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Abstract 
 
 
Chip level optical interconnects has gained momentum with recent demonstrations of 

silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, 

wavelength division multiplexing (WDM) filters, etc.  A fundamental building block that 

has enabled many of these silicon photonic modules is the compact, high Q factor 

microring resonator cavity.  However, most of these demonstrations have WDM 

processing components based on simple add-drop filters that cannot realize the dense 

WDM systems required for the chip level interconnects.  Dense WDM filters have 

stringent spectral shape requirements such as flat-top filter passband, steep band 

transition etc.  Optical filters that can meet these specifications involve precise placement 

of the poles and zeros of the filter transfer function.  Realization of such filters requires 

the use of multiple coupled microring resonators arranged in complex coupling 

topologies.  In this thesis we have proposed and demonstrated new multiple coupled 

resonator topologies based on compact microring resonators in SOI material system. 

First we explored novel microring architectures which resulted in the proposal of 

two new coupled microring architectures, namely, the general 2D microring array 

topology and the general cascaded microring network topology.  We also developed the 

synthesis procedures for these two microring architectures.  The second part of this thesis 

focussed on the demonstration of the proposed architectures in the SOI material system.  

To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab 

facility.  Using this process, ultra-compact single microring filters with microring radii as 

small as 1m were demonstrated.  Higher order filter demonstration with multiple 

microrings necessitated post-fabrication microring resonance tuning.  We developed 

additional fabrication steps to install micro heaters on top of the microrings to thermally 

tune its resonance.  Subsequently, a thermally tuned fourth order filter response based on 

the cascaded microring architecture was demonstrated. 
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Chapter 1 

Introduction 
 

 

Silicon based Very Large Scale Integrated (VLSI) Complementary Metal Oxide 

Semiconductor (CMOS) electronic devices have made a massive impact in the 

information technology and networking industry, triggering an exponential growth in the 

computing and consumer electronics market over the past several decades.  However, 

over the last few years, the combination of information and networking technologies has 

witnessed huge volumes of data transfers between computing nodes due to demanding 

internet based applications such as, "video-on-demand”, voice over internet protocol 

(VOIP), etc.  These new web enabled electronic devices are further demanding increase 

in processing speeds, faster data transfer rates, low power consumption and smaller form 

factors.  The recent advances in silicon fabrication technology have reduced the 

electronic circuit feature sizes to a few tens of nanometer.  While this has enabled further 

miniaturization of electronic devices, it has become increasingly difficult to push the 

limits of processing speed and data transfer rates along with keeping power consumption 

minimal.  Especially with the high volumes of data, the conventional data transfer 

technology which is based on electrical interconnects is heavily strained.  For example, 

the distribution of the clock signal has been estimated to dissipate up to 50% of the total 

chip power in a processor chip.  Power dissipation and routing length constraints (RC 

delay and skewing) has stagnated the clock signal close to 3GHz.  Also other critical 

signals like the Input/Output (I/O) bus signals running between various processor units 
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are facing similar issues with routing.  As a solution to this problem, optical waveguides 

are being explored as an interconnect technology for clock and signal distribution within 

high performance processors [1].  An example is illustrated in Figure 1.1 where a single 

optical waveguide along with wavelength division multiplexing (WDM) technology can 

carry multiple critical high speed signals in a multiplexed format between two blocks 

within a processor. 

1.1 Optical interconnects 

For several decades, electrical interconnects have been the primary mode of data transfer, 

from macro level twisted pair copper wire for Ethernet local area network (LAN) 

computer networking all the way down to the aluminum interconnects used within the 

microchips.  Similarly, optical interconnects based on the mature fibre optic WDM 

technology was the workhorse for long distance telecommunications data transfers for 

almost 30 years.  Fibre optic technology, offers many attractive features such as  

 very high bandwidth interconnections,  

 WDM based low interference interconnections,  

 ultra fast optical information processing.  

In spite of this, it was still largely restricted to long distance communications (> 100 km) 

due to the high costs involved with single mode fibre optic links.  But in the 1990’s 

multimode fibre (MMF) and light emitting diode (LED) based low cost optical 

interconnects slowly replaced the building-wide computer interconnections, namely, the 

LAN campus backbones. The early 2000’s saw the high speed LAN standards [2, 3] and 

the 10Gbps fibre channel [4],  driving the use of a low cost vertical cavity surface 

Figure 1.1. An optical interconnect layer within a processor. 
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emitting laser (VCSEL) based MMF fibre optic link which replaced the twisted pair 

copper wire based LAN cables for links with distances covering more than a few tens of 

meter.  Optical interconnects are also making inroads into computer peripheral level 

interconnections with the proposal of “Lightpeak” fibre optic PC peripheral bus standard 

by Intel in 2009 [5].  Lightpeak is expected to work at up to 100Gbps data rates and is 

aimed to replace the several existing electronic peripheral interconnect technologies like 

universal serial bus (USB), Firewire, high definition multi-media interface (HDMI), etc.  

In the near future, optical interconnects are expected to replace the copper based printed 

circuit board traces especially in PC motherboards where routing 64 bit high speed bus 

signals in the printed circuit board (PCB) has become increasingly difficult.  Several 

research groups have been working with polymer optical waveguides to serve as an inter- 

chip level interconnection for PCBs [6, 7]. The evolution of optical interconnect 

technologies over the past few decades is charted in Figure 1.2.   

Figure 1.2. Time chart of optical interconnects.
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In the chart, all the optical links have corresponding electro-optical interface 

devices such as the laser diodes, photo diodes, etc. and WDM devices such as filters, 

modulators, amplifiers, etc.  To realize intra chip level optical interconnects these 

photonic devices have to comply with the established CMOS VLSI technology.  

However, integration of photonic devices faces several technological hurdles.  Currently 

a variety of material systems such as gallium arsenide (GaAs), indium phosphide (InP), 

indium gallium arsenide (InGaAs), and lithium niobate (LiNbO3), are being used to 

realize various photonic devices.  Figure 1.3 shows a complete optical link with discrete 

optical blocks made from different material systems. There is no single monolithic 

material from which all photonic devices could be fabricated.  Also, the fabrication 

technology in these material systems are not as matured as the CMOS technology, which 

causes a major bottleneck in achieving large scale integration as well as lowering 

manufacturing costs.   

1.2 Silicon photonics 

To overcome the above-mentioned difficulties, two approaches based on the silicon 

material system [8, 9] and CMOS fabrication methodology [10, 11] have been considered 

in the optical research arena:  

1) The first approach is to use silicon as a photonic material.  The fabrication 

technology for silicon is very mature.  It supports very large scale integration and 
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Figure 1.3. A conventional optical link along with conventional material 
systems for each block. 
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has already reached the nano meter scale fabrication dimensions.  However, 

silicon does not have a direct band gap and hence, is a poor light emitter.  Light 

emission and many signal processing functions in silicon are based on non-

linearity which requires high optical intensities, leading to high power 

consumption.  Nevertheless, recent progress has enabled various discrete photonic 

components based on silicon, such as Electro-Optic (EO) modulators [12 - 15], 

Raman lasers [16] and optical switching components [17 - 19], to be 

demonstrated. 

 

2) The second approach is to use silicon along with other photonic material systems 

like germanium, indium phosphide or gallium arsenide to realize active devices 

required for the optical interconnect layer.  This is called the hybrid silicon 

platform. To date, several discrete components such as hybrid silicon lasers [20 -

23], EO modulators [24, 25] and photo detectors [26, 27] have been reported. In 

2010 researchers from Intel demonstrated a 50Gbps complete WDM optical link 

using the hybrid silicon platform [28]. 

In spite of the differences in the approach, hybrid or monolithic, silicon based photonic 

devices are gaining interest as devices of the future.  Silicon-on-insulator (SOI), SiO2 

glass, Si3N4, etc. are some of the Si-based material systems that are being explored for 

this purpose.  From a fabrication perspective it is interesting to note that all three material 

systems are currently being used in CMOS fabrication, which is an added benefit.  Of 

these material systems, the SOI material system has the advantage of high index contrast, 

which allows the realization of compact photonic elements based on strongly-confined 

silicon wires with sub-micrometer dimensions and tight bending radii. 

1.2.1 Silicon microring resonators 

In the VLSI electronics technology, the MOSFET serves as a basic building block to 

build complex functionalities. Similarly, there is a need for a photonic building block that 

would play a vital role in realizing advanced functionalities in integrated photonics.  A 

central element in photonic devices technology is an optical resonator, which enables 

several fundamental photonic functionalities such as light generation, modulation, 
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filtering and other optical signal processing units.  It is thus desirable to have an optical 

resonator in SOI material system that can not only be used to accomplish a great variety 

of optical signal processing functions, but lends itself to the miniaturization and large 

scale integration of silicon photonic devices. One such element is the microring 

resonator, whose compact size and versatility has been demonstrated to greatly enhance 

the functionality of VLSI silicon photonic circuits.  A microring resonator is a 

whispering-gallery-mode, high quality (Q) factor, ring shaped optical cavity with typical 

diameters in the range of several hundred micrometers to several micrometers.  Figure 

1.4 shows a microring resonator in a typical configuration alongside a straight optical 

waveguide for coupling light in and out of the ring evanescently.  Advances in fabrication 

techniques over the past few years have enabled microring resonators with extremely 

high Q factors (i.e. low loss) to be realized, with typical Q values in the range of 104–106 

[29].  Microring resonators have been demonstrated in various material systems, 

including SiO2 glass [30, 31], SiN [32, 33], SiON [34], silicon-on-insulator [35, 36], 

semiconductors [37, 38], and polymers [39, 40].  Due to their compact sizes, high Q 

factors and strong dispersion characteristics, microring resonators have played a key role 

in various optical spectral engineering applications such as add/drop filters for 

wavelength division multiplexing (WDM) systems [41], dispersion compensators [42, 

43], optical delay lines [44], microwave photonic filters [45], and wavelength selective 

mirrors for lasers [46].  Their high Q factors also enable enhanced optical non-linearity to 

be realized at low power consumption. 

1.3 Research goals of the thesis 

The microring based silicon photonic devices discussed in the previous section have 

fuelled much research interest in CMOS integrated photonic devices.  Currently much of 

Figure 1.4. A microring resonator in all pass configuration. 

Signal in 
Signal out 
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these demonstrated systems have WDM processing components based on simple  add-

drop filters with simple spectral characteristics such as the Butterworth filter response 

shown by the dotted blue curve in Figure 1.5.  As the integration gets denser and the 

interconnect speed increases, many of these applications are expected to switch to Dense 

WDM (DWDM) systems. DWDM systems are currently in use for high capacity, long 

distance telecommunication networks and often have very stringent requirements for the 

spectral characteristics of add-drop filters, such as flat-top passband, steep band 

transition, high adjacent channel isolation, linear dispersion slope or constant group 

delay.  Such spectral characteristics, as shown by the black curve in Figure 1.5, can be 

achieved only by more advanced filters such as the elliptic or inverse Chebyshev type.  

The design of elliptic and inverse Chebyshev optical filters that can meet these 

specifications involves the precise placement of the poles and zeros of the filter transfer 

function, whose realization often requires the use of multiple coupled microring 

resonators arranged in complex coupling topologies. 

 Based on these premises, it is expected that advanced add-drop filters based on 

compact SOI microrings would play a vital role in on-chip WDM optical interconnects in 

the near future. This led us to set a broader goal for this thesis: to explore, propose and 

Figure 1.5. A 4th order Elliptic filter response (Black line) along with a 
butterworth filter response (dotted blue line) of same order. 
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demonstrate new coupled resonator topologies based on microring resonators in SOI 

material system which can be used to realize complex optical transfer functions.  

