Usage
  • 244 views
  • 212 downloads

Insulin signaling, mitochondrial DNA copy number regulation and aging in Caenorhabditis elegans

  • Author / Creator
    Hu, Xiaobin
  • Mitochondrial dysfunction is considered as a key mechanism of aging but little is known about the impact of mitochondrial biogenesis. Mitochondrial DNA (mtDNA) copy number control is an important aspect of mitochondrial biogenesis and is highly regulated in eukaryotic organisms. By studying mtDNA copy number, our aim is to gain a better understanding of the relationship between mitochondrial biogenesis and aging. We developed an optimized protocol for measuring mtDNA copy number in Caenorhabditis elegans using quantitative real-time PCR (qPCR). We investigated how mtDNA regulation is affected by a variety of aging-related pathways. We found the insulin/IGF-1 signaling (IIS) pathway regulates mtDNA content in a DAF-16- and UCP-4-dependent manner. By utilizing RNA interference (RNAi) against polg-1, we showed that mitochondrial stress likely modulates lifespan through the IIS pathway. Our work identifies IIS as a communications pathway between mitochondria and the nucleus in modulating mitochondrial biogenesis and lifespan in Caenorhabditis elegans.

  • Subjects / Keywords
  • Graduation date
    Fall 2010
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3CF0R
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Glerum, Moira (Medical Genetics)
    • Smiley, James (Medical Microbiology & Immunology)
    • Weiner, Joel (Biochemistry)