpredict the

cell performance which was attributed to simplifications in the formulation of the

mass transport losses in the two dimensional fuel cell model. In particular, the

assumption of a macro-homogeneous catalyst layer and neglecting liquid water ac-

cumulation are likely to hide significant mass transport losses. The implementation

of the double-trap model into a more advanced fuel cell model that accounts for the

agglomerate structure of the catalyst layer and two-phase flow will likely be able to

capture both current density regions. In addition to investigating varying operating

conditions, the performance of the MEA model with varying areal platinum load-

ings was investigated. Experimental data from Saha et al [88] show a major drop in

performance incurred by reducing the platinum loading. Due to the lower predicted

effectiveness of the double-trap model, the proposed model was able to reproduce

the trends in the experimental data. By contrast, the Tafel equation showed little

drop in performance as a result of reducing the loading, adding further validation

to the double-trap kinetic model.

The double-trap model, using kinetic parameters fitted in this work, was found

to be able to accurately capture the kinetics of the ORR, as evidenced in the close

agreement in the predicted Tafel slope. The development of this model has resulted

in the development of a general framework that can be used to investigate kinetic

models of greater complexity that account for more intermediate steps and reactions

than assumed in this work. The significance of the change in Tafel slope was demon-

strated with the comparison of the kinetic model to experimental data which showed

very close agreement in the region where kinetic losses dominate. The development

of the updated kinetic model has added further understanding to the nature of the

ORR and allows for greater predictive capability in the numerical study of PEM

fuel cells
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4.2 Future Work

The updated kinetic model presented in this work makes a number of assumptions

regarding the nature of the ORR. It was assumed that the reaction is comprised of

only four intermediate steps with two intermediate species produced. Many other

species could be formed during the ORR, such as PtO2 or PtO2H. Further, it

is thought that the formation of hydrogen peroxide at high overpotentials leads

to the degradation of the membrane. The approach this work to estimate kinetic

parameters, could be applied to more complicated models. For example, the frac-

tional stoichiometric number used in the two absorption reactions in the current

model could be removed by accounting for the absorption of molecular oxygen. An-

other example is the highly advanced ORR mechanism proposed by Ruvinskiy et

al. [65, 66] that includes the two-electron transfer series pathway and therefore the

formation of hydrogen peroxide, which could also be investigated using the approach

used in this thesis. A framework has been developed whereby any complex reaction

that can be broken into a series of individual single electron transfer reactions can be

analyzed to find the resulting current density and coverage of intermediate species.

The framework includes an optimization package allowing for the determination of

unknown energy barriers and absorption energies. Increasing the complexity of the

overall reaction adds to the difficulty in fitting the kinetic parameters, which may

require more sophisticated optimization methods, such as genetic algorithms, which

are provided by the optimization package used in this work. This framework is

another possible tool that can be used in the investigation of the oxygen reduction

reaction, and is a highly promising area for further study.

An additional area for future work lies in the further development of the in-house

fuel cell simulation software that was used in this work. The predictive capability of

the software can be improved by continually adding to the physical phenomena that

are thought to occur during fuel cell operation. The additional complexity added

by this work was a more advanced kinetic model that accounts for the change in the

Tafel slope of the ORR. This was shown to improve the accuracy of the model in

the low current density region and account for the losses incurred by reducing the

areal platinum loading. The FCST code can also account for the micro-structure of

the cathode catalyst layer which was shown in previous work [69] to better match

the performance in the high current density region. In particular, additional losses
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due to the transport of oxygen and proton through the agglomerate structure of the

layer were better accounted for. The combination of both of these models should

result in a highly accurate model that may capture the entire current density region,

for varying operating conditions and CCL compositions.

Other improvements to the mathematical fuel cell model include accounting for

the formation of liquid water in the cell, which can impede the transport of oxygen to

the reaction site, or accounting for the heat produced during the reaction, resulting

in a non-isothermal model. This improved model will provide greater predictive

power allowing for fuel cell design and optimization, which again can be provided

by the included open-source optimization package. An example of the potential

optimization of the catalyst layers is the design of functionally graded layers that

minimize the platinum used in the layer. By predicting areas within the layer of

high current density, the platinum loading can be reduced in other areas resulting

in greater overall utilization of the platinum. This can help lower the cost of fuel

cell production allowing for the more widespread application of the technology in

the future.
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[37] V. Tripković, E. Skúlason, S. Siahrostami, J. K. Nørskov, J. Rossmeisl, The
oxygen reduction reaction mechanism on pt(111) from density functional theory
calculations, Electrochimica Acta 55 (27) (2010) 7975 – 7981.

[38] A. Shah, K. Luo, T. Ralph, F. Walsh, Recent trends and developments in
polymer electrolyte membrane fuel cell modelling, Electrochimica Acta 56 (11)
(2011) 3731 – 3757.

[39] I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chork-
endorff, Understanding the electrocatalysis of oxygen reduction on platinum
and its alloys, Energy Environ. Sci. 5 (2012) 67446762.

[40] Y. Liu, M. Mathias, J. Zhang, Measurement of platinum oxide coverage in a
proton exchange membrane fuel cell, Electrochemical and Solid-State Letters
13 (1) (2010) B1–B3.

[41] J. A. Keith, G. Jerkiewicz, T. Jacob, Theoretical Investigations of the Oxygen
Reduction Reaction on Pt(111), ChemPhysChem 11 (13) (2010) 2779–2794.

[42] H. Xu, R. Kunz, J. M. Fenton, Investigation of platinum oxidation in pem fuel
cells at various relative humidities, Electrochemical and Solid-State Letters
10 (1) (2007) B1–B5.

[43] D. Sepa, M. Vojnovic, L. Vracar, A. Damjanovic, A confirmation of the O2
reduction mechanism at pt electrodes from temperature studies, Electrochimica
Acta 29 (8) (1984) 1169 – 1170.

[44] Y. Fang, Z. Liu, Electrochemical reactions at the electrode/solution interface:
Theory and applications to water electrolysis and oxygen reduction, Science
China Chemistry 53 (2010) 543–552.

[45] R. A. Sidik, A. B. Anderson, Density functional theory study of O2 electrore-
duction when bonded to a pt dual site, Journal of Electroanalytical Chemistry
528 (12) (2002) 69 – 76.

123



[46] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bli-
gaard, H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a
Fuel-Cell Cathode, The Journal of Physical Chemistry B 108 (46) (2004) 17886–
17892.
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