Specifically, the aim is to realize ultra compact SOI microrings and use them to 

demonstrate advanced optical filters based on new coupling topologies. We believe that 

these devices would be an integral part in silicon based optical interconnect technology as 

well as other optical signal processing applications. 

 

Specific objectives of the thesis 

The specific objectives of the thesis are as follows: 

 Explore new coupled microring architectures that could overcome the 

disadvantages of existing microring filter architectures. 

 Develop analysis and synthesis techniques for these new coupled microring 

architectures. 

 Explore the application of the proposed coupling topologies to realize advanced 

signal processing functions. 

 Experimentally demonstrate microring filters in the SOI platform. 

 Explore the limits of miniaturization of microring resonators in SOI to reduce the 

device foot prints. 

 Develop the fabrication process for SOI material system with integrated micro 

heater elements. 

 Demonstrate thermo-optic control and tunability of microring filters using micro 

heaters. 

1.4 Summary 

This chapter outlined the background and the growing interest in integrated silicon based 

photonic devices for future on-chip interconnects.  It also highlighted the emergence of 

SOI material system and silicon microring resonators as potential candidates for 

integration of photonic devices.  The necessity to realize high order WDM filters for 

dense WDM systems was identified based on which, specific goals as listed in the 

previous section were set for the thesis work. 
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Chapter 2 

Microring Resonator Filters and 

Characteristics 
 

 

In this chapter we give an overview of microring resonator filters and their various 

spectral characteristics.  An equivalent circuit model for a single microring add-drop 

filter is introduced. Also the existing microring filter architectures reported in the 

literature are reviewed and their advantages and disadvantages are highlighted.  

2.1 Microring resonator 

A microring resonator is a travelling wave optical resonator in a ring shaped structure 

which is usually formed by bending a rectangular dielectric optical waveguide into a 

circular loop as shown in Figure 2.1(a).  Typically, microrings have bending radii in the 

range of tens or hundreds of micrometers.  Light can be coupled in and out of this 

structure by placing a straight optical waveguide in close proximity to the ring as shown 

in Figure 2.1(a).  This configuration of the microring is called the all-pass configuration 

as signals at all frequencies are transmitted under lossless condition.  The evanescent 

coupling between the input bus and the ring waveguide leads to the transfer of power 

from the bus waveguide into the ring cavity.   The coupled light then propagates along 
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the circumference of the ring by total internal reflections as shown by the black ray trace 

in Figure 2.1(a).  Figure 2.1(b) shows the electric field distribution inside a microring 

obtained from a numerical simulation using the 2D finite difference time domain (FDTD) 

technique.  The microring is a closed loop structure and only certain optical frequencies 

can resonate in the ring.  These resonant frequencies are determined by the resonance 

condition as given by 

effnmR /2 0         (2.1) 

where R is the radius of the ring, m is an integer and represents the longitudinal mode 

number, neff is the effective index of the ring waveguide so that λneff  is the guided 

wavelength of the light propagating in the ring.  The resonance condition requires the 

circumference of the ring to be equal to an integral multiple of the guided wavelengths.   

Considering the coupling junction of the microring in Figure 2.1(a), the 

evanescent tails extending from the modes of the straight waveguide and the ring 

waveguide overlap with each other, leading to power transfer between them.  A better 

visualization of this mode overlap is shown in Figure 2.2.  From coupled mode theory of 

dielectric waveguides one could deduce the amount of field coupling between the bus and 

the ring.  Considering the junction as a point junction with no physical length, the field 

coupling strength  between the two waveguides could be defined. 

Figure 2.1 (a) Schematic of an all pass microring configuration with ray tracing.  
(b) 2D-FDTD simulation result of electric field in an all pass microring. 

(a) (b) 
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In reality the coupling junction would have an effective physical length Lcoup so that the 

field coupling coefficient  per unit length coupling strength is calculated from [87] as  

)sin( coupc L         (2.2) 

where c is the per unit length coupling strength.  The remaining power transmitted in the 

straight waveguide can then be quantified by the power transmission coefficient 2 .  

From power conservation, we obtain 

1|||| 22   .       (2.3)  

2.2 Microring resonator as an add-drop filter 

To study the properties of the microring resonator from a WDM filter perspective, 

consider an add-drop microring resonator with radius R.  In the add-drop configuration, 

the microring consists of two bus waveguides placed near to it as shown in Figure 2.3.  

The input optical signal Si consisting of several multiplexed WDM channels 

Figure 2.2.  Mode overlap at the coupling junction. 
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Figure 2.3.  Schematic of an add-drop microring configuration. 
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including the drop channel of interest enters the input bus waveguide.  The drop 

wavelength λd is the same as the resonant wavelength of the microring so that only the 

drop signal can couple into the microring via the power coupling coefficient 2
i  and 

resonates in the microring.  This signal is subsequently transmitted to the drop port in the 

output waveguide via the coupling coefficient 2
o .  An add signal Sa at the resonant 

wavelength λa can also be applied to the add port and gets added to the through signal St 

along with all the off-resonance wavelengths.  The drop-port and the through-port 

spectral responses of the microring can be derived as [35] 

rtoirtoi

rtoi

i

d

AA

A

S

S
2221

21222

)cos(21 



 ,     (2.4) 

rtoirtoi

rtoirtoi

i

t

AA

AA

S

S
2221

21222

)cos(21

)cos(2







 ,       (2.5)  

where Art is the roundtrip power attenuation, 22 1 ii  , i = {1, 2}, are the power 

transmission coefficients,  R2  is the roundtrip phase of the microring and β is the 

propagation constant of the optical waveguide.  Figure 2.4 shows the plotted spectral 

responses of the drop and through ports of a typical add-drop filter.  At the resonant 

wavelength λd, the drop port Sd has total transmission due to the constructive interference 

occurring in the microring, while destructive interference occurring at the coupling 

junction between through port and the microring leads to total extinction at the through 

port St.  The spectral characteristics observed in Figure 2.4 are discussed below. 

 
3dB bandwidth (FWHM) 

As shown in Figure 2.4, the bandwidth of the resonator is the full width of the 

resonance measured at half power (-3dB point) from the peak. The 3dB bandwidth is a 

very important quantity that determines the maximum data rate at which the optical 

channel can operate at the corresponding resonance. The expression for the full-width at 

half-maximum (FWHM) bandwidth of the microring is obtained by equating the drop 
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port equation (2.4) to 1/2.  Using the approximation 2)(1)cos( 2   for small 

angles, the bandwidth can be derived to give: 

2/1
21

2/1
21

2dB3

1
.

2
rt

rt

eff A

A

Rn

c
f







      (2.6) 

where c is the speed of light, R is the radius of the microring, neff is the effective index of 

the microring waveguide. 

 
Free Spectral Range (FSR) 

Free spectral range is another important quantity of the microring which is 

defined as the spectral span between two successive resonances defined by two 

consecutive longitudinal mode numbers.  The FSR can be obtained from the resonance 

condition of the microring given in equation 2.1, which gives the following results 

expressed in both wavelength and frequency domains as 

gRn
FSR




 2

2
0

  ,  
g

f Rn

c
FSR

2
 ,    (2.7) 

Figure 2.4. Add drop microring spectral response. 

λd 
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where ng is the group index of the microring.  Along with the 3dB resonance bandwidth, 

the FSR determines how many data channels the add-drop microring filter can 

accommodate. Another useful quantity is the normalized bandwidth which is given as  

2/1
21

2/1
21dB3 1

rt

rt

A

A

FSR

f







.       (2.8) 

 
Insertion loss (I.L) 

Insertion loss is the difference between the peak power of the drop port response 

and the off resonance power level in the through port.  In a WDM system this quantifies 

the loss encountered by an optical channel which is either being dropped or added in to 

the system.  The peak power in the drop port occurs at 1)cos(   in equation 2.4, from 

which the insertion loss is obtained as: 

 221

21222

max 1
.
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d
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 .     (2.9) 

 

Through port extinction (T.P.E) 
This quantity directly relates to the measure of the cross talk between adjacent 

channels and plays a crucial role in dense WDM systems.  It is defined as the minimum 

power of the through port at resonance  1)cos(   with respect to the off resonance 

power, giving the following expression 
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.       (2.10)  

 

Critical Coupling 
The maximum through port extinction occurs when equation 2.10 becomes zero 

which leads to the following expression:  

2/1
rtoi A  .        (2.11) 
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The above condition is called the critical coupling condition.  This condition relates the 

internal losses of the microring represented by the roundtrip power attenuation Art to the 

external losses represented by the transmission coefficients. 

 
Finesse (F) 

This quantity signifies the number of filter passbands that could fit within a single 

FSR. Given the 3dB bandwidth and the FSR of the microring, the finesse F of the 

resonator is simply the ratio of the FSR to the 3dB bandwidth 

2/1
21

2/1
21

dB3 1 rt

rt
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A

f

FSR








.      (2.12) 

Since each filter passband corresponds to an optical channel, the finesse gives an estimate 

of the number of optical channels that can be accommodated for a given microring add-

drop filter. 

 

Quality factor (Q) 

The quality factor is a measure of the sharpness of the microring resonance which 

can be expressed as the ratio of the resonant frequency f0 to the bandwidth given as 

2/1
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f
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


 .    (2.13) 

Equation 2.13 gives the overall quality factor of the add-drop filter, which could be 

further split into an intrinsic Q factor due to intrinsic losses and an extrinsic Q factor 

representing power extracted at the coupling junction. 

extQQQ

111

int

 .       (2.14) 

 

Intrinsic Losses 
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A microring resonator experiences loss from different mechanisms which are 

generally known as intrinsic losses.  The four major mechanisms causing intrinsic losses 

are: 

 Radiation loss due to bending,  

 Loss due to scattering at the waveguide sidewalls, 

 Scattering loss at coupling junctions, 

 Loss due to material absorption. 

The optical mode in a bent waveguide experiences some amount of its power pushed out 

of the outer sidewall of the waveguide, which gets radiated.  The smaller the bend radius, 

the larger the power extended outside causing subsequent loss through radiation.  This 

loss could be reduced by using material systems with high index contrast like silicon-on-

insulator, which offers waveguides with high power confinement.   Bending loss is 

inversely proportional to the bending radius and the square of the index contrast. 

Therefore high index contrast materials such as SOI are better suited for fabricating 

microring resonators with smaller footprints and hence, have the potential for denser 

photonic integration. 

Loss due to scattering at the sidewalls is mostly due to fabrication imperfections 

causing roughness in the etched sidewalls.  Depending on the fabrication process used to 

define the waveguides, the surface roughness of the sidewalls could be approximately 

estimated.  For e.g. for a thin silicon waveguide with dimensions 300x300nm2, it would 

be better if the side wall roughness is within a few nanometers to avoid substantial loss.  

Scattering loss also occurs at the coupling junctions due to the interaction of the 

evanescent tail extending out of the ring waveguide with the bus waveguides.  Loss due 

to absorption occurs in materials which absorb or scatter energy at the wavelength of 

interest. In Si material absorption at the 1550nm telecommunication wavelength is due 

primarily to impurities and two photon absorption. 

 

Extrinsic Losses 

In the add-drop microring resonator, the extraction of energy from the cavity via 

the input and output bus waveguides is called the extrinsic loss.  Extrinsic loss depends 

only on the coupling coefficient κ of the microring. 
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2.3 Energy coupling analysis 

The spectral responses in equations 2.4 and 2.5 are derived based on power coupling 

analysis of the microring resonator. Another powerful approach for analyzing coupled 

microrings is the energy coupling analysis.  This analysis is performed by assuming that 

the microring is a lumped element with time varying energy signal A(t), normalized such 

that |A(t)| 2 represents the energy stored in the resonator.  If U(t) represents the power 

signal circulating inside the ring (normalized such that |U(t)|2 represents the power flow), 

then the relationship between U(t) and A(t) in the add drop filter shown in Figure 2.5 is 

given by [47]  

)2()()( 22
RtAtU g        (2.15) 

where g  is the group velocity.  The energy A(t) oscillates at the resonant frequency ω0 

and decays at a rate of γ with contributions from 3 factors: 

 Energy lost due to intrinsic losses in the microring at the rate of 

 
2

g
L


           (2.16) 

where α is the power attenuation coefficient (m-1). 

 Input Si Through St 

Add SaDrop Sd 

μ 

R 

μi 

A(t)

Figure 2.5.  Schematic of an add-drop microring configuration for 
energy coupling analysis. 
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 Energy lost at the input coupling junction at the rate of 2/2

ii   . 

 Energy lost at the output coupling junction at the rate of 2/2

oo   . 

The rate of change of energy inside the microring can be written as [47] 

iioiL SjASj
dt

dA   )( 0 .    (2.17) 

Introducing harmonic variation for the input signal and the energy signal inside the 

microring 

)exp()( tjtA   and 

)exp()( tjtSi  ,  

equation 2.17 becomes 

iioiL SjAj   )( ,     (2.18) 

where 0   is the frequency detuning from the resonance.  The drop and 

through port signals are given by 

AjSS iit         (2.19) 

AjS od  .        (2.20) 

Using equations 2.18, 2.19 and 2.20 the transfer functions at the through and the drop 

ports are derived as 
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In the above expressions, the term j  can be replaced by the frequency variable s in 

the Laplace domain.  Thus the energy analysis naturally leads to the frequency response 

of the add-drop filter.  This approach is very useful in modeling microring resonators 

with 3dB bandwidths much smaller than their FSRs.  In such a narrowband 

approximation the microring can be modeled as a LC oscillator in the electrical domain.  

This would allow us to utilize well established Laplace domain based filter design 

techniques to synthesize microring filters for a variety of filter classes like Butterworth, 

Chebyshev, inverse Chebyshev and elliptic.  In the later chapters, new microring filter 

architectures will be proposed and analyzed using the s-domain filter design techniques. 

2.3.1 Equivalent circuit model of a microring resonator 

The add-drop microring resonator is essentially a four port device. However if the back-

scattering into the input and add ports are negligible then it can be modeled as a two port 

electrical network as shown in Figure 2.6.  The signals 
inV , 

inV , 
outV , and 

outV  are 

normalized voltage waves corresponding the input and output energy signals in Figure 

2.5.  The S-parameters of the two port network in Figure 2.6 could be related to the 

optical signals as 
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In the narrowband approximation the microring resonator has a Lorentzian response at 

the resonance frequency.  Thus it can be modeled as a simple first order LC oscillator 

circuit [48] as shown in Figure 2.7.  Here the microring coupling junctions are modeled 

as capacitive voltage coupling elements X0 and X1 which also act as admittance inverters.  

The coupling elements can be related to the coupling coefficients by equating the 

microring spectral responses to the S-parameters of the equivalent circuit network.  The 

S11 parameter of the given network can be determined from the input admittance Yin of 

the circuit given by 

10
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X
Yin 

        (2.27) 
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Figure 2.6.  Two-port network representation of an add-drop microring filter. 

rs = 1 

rL = 1 L C 
Vin 

Yin 

Vout 

Vin 
+ 

Vout 
+ 

Vout 

_ 
Vin 

_ 

X0 + _ X1 

Figure 2.7.  Equivalent bandpass circuit model of a single microring resonator. 
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where Y0 is the admittance of the shunt-LC resonator, 
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where Δω =     ω0 << ω0 for narrow band approximation.  From this the reflection 

parameter S11 is obtained as  
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The transmission parameter S21 of the network can be obtained as 
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Consider the microring through and drop port equations 2.21 and 2.22 in the 

lossless scenario ( L  = 0).  Comparing equations 2.21 with 2.29 and 2.22 with 2.30, one 

can deduce the following relationships between the voltage coupling elements and the 

microring coupling coefficients  

CX 00  ,        (2.31) 

CX 11  .        (2.32) 

The LC equivalent circuit model developed above for the single microring resonator will 

be used as a building block for modeling high-order coupled microring resonator filters in 

the later chapters. 

2.4 High-order microring resonator filters 

In the previous sections we discussed the filter characteristics of a single microring 

resonator.  In practical applications, the Lorentzian response of a single resonator is 

usually not sufficient to meet WDM filter requirements such as flat-top pass band, sharp 
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transition from pass band to stop band, high out-of-band extinction etc.  Such filter 

characteristics usually require higher order transfer functions which can be realized by 

increasing the number of microring resonators.  Borrowing well established filter design 

principles in microwave, standard filter shapes such as Butterworth, Chebyshev, elliptic 

and inverse Chebyshev can be achieved by appropriate design of the poles and zeros of 

the structure.   

Simple filters have been already implemented in the optical domain using various 

arrangements of multiple microrings in different topologies.  For e.g. the Butterworth and 

Chebyshev filters, which have only poles and no transmission zeros, can be realized by 

cascading microring resonators in a serial coupling topology as shown in Figure 2.8.  

Assuming all microrings to be synchronous, at the resonant wavelength the input optical 

signal Si  couples through the microrings from 1 to N and gets transmitted at the drop port 

(optical signal Sd).  Appropriate choice of the inter-ring coupling coefficients can control 

the placement of poles which gives the necessary spectral shapes.  The serial coupling 

topology is simple and easy to design as direct synthesis techniques are readily available 

in the literature [47, 48].  The serial coupling topology is also relatively easy to fabricate.  

Several serially coupled high-order microring filters have been demonstrated in various 

material systems such as semiconductors [49], polymer [50], SiN [33] and SOI [51, 52].    

However, a disadvantage with the serial coupling topology is that only all-pole filters can 

be realized.  To realize all-pole filters with box-like spectral responses with very sharp 

roll-off and high out-of-band rejection, the required filter order would be very high .  If 

the number of microrings needed is in the order of several tens, then the fabrication 

would become unfeasibly complicated which is not desirable. 

 

 
Figure 2.8.  Schematic of a serially-coupled microring filter. 
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 Filters which have transmission zeros in their transfer functions can have box like 

responses with very sharp roll-offs without requiring high filter orders.  Examples are the 

elliptic and inverse Chebyshev types of filters.    Two microring coupling configurations 

have been proposed in the literature that can realize filters with transmission zeros.  The 

first topology is the parallel coupling topology [53, 54] whose schematic is shown in 

Figure 2.9.  Here each microring is coupled only to the upper and lower bus waveguides 

and there is no direct coupling between the microrings.  To avoid any inter microring 

coupling, each pair of microring is placed apart by a distance Ld > 2R.  The parallel 

coupling configuration can be regarded as a distributed-feedback (DFB) grating where 

each microring acts as a reflection element in the grating. In this topology, box like 

spectral responses can be realized due to the presence of transmission zeros.  However, 

only a few attempts have been made [55, 56] to realize this topology since 1) the poles of 

 
Figure 2.10.  A MZI loaded with all-pass microrings. 
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Figure 2.9.  Schematic of parallel-cascaded microrings. 
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the filter cannot be independently controlled and 2) there is no direct synthesis procedure 

available so that numerical optimization is required to design the filter. 

The microring loaded Mach Zehnder Interferometer (MZI) configuration as 

shown in Figure 2.10 is the other microring topology that can realize optical filters with 

transmission zeros [57, 58].  The disadvantage of this architecture is that it requires 

asynchronous microring resonators, whose round trip phases φn have to be precisely 

controlled. Thus along with N+2 couplers, the device needs N+1 phase shifters to realize 

an Nth order filter. To date there is only one known demonstration of this filter 

architecture [59]. 

2.5 Summary 

This chapter provided the background information on microring resonators and their 

characteristics as optical filters.  The analysis of the single add-drop microring resonator 

using the energy coupling approach was presented and an equivalent circuit model was 

developed based on the energy coupling analysis.  Various existing topologies for 

realizing complex higher order filters were reviewed and their advantages and 

disadvantages were highlighted.  In chapters 3 and 4 we explore new coupled microring 

architectures for realizing advanced optical filter responses. 

 

 

 

 

 

 

 

 

 



 25

 

 

 

 

 

 

Chapter 3 

Coupled-Microring Filters of General 2D 

Coupling Topology  

 

 

In this chapter a new topology for realizing high order microring filters is introduced.  

This topology consists of direct-coupled asynchronous microring resonators arranged in a 

two-dimensional array.  Such a 2D array of microrings can be considered as a generalized 

extension of 1D arrays of serially coupled microrings discussed in chapter 2.  By 

allowing for coupling between non-adjacent microrings, high-order filter transfer 

functions with transmission zeros such as inverse Chebyshev or elliptic type can be 

realized.  Also, the asynchronous microring resonators enable the realization of complex 

asymmetric filter shapes.  The analysis of the 2D coupling topology is done using the 

energy coupling approach, from which the filter spectral response is derived.  In order to 

synthesize the architecture for a given high order filter response, first an equivalent two-

port circuit network is derived based on the LC circuit model of a single microring 

resonator developed in chapter 2.    Using filter synthesis techniques available in the 

electrical domain, the equivalent electrical network is then synthesized to generate a 

coupling matrix corresponding to the desired filter.  This coupling matrix is subsequently 

transformed into the physical coupling topology of the 2D coupled microring filter. 
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3.1 Energy coupling analysis of general 2D microring topology 

Figure 3.1 shows the schematic of N asynchronous microring resonators arranged in the 

most general two-dimensional coupling topology.  Microring 1 is coupled to the input 

waveguide via energy coupling coefficient i while microring N is coupled to the output 

waveguide via energy coupling coefficient o.  Also every microring i is coupled to every 

other microring j in the network via energy coupling coefficient i,j.  The signals si, sr and 

st represent the input, reflected and transmitted optical signal amplitudes, respectively.  

Each microring i has resonant frequency i which is detuned from the center frequency 

0 of the filter passband given by 

  0  ii .       (3.1) 

Figure 3.1. Schematic of a direct-coupled microring filter consisting of N 
resonators arranged in the most general coupling topology. 

A1                 A2                                                                        Am 
…….... 

  A2m                A2m-1                                                                    Am+1 
…….... 

  AN                AN-1                                   
…….... 

 μi              μ1,2 

 μo             μN-1,N  

μ1,2m 

St 
 

Sr 
 

Si 

 



 27

For practical filters, the detunings Δωi are usually small enough so that the microrings are 

approximately the same size and have the same intrinsic loss γL.  As shown in Figure 3.1 

the instantaneous energy amplitudes in the microrings are denoted by Ai(t).  In the energy 

coupling analysis, these energy amplitudes can be formulated into a system of coupled-

mode equations given by [60], 

iiNNLi sjAjAjAjAj
dt

dA   ,133,122,11
2

2
1

1
1 )(  ,  

NNL AjAjAjAjAj
dt

dA
,244,233,22212,1

2 )(    ,

NNL AjAjAjAjAj
dt

dA
,344,33323,213,1

3 )(    , 

 … 

NLoNNNNNN
N AjAjAjAj

dt

dA
)( 2

2
1

1,12,21,1    .  (3.2) 

Introducing harmonic variation by letting )exp(, tjsA ii  , the above system of 

equations become 

iiNNLi sjAjAjAjAjs   ,133,122,11
2

2
1

1 ])[(  , 

0])[( ,244,233,22222,1  NNL AjAjAjAjsAj   , 

0])[( ,344,33323,213,1  NNL AjAjAjsAjAj   ,  

     … 

0])[( 2
2
1

1,12,21,1   NLoNNNNNN AjsAjAjAj    (3.3) 

where s = j( – 0) is the frequency variable and )( ii jjs   .  The above 

system of equations can be expressed in matrix form as, 
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  baMLI  )( js ,       (3.4) 

where I is the N×N identity matrix, 

   TNAAA ,,, 21 a ,  

   Tiisj 0,,0, b ,       (3.5) 

M is the symmetric energy coupling matrix having the general form 
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and L is a diagonal matrix that represents the energy lost or coupled in and out of the 

system via the bus waveguides: 
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The loss matrix L can also be written as: 

  exL LIL          (3.8) 

where Lex is the external loss matrix 



 29

  

























2/

0

0

2/

2

2

o

i

ex





L  .    (3.9) 

Substituting equation 3.8 into equation 3.4 we get 

  baMLI  ))[( js exL .     (3.10) 

Equation 3.10 can be solved by diagonalizing the matrix (Lex + jM) in the form, 

  1 QDQML jex ,      (3.11) 

where D is the diagonal matrix containing the eigenvalues of (Lex + jM) and Q is the 

corresponding eigenvector matrix.  Substituting equation 3.11 into 3.10 and solving for a 

we get  

  bQDIQa 11])[(  Ls  .     (3.12) 

Each element of a can be expressed as 

  







N

k kL

kkn
iin jds

QQ
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Here dk is the kth diagonal element of D which is also related to the pole pk of the filter 

transfer function with no loss (γL = 0) as 

  kk jdp  .        (3.14) 

From the relationships 1ajss iir   and Not ajs  , the reflected and transmitted 

spectral responses of the microring filter at the through port and drop port can be 

obtained as 



 30

  







N

k kL

kk
i

i

r

jds

QQ

s

s

1

1
1,,121


 ,     (3.15) 

  







N

k kL

kkN
oi

i

t

jds

QQ

s

s

1

1
1,,


 .     (3.16) 

Equations 3.15 and 3.16 are the closed-form expressions of the 2D direct coupled 

microring system.  From the equations it can be noted that loss in the system causes the 

filter poles to shift by a constant amount γL to the left in the s-plane.  In general the effect 

of loss in microrings is to cause rounding of the passband edges and increase the group 

delay dispersion.  If prior knowledge of the microring loss γL is available, one could 

compensate for the effect of loss using a technique called predistortion.  In this technique 

the filter transfer function is predistorted by shifting the poles and zeros to the right by an 

amount equal to γL [61] to compensate for loss in the microrings.  When loss is present, 

the poles and zeros are moved back to their desired locations and the desired filter 

characteristics are recovered in both the amplitude and group delay responses. 

3.2 Equivalent circuit model 

For a given filter transfer function, a 2D microring coupling topology having the desired 

filter response can be constructed by determining the energy coupling matrix M of the 

network (equation 3.6).  This can be accomplished by first constructing an equivalent 

circuit network model of the topology and then generating the coupling matrix X of the 

electrical network using well known electrical filter synthesis techniques.  The coupling 

matrix X can then be correlated to the energy coupling matrix M of the microring filter.  

In chapter 2 it was shown that a single lossless microring resonator along with its 

coupling junctions could be modeled as a simple shunt LC oscillator with capacitive 

coupling elements.  Using this model as a building block, the 2D coupled microring 

topology with no loss (γL = 0) can be modeled by the electrical network shown in Figure 

3.2. 
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Here each asynchronously tuned microring m with resonant frequency m is modeled as a 

LC oscillator with LmCm =(m)-2.  Xi, Xo and Xi,j are the capacitive or susceptance 

coupling elements representing the input coupling, output coupling and mutual coupling 

between microrings i and j respectively.  We consider the case of a lowpass prototype 

filter circuit with center frequency 0 = 0 rad/s and cut-off frequency c = 1 rad/s.  

Similar to equation 2.28, each microring m with resonance frequency ωm can be 

represented by the LC shunt oscillator admittance Ym, 

  mm
m

mm Cj
Lj

CjY 2)(
1 


  .    (3.17) 

For practical band pass filters the frequency detuning 0  mm  of microring m 

with respect to the center frequency 0 is usually small, which implies that Cm ≈ C0 and, 

by choosing C0 = 1/2 farads, we can express equation 3.17 as  

  mmmm jsjjjY   )()()( 00   (3.18) 

where )( 0  js is the bandpass frequency variable.    

 Let vm be the voltage at each node m = 1 to N in the electrical network in Figure 

3.2.  Using Kirchoff’s current law (KCL), the sum of the currents flowing in and out of 

each node m is given by 

V
Xi V1 

I1 I2 

X12 X23 Xo V 2 

vm 

X1,m 

X2,m 

X1,N 
Xm,N 

X2,N 

Xm–1,m Xm,m+1 XN–1,N

L1 C1 L2 C2 Lm Cm LN CN 

Figure 3.2. Schematic of the equivalent electrical network model of the 2D 
direct-coupled microring topology consisting of N resonators. 
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Node 1: 0)( ,133,122,1111  NNi vjXvjXvjXvjsVjX  , 

Node 2: 0)( ,244,233,22212,1  NN vjXvjXvjXvjsvjX  , 

 … 

Node N: 0)(,12,21,1   NNNNNNN vjsvjXvjXvjX  .  (3.19) 

Applying KCL at the input and output port gives the relationships 011  IvjX i  and 

02  IvjX No , respectively, from which we obtain ijXIv 11  and oN jXIv 2 .  

Substitute these expressions for v1 and vN in equation 3.19 to form the matrix equation: 

   (sI – jX)V = Ј,       (3.20) 

where X is the NxN susceptance coupling matrix which also contains the frequency 

detunings as diagonal elements 
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V and Ј are the Nx1 voltage and current arrays respectively  
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The values of the susceptance coupling elements are related to the microrings energy 

coupling coefficients as given in [60] 

  jiji X ,,  , 

  2ii X , 

  2oo X .        (3.23) 

Equation 3.20 describes the equivalent circuit network of the 2D coupled microring 

topology.  In the synthesis of the 2D microring network, we can apply microwave filter 

techniques [62 - 65] to the equivalent circuit. 

3.3 Synthesis of the equivalent circuit network 

A popular method for synthesizing the equivalent circuit network is the coupling matrix 

method [63].  Since X is a real and symmetric matrix, it can be diagonalized in the form 

  tTΛTX  ,        (3.24) 

where T is an orthonormal matrix and the diagonal matrix Λ contains the eigenvalues λk 

of X.  Substituting (3.24) into (3.20) and solving for V, we get 

V = T· (sI – j Λ)-1·Tt Ј  = Z Ј.     (3.25) 

Here tjs TΛITZ  1)(  is an N×N impedance matrix of the circuit network whose 

element Zi,j is given by 
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From the impedance matrix Z, the two-port short-circuit admittance matrix Ysc of the 

network can be extracted to give [63], 
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It is noted from the above equation that the eigenvalues λk are also the poles of the short 

circuit admittance parameters of the network.  In general, for a N-th order filter, the short-

circuit admittance matrix can be expressed in the form [66] 
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where pk is the kth pole of the admittance parameters and )(
,
k
ji  is the residue of admittance 

yi,j at the pole pk.  Comparing equations 3.27 and 3.28 shows that kk jp  , which forms 

the diagonal of the eigenvalue matrix  in equation 3.24.   In the next section we show 

how the short circuit admittance parameters, specifically their poles and residues, can be 

obtained from the optical transfer function of the microring network to be synthesized. 

3.3.1 Determination of the short circuit admittance matrix Ysc 

From equation 3.16 we can express the transmission response of a 2D coupled microring 

filter in the general form: 
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where pk and zk are the poles and zeroes of the filter respectively, N is the number of 

poles and M ≤ N-2 is the number of zeros.  The above transmission response can have 

symmetric or asymmetric shape with respect to the center frequency.  For asymmetric 

spectral shapes pk and zk appear as unpaired complex numbers whereas for symmetric 

spectral shapes they appear in complex conjugate pairs.  Given a target filter response of 
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the form in equation 3.29 we can obtain the reflection response of the filter from the 

energy conservation for a lossless network: 

  1)()(
22  sSsS tr .      (3.30) 

Letting Sr(s) = R(s)/Q(s), where R(s) is an Nth-degree polynomial, the above equation 

gives 

  
222

)()()( sQsRsP  ,      (3.31)  

or 

  )()()()()()( sPsPsQsQsRsR  .    (3.32) 

To determine the polynomial R(s), the roots of the polynomial on the right side of 

equation 3.32 are first obtained, which can be divided into two sets of values that are the 

negative of each other.  The polynomial R(s) can be formed from either set of the roots.  

We can see that the choice of the roots of R(s) is not unique, so that more than one filter 

design is possible for a given transfer function.  

The input impedance Zin of the electrical network is obtained from the reflection 

response Sr(s) as 
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Let the polynomials P(s), Q(s) and R(s) be expressed in terms of their complex 

coefficients ak, bk and ck as 
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 36

Using the above expressions, the input impedance in 3.33 can then be expressed as 
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where m(s) and n(s) are the complex-odd and complex-even polynomials constructed 

from the coefficients ak and ck of Q(s) and R(s), respectively, as given below 
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As shown in [64], the elements of the short circuit admittance matrix Ysc can then be 

obtained as 
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By expressing y11(s) and y12(s) in partial fraction expansion as in equation 3.28, the poles 

k  and residues )(
22
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11

kk  and )(
21
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12

kk   can be obtained. 

3.3.2 Determination of the coupling matrix 

The coupling matrix X can be determined once the eigenmatrix  and the orthonormal 

matrix T in equation 3.24 are known.  The matrix  is constructed from the poles of the 

admittance parameters.  The matrix T can be constructed as follows.  First, by summing 

over the admittance residues )(
11
k  and )(

22
k , the input and output coupling coefficients μi 

and μo are obtained [63] as  
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In the above expressions we have used the results 1
1

2
,

1

2
,1 



N

k
kN

N

k
k TT  since matrix T is 

orthonormal.  Comparing equations 3.27 and 3.28, the elements in the first and last rows 

of the matrix T can be determined as 

i

k

k X
T

)(
11

,1


         (3.41) 

    imag sgn )(
12,1,
k

kkN TT  .     (3.42) 

The orthonormal nature of matrix T allows us to determine the remaining rows by a 

procedure called Gram-Schmidt orthogonalization.   

Once matrix T is generated and with the knowledge of matrix Λ, the coupling 

matrix X can be determined from tTΛTX  .  The energy coupling matrix M of the 

microring filter is equal to the coupling matrix X of the electrical network,  since Xi,j = i,j  

as per equation 3.23.  The energy coupling coefficients determined above are those of the 

prototype filter with center frequency 0 = 0 rad/s and cut-off frequency c = 1 rad/s.  To 

transform it to a bandpass filter with bandwidth B, frequency scaling is applied to get 

[60], 

2/~ Bii  , 

2/~ Boo  , 

)2/(~
,, Bjiji  .       (3.43) 

Finally the energy coupling coefficients (μ) can be related to the field coupling 

coefficients (κ) as: 
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where FSRi and FSRj are the FSRs of microring i and j respectively. 

3.3.3 Optimization of the coupling matrix 

The coupling matrix M obtained using the above procedure is not the only unique 

solution for a given filter transfer function.  Many times M could correspond to a 

coupling topology where a microring is required to couple to too many other microrings.  

Such a topology may not be a practical realization of the filter due to layout constraints. 

Another coupling topology that could lead to a potential problem is a microring triplet 

formation as shown in Figure 3.3(a).  In general, a circular loop formation by an odd 

number of microring resonators as shown in Figure 3.3(b) is an undesirable coupling 

topology.  Since the microrings are travelling wave resonators, these circular loop 

structures would lead to coupling between the clockwise and counter-clockwise 

Figure 3.3. Examples of microring topologies which lead to coupling between 
counter-propagation waves:  (a) a triplet configuration; (b) an odd number of 
microring resonators arranged in a circular loop. 

(a) (b)
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propagating modes in the microrings, resulting in a reflected signal at the input port 

which is not desirable.  

To convert a non-realizable coupling matrix M into a realizable one, one could 

apply similarity transformations such as Jacobi rotations to the original matrix M to 

transform it into a new coupling matrix.  Such a transformation would preserve the 

original eigenvalues of M so that the filter response is unchanged [63].  During each 

Jacobi rotation performed on M, a new coupling matrix M is obtained as given by  

)()( r
t

r  RMRM ,      (3.45) 

where R(r) is an NN Jacobi rotation matrix and r is the rotation angle which is 

specifically chosen to annihilate an unrealizable coupling element in the original coupling 

matrix M.  By applying a sequence of such rotations as described in [64, 65], a new 

practically realizable coupling matrix M can be obtained.  As mentioned before there are 

many possible coupling topologies (i.e. matrices) synthesizable for a single filter transfer 

function.  Out of all possible coupling topologies for a given spectral response, an 

optimum device topology in terms of ease of fabrication would be the one which has a 

minimum number of coupling elements.  Given a spectral response, one can apply 

successive matrix rotations to annihilate undesired coupling elements and minimize the 

number of coupling elements. 

Also it is well-known that a direct-coupled cavity filter with transmission zeros on 

the imaginary frequency axis will require negative coupling elements.  One way to realize 

negative coupling elements in microring resonators is to use racetracks with long straight 

waveguide sections for coupling.  Since the evanescent power coupling between two 

adjacent waveguides is  = sin(cLcoup) where cis the power coupling per unit length, a 

negative coupling element will require a coupling length Lcoup such that 3< cLcoup < 

2.  Since it is generally more difficult to realize negative coupling elements than 

positive coupling elements, it is desirable to minimize the number of negative elements in 

the coupling matrix M.  This can be achieved by applying a series of reflection operations 

to invert the signs of the rows and columns of the matrix. 
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3.4 Numerical filter design examples 

In this section several numerical examples are presented to illustrate the application of 

the coupling matrix technique to synthesize and optimize filters based on 2D direct-

coupled microrings.  The first example shows a sixth-order symmetric elliptic filter with 

two transmission zeros with various optimized structures to minimize the number of 

negative couplings. The second example is a seventh-order asymmetric filter to illustrate 

the synthesis of microring filters with unpaired complex transmission zeros in the transfer 

function.  The third example illustrates an advanced application of the 2D microring 

coupling topology with the design of a linear phase filter with flat-top spectral responses 

in both the amplitude and group delay.  The fourth example demonstrates the use of 

predistortion technique discussed in section 3.1 to recover a sixth-order elliptic filter 

response in the presence of loss. 

3.4.1 A sixth-order symmetric elliptic filter 

This example illustrates the synthesis and optimization procedure of a 6th order elliptic 

filter with two transmission zeros.  The filter specifications include: 

 25 GHz bandwidth, 

 0.05-dB passband ripple, 

 30-dB rejection level in the stopband. 

Using an appropriate filter approximation method [64], we obtain the following transfer 

functions of the prototype filter which satisfy the above specifications: 

0.392]1.35282.67763.3053.2891.7985 [

1.651225
)(

23456

2





ssssss

s
sSt ,  (3.46) 

0.392]1.35282.67763.3053.2891.7985 [

0.058974521.6716 
)(

23456

246





ssssss

sss
sSr . (3.47) 

The transmission transfer function has 6 poles located at -0.078±j1.062 , -0.301±j 0.884, -

0.517±j 0.357 and 2 zeros located at ±j1.285 in the complex s-plane.  In the synthesis 

procedure, we first determine the input impedance Zin of the equivalent network from 
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equation 3.35.  Using Zin and equations 3.37 and 3.38 the short-circuit admittance matrix 

elements y11 = y22 and y21 = y12 can be determined.  The computed poles and residues of 

the resulting short-circuit admittance matrix Ysc are listed in Table 3.1.  From the residues 

11 and 22, we calculate the input and output coupling elements Xi and Xo to be 0.9483 

based on equations 3.39 and 3.40.  Using equations 3.41 and 3.42 the first and the final 

rows of the T matrix can be calculated.  The remaining rows of T are obtained using 

Gram-Schmidt orthogonalization procedure.  The resulting matrix T is: 


































4957.04957.04263.04263.02692.02692.0

04773.00008788.0

05298.07978.0002878.0

6520.0007582.000

2887.0002483.09247.00

4957.04957.04263.04263.02692.02692.0

T  (3.48) 

From the poles of y11 in Table 3.1, the diagonal matrix Λ in equation 3.24 is obtained as  

































4140.000000

04140.00000

000120.1000

0000120.100

00001336.10

000001336.1

   (3.49) 

Poles of y11 and y12 11 = 22 12 = 21 

  j 1.1336 0.0652   j 0.2777 

j 1.1336 0. 0652 j 0.2777 

  j 1.0120 0. 1635   j 0.6962 

j 1.0120 0. 1635 j 0. 6962 

  j 0.4140 0.2210   j 0.9413 

j 0. 4140 0.2210 j 0. 9413 

 

Table 3.1.  Poles and residues of the short-circuit admittances of the 6th-order elliptic filter. 
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With matrices T and Λ known, the coupling matrix tTΛT  MX  can be obtained as: 

































0

1703.09697.0

5407.01820.04339.0

4609.0004056.0

3301.0002684.09414.0

01703.05407.04609.03301.00

M   (3.50) 

Equation 3.50 shows only the upper half of the matrix since M is symmetric. It can be 

seen that the synthesized coupling matrix requires each microring to be coupled with 

several other microrings which is not physically realizable.  In order to reduce the 

number of coupling elements to obtain a realizable coupling matrix, Jacobian rotations 

are applied to reduce the matrix into a simpler matrix M1 




























0

8017.00

05512.00

007338.00

02031.005512.00

00008017.00

1M .   (3.51) 
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Figure 3.4. Folded coupling topology of a 6th-order elliptic microring filter with 
coupling matrix given by equation 3.51.
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The above matrix has only 6 non-zero coupling elements whose coupling topology is 

shown in Figure 3.4. Also the number of negative couplings in the original matrix 

(equation 3.50) has been reduced to one, which is significant since it is difficult to realize 

negative coupling elements. By performing further similarity transformations on M1, 

alternative coupling topologies that could provide new layout possibilities can be 

obtained.  One such topology with a new layout and a minimum number of negative 

couplings is shown in figure 3.5 whose coupling matrix M2 is given by: 




























0

2772.00

05027.00

7523.007727.00

05874.0000

00008017.00

2M     (3.52) 
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Figure 3.5. Alternative coupling topology of the 6th-order elliptic microring filter 
with coupling matrix given by equation 3.52.
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The matrix M1 in equation 3.51 is for the prototype filter with a bandwidth of 1 

rad/s.  After scaling to the 25 GHz bandwidth using equation 3.43, we obtain 

88.11~~  oi   




























0

97.62.00

029.430

0003.580

094.15029.430

000097.620

~
M .  (3.53) 

Using equations 3.15 and 3.16, the transmission response (solid gray) and reflection 

response (dashed gray) of the 25 GHz bandpass filter are computed and plotted in Figure 

3.6.  The black dots represent the plots of the target filter responses 

Figure 3.6. Synthesized transmission response (solid gray line) and reflection 
response (dashed gray line) of a 6th-order 25GHz-bandwidth elliptic filter.  The 
dots represent the target filter responses. The inset shows a close-up view of the 
passband. 
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which are in good agreement with the synthesized filter responses.  In Figure 3.7 the 

transmission response of the elliptic filter (solid black line) is compared to that of a 6th 

order 25 GHz Butterworth filter (dashed gray line).  The Butterworth filter can be 

realized with six serially coupled microring resonators as shown in Figure 2.8.  It can be 

seen that in terms of adjacent channel isolation and band transition (roll off characteristic) 

the elliptic filter offers a better performance. 

3.4.2 A seventh order asymmetric elliptic filter 

This example considers the design of a 25 GHz bandwidth asymmetric 7th order 

microring filter with 3 transmission zeros.  The filter is designed to have two zeros to be 

positioned close to the right band edge (on the high-frequency side of the passband) to 

achieve a very steep roll-off and an out-of-band rejection level of 55dB.  The third 

transmission zero is placed on the left-hand side (low frequency side) of the passband to 

achieve a minimum out-of-band rejection of 65dB.  The poles and zeros of the filter 

transfer function are listed in Table 3.2 [67].  It can be noted that the poles and zeros do 

Figure 3.7. Synthesized transmission response of a 6th-order 25GHz-bandwidth 
elliptic filter (solid black line) along with a transmission response of 6th order 
Butterworth filter (dashed gray line). 
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not appear in conjugate pairs due to the asymmetry of the transmission response of the 

filter.  The poles of the short-circuit admittances, y11 and y12, and their residues, 11 and 

12, as obtained from the transfer function are listed in Table 3.2. 

Similar to the case of a symmetric filter in the previous example, the residues 11 

= 22 of the asymmetric filter are real while 12 = 21 are imaginary.  However, the poles 

and residues of the short-circuit admittances do not appear in complex conjugate pairs. 

Application of the coupling matrix synthesis procedure yields the following energy 

coupling matrix: 

 





































0114.0

7600.00129.0

05706.00047.0

003713.07474.0

00089.04382.03772.00184.0

00481.0005706.00129.0

000007600.00114.0

M . (3.53) 

 

Filter poles, pk Filter zeros, zk Poles of y11 and y12 11 = 22 12 = 21 

0.0956 j1.0472 j2.0000 j1.1206 0.0695   j0.0695 

0.2825 j0.8047   j1.2153   j1.0716 0.0473   j0.0473 

0.4121  j0.3358   j1.4030   j1.0279 0.0911 j0.0911 

0.0363 + j1.0201  j0.9279 0.1522 j0.1522 

0.1343 + j0.9311    j0.7625 0.1199   j0.1199 

0.2807 + j0.6843  j0.3922 0.1757   j0.1757 

0.4079 + j0.2278    j0.2543 0.1690 j0.1690 

 

Table 3.2.  The poles and zeros of the filter transfer function, and the poles and residues of the short-circuit 
admittances of a 7th-order asymmetric filter. 
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The above coupling matrix corresponds to the  microring topology shown in Figure 3.8, 

which consists of triplet formations as shown by the triangles in the figure.  As mentioned 

in section 3.3, the triplets will lead to coupling between counter-propagating modes, 

resulting in the generation of a reflected wave at the input port.  To overcome this 

problem, we have made use of the matrix reduction procedure called cross-pivot 

annihilation given in [65] to generate the following reduced matrix M1.  

 




































0114.0

5374.00352.0

05751.04498.0

005293.07474.0

00004267.0

5374.00005661.00611.0

05374.00005374.00114.0

1M  (3.54) 

 

 

 

Figure 3.8.  Triplet formation in the 7th order asymmetric microring 
filter with coupling matrix in equation 3.53. 
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Figure 3.9 shows the coupling topology corresponding to the above coupling matrix, 

which is known as the “cul-de-sac” configuration in microwave filter design [65].  This 

filter topology has the important advantage that it requires only one negative coupling 

element in the entire network as long as the number of transmission zeros is less than N – 

2.  It is noted that the diagonal elements in the coupling matrix are non-zero, indicating 

that the microrings are detuned from the center frequency 0 of the filter passband.   

Next the coupling matrix M1 is scaled to obtain the coupling parameters for the 25 

GHz bandpass filter.  This yields 3816.11~~  oi   and the scaled matrix 




































8923.0

2088.427650.2

01662.453269.35

005723.416984.58

00005104.33

2088.420004642.447966.4

02088.420002088.428923.0

~
M . 

           (3.55) 

 

 

Figure 3.9.  Cul-de-sac coupling topology of the 7th order asymmetric 
filter with coupling matrix in equation 3.54. 
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In Figure 3.10 the transmission and reflection responses (solid grey line) at the drop port 

and through port, respectively, of the synthesized filter are plotted against the responses 

of the target filter transfer functions (dotted black line).  It is seen that the placement of 

two transmission zeros on the right-hand side of the passband results in a much steeper 

roll-off on that side compared to the left-hand side.  In Figure 3.11 the transmission 

response of the 7th-order asymmetric filter (solid black line) is compared to that of a 

conventional 7th-order Butterworth filter (dashed grey line) having the same bandwidth of 

25GHz.  The Butterworth filter response was obtained from 7 microrings arranged in a 

serial coupling topology.  The superior performance of the asymmetric filter is apparent 

from the much sharper band transitions and higher isolation levels compared to the all-

pole symmetric Butterworth filter. 

Figure 3.10.  Synthesized transmission response and reflection responses (solid gray 
line) of a 7th-order 25GHz-bandwidth asymmetric elliptic filter.  The dots represent 
the target filter responses.  The inset shows a close-up view of the passband. 
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3.4.3 A sixth order linear phase maximally flat filter 

In light of the recent interest in optical slow wave structures for applications in optical 

buffering [44], we consider the application of the 2D coupled microring network for 

realizing low-dispersion optical buffers.  The example given is a sixth order, 25 GHz 

bandwidth linear phase optical filter having flat top responses in both amplitude and 

group delay.  The transfer functions for linear phase filters have been derived for 

microwave filters [68], from which we obtain the following polynomials for the 

prototype filter:  

450726)( 24  sssP ,  

450900828456162364)( 23456  sssssssQ .   (3.56) 
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Figure 3.11  Synthesized transmission response (solid black line) of a 7th-order 
25GHz-bandwidth asymmetric elliptic filter as against a 7th order Butterworth filter 
response (dashed grey line). 
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The above transfer function has six poles at {0.8729  j2.3434, 1.6797  j1.2959, 

1.9474  j0.4525}, and four complex zeros at {2.7074  j1.1533}.  Applying the 

polynomial factorization in equation 3.32 we obtain the polynomial R(s) of the reflection 

response Sr as: 

64)( ssR           (3.57) 

Following the synthesis procedure, the short-circuit admittance matrix Ysc is derived 

whose poles and residues are listed below in Table 3.3.  The reduced coupling matrix M1 

is next obtained to give: 



























0

7487.20

04239.10

009559.00

03775.004239.10

1667.00007487.20

1M .   (3.58) 

It is seen that the optimized matrix contains 7 coupling elements.  Moreover, all coupling 

elements are positive since the filter transfer function does not have transmission zeros on 

the imaginary axis.  The corresponding microring coupling topology is shown in Figure 

3.12 

Poles of y11 and 
y12 

11 = 22 12 = 21 

  j 3.4706 0.7737   j 0.7737 

j 3.4706 0.7737 j 0.7737 

  j 2.7550 0.9799   j 0.9799 

j 2.7550 0.9799 j 0.9799 

  j 0.7844 0.4963   j 0.4963 

j 0.7844 0.4963 j 0.4963 

Table 3.3.  The poles and residues of the short-circuit admittances of the 6th-order linear phase filter. 
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To obtain a filter bandwidth of 25GHz, the energy coupling coefficients are scaled 

accordingly to give 5868.26~~  oi   and  



























0

8900.2150

08300.1110

000748.750

06449.2908300.1110

0900.130008900.2150

~
M . (3.59) 

 

Figure 3.12.  Folded coupling topology of the 6th-order linear phase microring 
filter with coupling matrix given by equation 3.58. 
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Figure 3.13.  Synthesized transmission and reflection  spectral responses (solid gray line) of a 
6th-order linear phase microring filter with a 25GHz flat-top bandwidth.  The dots represent 
the target filter responses.  The inset shows a close-up view of the passband. 
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The transmission and reflection responses at the drop port and through port of the 

synthesized filter are plotted (solid grey line) against the responses of the target filter 

transfer functions (black dots) in Figure 3.13.  The transmission response is seen to 

exhibit a flat top passband.  The group delay response at the drop port is shown in Figure 

3.14, which shows a flat top group delay in the pass band with a constant group delay of 

25ps over the 25GHz bandwidth. 

 

3.4.4 A predistorted sixth-order elliptic filter 

To illustrate the predistortion technique discussed in section 3.1, we consider the design 

of a 6th-order elliptic microring filter with 30GHz bandwidth, 0.1dB in-band ripple and 

40dB out-of-band rejection.  The prototype filter transfer function which meets the above 

specifications has six poles at pk = {0.0744  j1.0609, 0.2961  j0.9154, 0.6059  

j0.4103} and four zeros at zk = { j1.3153,  j1.6900}.  Following the synthesis 

procedure, the coupling parameters of the filter for lossless case are determined to be i = 

o = 13.5664, and the coupling matrix is given by: 

Figure 3.14.  Synthesized group delay response of the linear phase microring 
filter (solid gray) along with the target response (black dots). 
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The microring filter topology corresponding to the above coupling matrix is shown in 

Figure 3.15.  Figures 3.16(a) and 3.16(b) shows the spectral responses of the filter at the 

drop port and through port, respectively, in the absence of resonator loss (dashed gray 

lines).  It can be seen from Figure 3.16(a) inset that the lossless design conforms with the 

target specifications for the filter passband, exhibiting a ripple of only 0.1dB over the 

entire 30GHz bandwidth.  Next the effect of uniform resonator loss on the responses of 

the lossless design was examined.  For this purpose we assume that the microring 

waveguides are realized on a high-index material system such as silicon-on-insulator, 

with a propagation loss of 3.0dB/cm and a group index ng of 4.5.  The corresponding 

energy loss L calculated from equation 2.16 is 0.0244.  The drop-port and through-port 

spectral responses of the lossy filter are computed and plotted as solid gray lines in 

Figures 3.16(a) and 3.16(b), respectively.  It can be seen that loss in the microrings 

causes the filter passband to become rounded at the edges, resulting in as much as 2.5dB 

ripple across the 30GHz bandwidth.  In addition, the filter also exhibits an in-band 

insertion loss of 0.7dB.  By contrast, the through-port response remains less affected by 

the resonator loss. 

 

Figure 3.15. Folded coupling topology of a 6th-order elliptic microring filter 
with coupling matrix given by equation 3.60.
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Figure 3.16.  (a)  Drop-port response and a close-up view of the passband (upper panel), and (b) 
through-port response of a 6th-order, 30GHz-bandwidth elliptic microring filter.  Dashed gray lines 
and solid gray lines are the responses of the undistorted filter design in the absence of loss and 
when the normalized energy loss is L = 0.0244, respectively.  Dashed black lines and solid black 
lines are the responses of the predistorted filter with no loss and when L = 0.0244, respectively. 
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To recover the flat-top passband of the filter in the presence of loss, the filter 

poles are shifted by an amount equal to L to obtain the new values kp  = {0.0499  

j1.0609, 0.2717  j0.9154, 0.5815  j0.4103}.  Synthesis of the predistorted filter 

yields the new optimum coupling coefficients i = 5.9481, o = 17.4666, and coupling 

matrix 


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
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7142.1020

02706.570

006505.720
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M .  (3.61) 

The elements of the new coupling matrix are slightly different from those in equation 

3.60 but the coupling topology is unchanged.  The drop-port and through-port responses 

of the predistorted filter in the presence of a normalized loss of L = 0.0244 are shown by 

the solid black lines in Figures 3.16(a) and 3.16(b), respectively.  In the upper panel of 

Figure 3.16(a) we also plot the drop-port response of the predistorted filter when there is 

no loss (dashed black line).  The lossless predistorted filter has a spectral shape with 

transmission peaks at the band edges to compensate for the edge-rounding effect of 

resonator loss.  When loss is introduced, the predistorted filter is seen to completely 

recover its flat passband, with the in-band ripple reduced to 0.1dB across the entire 

30GHz bandwidth although the insertion loss is now increased to 3.25dB.  This extra loss 

at the drop port of the filter is a result of the optical signal at frequencies near the band 

center being redirected to the through port in order to generate a flat passband at the drop 

port.  From Figure 3.16(b), it is seen that the through-port transmission of the predistorted 

filter (solid black line) is indeed much higher than that of the undistorted design (solid 

gray line).  Note that although the predistorted filter design suffers from an increased in-

band insertion loss compared to the undistorted filter, its in-band ripple is also drastically 

reduced from the 2.5dB value exhibited by the lossy undistorted filter.  In this respect, the 
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predistorted design provides a more optimum elliptic filter response since it meets the 

target specifications of the filter passband. 

In Figure 3.17 we plot the group delay response at the drop port of the undistorted 

filter design for the cases when there is no loss (dashed gray line) and when the 

normalized loss is L = 0.0244 (solid gray line).  The effect of loss is seen here as a 

reduction in the group delay at the band edges.  For comparison, the group delay response 

of the predistorted filter in the presence of loss (solid black line) is also shown.  The 

predistorted filter is seen to have identical in-band group delay characteristics as those of 

the undistorted, lossless filter.  Thus the predistortion technique also yields excellent 

recovery of the in-band phase characteristics of the filter in the presence of loss. 

3.5 Summary 

A new microring filter architecture based on a two-dimensional array of direct-coupled 

microring resonators was proposed which can realize advanced filter responses with 

transmission zeros.  A synthesis method was also developed for the filter architecture 

based on an equivalent electrical circuit network.  Several filter examples were presented 
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Figure 3.17.  Group delay response of a 6th-order 30GHz-bandwidth elliptic microring filter.  The 
inset shows a close-up view of the peak on the right.  Dashed gray line and solid gray line are the 
responses of the undistorted filter design in the absence of loss and when the energy loss is L = 
0.0244, respectively.  Solid black line is the response of the predistorted filter when L = 0.0244. 
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to demonstrate the capability of the 2D topology in realizing a variety of complex high 

order optical filter responses, such as elliptic filters, asymmetric filter responses, flat top 

group delay filters.  It was also shown that for the same prescribed transfer function, 

several alternative filter topologies can be realized, from which an optimum design with 

respect to ease of layout and fabrication can be chosen.  The use of predistortion 

technique to recover both magnitude and group delay responses in the presence of loss 

was also presented. 
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Chapter 4 

Generalized Parallel-Cascaded Microring 

Networks 

 

 

The general 2D array of coupled microrings proposed in chapter 3 has a disadvantage in 

that it requires negative coupling elements for the realization of filters with transmission 

zeros on the imaginary frequency axis.  Although it is possible to reduce the number of 

negative coupling elements, from the fabrication perspective it is desirable to avoid 

negative coupling elements altogether.  Recently a new architecture based on microring 

doublets arranged in a parallel cascaded configuration was proposed [69] as shown in 

Figure 4.1.  This architecture, which is also referred to as the microring ladder filter, has 

differential π-phase shift elements ψ in between the stages as shown in the figure.  Each 

Figure 4.1.  Schematic of a double-microring ladder filter. 
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microring stage consists of a simple symmetric and synchronous microring doublet.  The 

advantage of this architecture is that it requires only positive coupling elements to realize 

filter transfer functions with transmission zeros located on or symmetrically distributed 

about the imaginary axis of the complex frequency plane.  Also each stage of the ladder 

network can be independently optimized which makes the device amenable to a modular 

design approach.  

In this chapter we extend this ladder architecture to a more general form as shown 

in Figure 4.2.  In this form the architecture consists of a generalized ladder array of N 

symmetric two-port microring networks.  The networks are connected via two parallel 

bus waveguides, which are assumed to have identical lengths Lk in each stage k except for 

a possible differential phase shift kj
k e    in the upper branch.  Such a cascaded array 

architecture is potentially attractive for realizing very high order microring filters in a 

much more compact layout than the double-microring ladder.  However, this architecture 

retains all the advantages of the double-microring ladder such as all-positive coupling 

elements, modular design approach etc. 

4.1 Generalized parallel-cascaded microring topology 

In this section we provide a detailed description of the generalized microring ladder array 

and derive the transfer functions of the architecture based on the transfer matrix 

formalism of two port microring networks.  Consider the parallel-cascaded array of two-

port microring networks in Figure 4.2.  Here each kth two-port network in the array is 

assumed to consist of nk direct-coupled microring resonators. The microrings 1 and nk of 

Figure 4.2.  Schematic of a generalized parallel-cascaded array of N two-port microring networks. 
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the two port network are also coupled to the upper and lower bus waveguides, 

respectively.  To better visualize this, an example of a three stage ladder array is shown in 

Figure 4.3.  The first 2 stages are composed of n1 = n2 = 4 microrings, in which 

microrings 1 and 4 are coupled to the upper and lower bus waveguides, respectively. The 

3rd stage is a two port network of n3 = 6 microrings where microrings 1 and 6 are 

connected to the upper and lower bus waveguides.  There are no restrictions on the 

coupling topology of microrings within each two port network except that the output 

signals at the drop port and through port of each network must propagate in the forward 

direction along the bus waveguides to the next stage.  This condition restricts the analysis 

to arrays of feed-forward microring networks as shown in Figure 4.3, and excludes arrays 

of feed-back networks, such as arrays of single microring resonators [53] or the network 

shown in Figure 4.4, in which the drop port and through port signals propagate in 

opposite directions in the two bus waveguides.  Such feed-back network arrays exhibit 

additional resonances, or poles, associated with the connecting bus waveguides and 

Figure 4.4. A three stage  parallel-cascaded array of feed back network. 
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Figure 4.3. A three stage parallel-cascaded array of feed forward network. 
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generally requires a numerical optimization approach [53] to design them. Additionally, 

each microring resonator in the feed forward network is assumed to support only either a 

clockwise or counter-clockwise propagating mode, so that coupling topologies resulting 

in counter-propagating waves in the microrings (See Figure 3.3) are also excluded.  To 

simplify the following analysis, the microring resonators are assumed to be lossless and 

synchronously tuned. 

  

4.1.1 Transfer matrix analysis of the generalized microring ladder array 

In chapter 3 it was shown that any arbitrary 2D coupled microring resonator network may 

be modeled by a lossless reciprocal network of coupled LC oscillators.  Referring to 

Figure 4.2, the transfer matrix Mk of the kth two-port network has the form: 
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where s = j( – 0), 0 is the center frequency of the filter, k = ±1, Fk(s), Hk(s) and Gk(s) 

are polynomials of the transfer functions of the microring network.  In particular Fk(s) 

and Gk(s) have degree nk and Hk(s) has degree mk ≤ nk – 2.  Since the microrings are 

synchronously tuned, the coefficients of Fk, Hk and Gk are real, with the leading 

coefficient of Gk assumed to be normalized to 1.  For a lossless network the matrix Mk is 

para-unitary, so that the following power conservation relation is satisfied [70]. 

)()()()()()( sGsGsHsHsFsF kkkkkk  .   (4.2) 

Also the reciprocity condition of the two port microring network requires that 

Mk(2, 1) = Mk(1, 2), 

or 

kkk sHsH )()(  .      (4.3) 
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In the above condition, k is either 1 or +1 corresponding to whether Hk polynomial is 

even or odd-ordered.  The two parallel bus waveguides in each kth stage along with the 

differential phase shift factor ψk can be represented by the transfer matrix k  









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10

0kkLj
k e

Λ       (4.4) 

where  is the propagation constant of the waveguides, Lk is the length of the two parallel 

bus waveguides in each kth stage.  The total transfer matrix Sk of each stage k which 

comprises of the two-port network and the parallel waveguides is given as 

Sk = Mkk.        (4.5) 

The total transfer matrix TN of the generalized array of N cascaded microring networks is 

obtained by multiplying the individual transfer matrices of all N stages 
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Performing the above matrix multiplication starting with S1 = M1, it can be shown that 

TN can be expressed in the general form 
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where 1N , 



N

k
kN

2

 , and PN(s), RN(s)and QN(s) are polynomials satisfying the 

recursive relations 
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for k = 2, 3, … N.  From equation 4.7 the transfer functions at the through port and drop 

port of the cascaded microring network array can be obtained as 
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For filters with symmetric responses, the transfer functions St(s) and Sd(s) have real 

coefficients.  This condition restricts the phase shift factor k in equations 4.8 and 4.9 to 

be either 1 or 1 so that Pk(s) and Rk(s) have real coefficients.  This implies that the 

differential phase shifts k in all the stages of the microring array must be either 0 or  for 

the filter to have symmetric spectral responses.  By applying ψk = ±1 in equations 4.8, 4.9 

and 4.10, it can then be shown that the polynomials RN(s) and QN(s) have degree 
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k
kN nN

1
        (4.13) 

while polynomial PN(s) has a degree of 

)min( kkNN mnNM  ,      (4.14) 

where k = 1 to N and mk ≤ nk – 2 is the degree of Hk(s).  Since the maximum value of mk 

is nk – 2, the maximum degree of PN(s) is NN – 2.  Thus a generalized cascaded microring 

network array of N stages can realize a filter transfer function St(s) with NN poles and a 

maximum of NN – 2 transmission zeros.  It is also noted from equation 4.10 that the poles 

of the array, which are the roots of QN, are comprised of the poles of the individual 

microring networks, which are the roots of the Gk polynomials. 

For a symmetric filter response, Mk(1, 1) = Mk(2, 2), or Fk(s) = Fk(s)k in 

equation 4.1. Although both even and odd-ordered symmetric microring networks can 

satisfy the condition Fk(s) = Fk(s)k, odd-symmetric microring networks are either of 

the feed-back type or require coupling topologies that give rise to counter-propagating 



 65

waves in the microrings, as illustrated in Figure 4.5.  Thus in a parallel cascaded network 

array with symmetric spectral response, all the microring networks must be even ordered, 

i.e., contain an even number of resonators. 

4.2 Synthesis of the generalized microring ladder array 

We consider the problem of synthesizing a generalized cascaded microring network array 

to realize target filter transfer functions St(s) and Sd(s) as specified by the polynomials 

PN(s), RN(s) and QN(s).  Given the number of stages N in the array and the order nk of the 

microring network in each stage, the synthesis procedure developed will provide a 

systematic way of extracting the microring coupling coefficients of each network k, and 

the interstage phase shifts ψk = ±1.  The general approach of the synthesis procedure is 

summarized below. 

 

1) First the transfer matrix TN of the array is factored into the product TN = SNTN1 

using equation 4.10. 

2) From the matrix SN = MN N, the polynomials HN(s) and FN(s) along with the 

phase shift ψN of stage N can be extracted. 

3) Once HN, FN and GN of the two port microring network N are known, using the 

general 2D microring filter synthesis procedure described in chapter 3, the 

coupling topology and the coupling parameters of the network can be determined. 

(a) (b) 

Figure 4.5. Examples of odd-symmetric microring networks:  (a) feed-back network; (b) network 
with coupling topology that gives rise to coupling between counter-propagating waves. 
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4) Steps 1 to 3 are repeated with the factorization of the remaining transfer matrix, 

TN1, and the parameter extraction of the next two-port network, MN1.  This 

process is continued stage by stage in this manner until the first stage is reached. 

4.2.1 Factorization of matrix Tk 

At each stage k, the above synthesis procedure involves factorizing the matrix Tk into a 

product Tk = SkTk-1.  Factorization of transfer matrices of lossless two port networks has 

been considered in [71] for the most general case where the polynomials Fk , Hk , Rk1 , 

Pk1 have degrees of nk, maximum of nk, Nk1 and maximum of Nk1 respectively. Given 

the polynomials Pk and Rk at stage k, the factorization procedure results in a homogeneous 

linear system of Nk1 + nk equations with Nk1 + nk + 2 unknowns, which are the 

coefficients of Fk and Rk1.  The system of equation obtained is underdetermined and thus 

allows an infinite number of solutions, from which the desired solution which satisfies 

the power conservation condition in equation 4.2 can be chosen.   

For cascaded microring networks, the polynomials Hk and Pk1 have degrees of at 

most nk – 2 and Nk1 – 2, respectively.  Application of the matrix factorization technique 

in [71] leads to a homogeneous linear system of Nk1 + nk equations with Nk1 + nk 

unknowns.  Since the system is in general non-singular, there is no non-trivial solution to 

the factorization problem.  Thus it is impossible to factor out the transfer matrices of 

individual microring stages from the total matrix TN, and the synthesis procedure cannot 

be carried forward.  However an exception to the above problem is when the microring 

networks are even-symmetric which means the polynomials Hk, Fk, Pk1 and Rk1 are 

even-ordered so there are fewer unknowns and also fewer equations to satisfy.  In the 

following, we show that in the case of even-symmetric networks, the matrix factorization 

of Tk leads to an inhomogeneous and determinate system, for which a non-trivial and 

unique solution always exists.  In this case direct synthesis of the cascaded microring 

array is possible. 

At each stage k the symmetric transfer matrix Tk is known with polynomials Pk(s), 

Rk(s) and Qk(s), where Pk(s) and Rk(s) are even-ordered.  The degrees of Rk(s), Qk(s) are 

Nk and the degree of Pk(s)  ≤ Nk – 2.  We would like to determine the polynomials Fk, Hk 
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and Gk of the transfer matrix Mk, and the polynomials Pk-1, Rk-1 and Qk-1 of matrix Tk-1.  

From equation 4.10, given the polynomial Qk(s), a polynomial Gk(s) of degree nk can be 

constructed from a subset of nk conjugate-paired roots of Qk(s).  The remaining roots of 

Qk(s) are used to construct the polynomial Qk1(s) of degree Nk1 = Nk – nk such that Qk(s) 

= Gk(s)Qk1(s).    

Next the even ordered polynomials Hk(s) and Fk(s) are determined as follows. 

From equations 4.8 and 4.9 we solve for Pk-1 and Rk-1 to get: 
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where the para-unitary property in equation 4.2 of the transfer matrix Mk is used in the 

denominators of the above expressions.  In equation 4.15, since degree of Dk(s) = Nk + nk 

– 2 and degree of Gk(s)Gk(s) = 2nk, Dk(s) is required to be exactly divisible by 

Gk(s)Gk(s) in order to obtain a polynomial Pk1 of degree Nk – nk – 2 = Nk1 – 2.  In other 

words, the remainder of the polynomial division )()(/)( sGsGsD kkk   is required to be 

zero.  Let us express the even-ordered polynomials Hk(s) and Fk(s) as 
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where mk = nk – 2  and the coefficients a2i and b2i are to be determined.  First note that 

since 

degree of Fk(s) = degree of Gk(s) > degree of Hk(s), 
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and the leading coefficient of Gk is 1, the condition in equation 4.2 requires that the 

leading coefficient 
kna of Fk(s) is ±1.  Substituting equations 4.17 and 4.18 into equation 

4.15 gives us 
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Let A2i(s) and U2i(s) be the quotient and remainder, respectively, of the polynomial 

division )()(/)(2 sGsGsPs kkk
i  , and B2i(s) and V2i(s) be the quotient and remainder, 

respectively, of )()(/)(2 sGsGsRs kkk
i  .  These two polynomial divisions can be written 

as 
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where 

 degree of U2i(s)  ≤ degree of Gk(s)Gk(s) – 2 = 2nk – 2, 

and  degree of V2i(s)  ≤ degree of Gk(s)Gk(s) – 2 = 2nk – 2. 

Substituting equations 4.21 and 4.20 into equation 4.19 gives 
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where 
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The polynomial W(s) is the remainder polynomial of )()(/)( sGsGsD kkk   in equation 

4.15.  For Dk(s) to be divisible by Gk(s)Gk(s), W(s) must be zero, that is, all the 

coefficients of W(s) have to be 0.  Denoting u2i,j and v2i,j as the jth-power coefficients of 

U2i(s) and V2i(s), respectively, and letting 1
kna , the coefficients of W(s) are equated to 

0 to get 
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, j = 0, 2, 4, …, 2nk  2.  (4.24) 

The above equations form an inhomogeneous linear system of nk equations in nk 

unknowns.  Here the unknown variables are the coefficients 
kmaaa   ,  ,  , 20  and 

kmbbb   ,  ,  , 20  of the polynomials Fk(s) and Hk(s), respectively.  The linear system in 

equation 4.24 is in general non-singular, so a non-trivial solution always exists to give a 

unique matrix factor Sk.   

The polynomials Hk(s), Fk(s) and Gk(s) give the transfer functions of the 

microring network in stage k. Using the coupled-microring filter synthesis procedure 

from chapter 3 the energy coupling coefficients and the coupling topology of the 

microring network in stage k can be then determined. 

If Dk(s) is divisible by Gk(s)Gk(s), then it can be shown that Ek(s) in equation 

4.16 is also divisible by Gk(s)Gk(s) using similar arguments to those presented in [71].  

The polynomials Pk1 and Rk1 can then be determined from equations 4.15 and 4.16 

while Qk1 is obtained from equation 4.10.  The phase shift factor ψk in equation 4.16 is 

chosen to be either 1 or 1 such that, along with a proper choice of Gk1, the matrix 

decomposition of the next stage, Tk1 = Sk1Tk2, results in a microring network Mk1 

which can be realized with all-positive coupling elements.  The above matrix 

factorization procedure is repeated until the transfer matrices of all stages are obtained 

and the microring networks synthesized. 
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4.2.2 Reduction of the differential phase shift elements 

In Section 4.1.1 it was shown that in order for a cascaded array of microring networks to 

have transfer functions with real coefficients, the differential phase shift factors ψk must 

be either 1 or –1, so that the phase shift transfer matrices are simply k = diag[±1, 1].  For 

symmetric microring networks, the transfer matrices Mk are symmetric with identical 

diagonal elements.  In this case Mk can be shown to have the commutative property 

kkkkkkkk ΛMΛMΛMΛM )( 11   .   (4.25) 

Specifically, if ψk = 1, then k is simply the 2×2 identity matrix I, and the above relation 

gives MkMk1 = Mk1Mk.  Thus, if two symmetric microring networks are connected by 

bus waveguides with no differential phase shift, then the order of the two networks can be 

interchanged without affecting the responses of the array.  On the other hand, if two 

symmetric microring networks are connected by waveguides with a differential -phase 

shift, then k = diag[1, 1].  In this case the order of the two stages can be interchanged if 

a -phase shift is also added before and after the two stages.  Thus, except for a possible 

difference in the phase shifts between adjacent stages, the orders of the microring 

networks in a cascaded array can be interchanged without affecting the transfer functions 

of the array.  Consequently, the order in which the matrix TN is decomposed into the 

factors S1, S2, … SN does not affect the device architecture, except for a possible 

permutation of the stage order and a difference in the phase shifts between adjacent 

stages.  As a final step in the synthesis procedure, the commutative property of the Mk 

matrices in equation 4.25 is used to reduce the number of -phase shift elements in the 

array to simplify the device architecture as shown in [72]. 

4.3 Numerical filter design example 

Here we consider the design of an 8th-order generalized Chebyshev filter with 6 

transmission zeros using the cascaded microring network architecture.  The filter 

specifications include 

 less than 0.1dB in-band ripple 

 50dB out-of-band rejection 



 71

 a 7.5% transition width (measured as a percentage of the bandwidth).   

The filter approximation procedure in [64] is used to generate the corresponding transfer 

functions with all the above specifications for a prototype filter with a cut-off frequency 

c of 1rad/s.  The filter polynomials are given as [72] 

,207403.0367288.0208456.0037085.0)( 246  ssssPN   (4.26) 

,028058.0511754.0850965.1366164.2)( 2468  sssssRN   (4.27) 

.209292.0835997.0102237.2489324.3                   

782464.4402764.4881669.3740980.1)(

23

45678





sss

ssssssQN  (4.28) 

The above transfer functions have eight poles at pk = {0.0279 ± j1.0205, 0.1091 ± 

j0.9610, 0.2681 ± j0.7739, 0.4654 ± j0.3217}, six drop port zeros on the imaginary 

axis at zk = {± j1.19, ± j1.19, ± j1.67}, including a double zero pair at zk = ± j1.19.  There 

are also eight through port zeros located on the imaginary axis at rk = {± j0.9932, ± 

j0.9120, ± j0.6900, ± j0.2680}.  Figure 4.6 shows the pole-zero diagram of the filter. 

 

Figure 4.6. Pole-zero diagram of the 8th-order Chebyshev filter with six transmission (drop 
port) zeros (black dots) located on the imaginary axis.  The gray dots are the zeros of the 
through port transfer function. 
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Let {n1, n2, n3, …, nN} denote, in sequential order, the number of poles in each of 

the N microring networks in a cascaded array.  Since the order of the desired filter is NN = 

8, the possible array configurations that can realize the prescribed transfer functions are 

{6, 2}, {4, 4}, {4, 2, 2} and {2, 2, 2, 2}, plus any permutation of each array 

configuration.  The synthesis procedure developed in the previous section is applied to 

obtain the design parameters for each of the above configurations.  For each stage k, the 

polynomial Gk was constructed from a set of nk conjugate-paired poles of Qk, which was 

then used to factor the transfer matrix Tk into Sk and Tk1.  From the polynomials Hk, Fk 

and Gk obtained, the microring network of stage k was synthesized to determine the 

coupling parameters and the coupling topology.  Note that since more than one choice of 

(a) 

(b) 

Figure. 4.7. Synthesized layouts of the 8th-order generalized Chebyshev filter:  (a) 
configuration {6, 2} consisting of a cascade of a 6th-order microring network with a 
2nd-order network; (b) configuration with 8 direct-coupled microring resonators. 
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Gk is possible, the matrix decomposition and hence the coupling topology of the 

microring network in stage k is not unique.  In Figure 4.7 examples of the physical 

layouts of the coupling topologies are shown for the microring networks in configuration 

{6, 2} and configuration {8}.    

Array 
configurati
ons 

Stage 
number 

Poles of  
Gk(s) 

Bus-to-ring energy 
coupling 
coefficients, b 

Ring-to-ring coupling  
energy coefficients, i,j 

phase 
shift, 
ψk 

{8} Stage 1 all poles 

of QN(s) 

1.3195 12 = 78 = 0.7711 
23 = 67 = 0.5577 
34 = 56 = 0.3971 
18 = 0.0213, 27 = 0.1321 
36 = 0.4700, 45 = 0.8709 

Stage 1 ,, 11
pp  

,, 22
pp  

44, pp  

1.2340 12 = 56 = 0.6634, 
23 = 45 = 0.1466, 
34 = 0.9748, 25 = 0.3846 
16 = 0.1133 

{6, 2} 

Stage 2 

33, pp  0.4671 12 = 0.9610 1

Stage 1 ,, 11
pp 

33, pp 

1.0719 12 = 34 = 0.3371, 
14 = 0.4431, 23 = 0.8396 

{4, 4} 

Stage 2 ,, 22
pp  

44, pp  

0.7695 12 = 34 = 0.1126, 
14 = 0.7971, 23 = 0.9972

1

Stage 1 ,, 11
pp  

22, pp  

1.2112 12 = 34 = 0.6349, 
14 = 0.0788, 23 = 0.3734 

Stage 2 

44, pp  0.2363 12 = 1.0205 1

{4, 2, 2} 

Stage 3 

33, pp  0.4671 12 = 0.9610 1

Stage 1 

11, pp  0.9648 12 = 0.3217 

Stage 2 

33, pp  0.4671 12 = 0.9610 1

Stage 3 

22, pp  0.7323 12 = 0.7739 1

{2, 2, 2, 
2} 

Stage 4 

44, pp  0.2363 12 = 1.0205 1

Table 4.1. Possible configurations of cascaded microring array architectures and their design 

parameters for an 8th-order generalized Chebyshev filter. 
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Table 4.1 lists the possible array configurations along with the design parameters 

of the microring networks and the inter-stage differential phase shift factors ψk.  Also 

shown in the table for comparison is configuration {8}, which corresponds to the design 

of a single-stage filter with 8 direct-coupled microring resonators.  For each array 

configuration, the poles pk used to construct the polynomial Gk are given.  The design of 

each microring network is specified in terms of the bus-to-ring energy coupling 

coefficient b and the ring-to-ring coupling coefficients i,j, which denote the energy 

coupling between microrings i and j in the network. 

In Figure 4.8 and 4.9 the amplitude and group delay responses are plotted, 

respectively, of the microring device configuration {4, 4} (solid black lines).  The 

responses of the synthesized device are seen to be identical to the target transfer functions 

(gray dashed lines).  All the other device configurations in Table 4.1 also yielded 

identical spectral responses.  It can be noted from Table 4.1, however, that configuration 

{8} requires two negative ring-to-ring coupling elements, whereas all the microring 

networks in the cascaded array architectures have only positive coupling coefficients, 

which are much simpler to implement.  Also, as more stages are used in an 

Figure 4.8. Spectral responses at the drop port and through port of the 8th-order Chebyshev filter.  Gray 
dashed lines are the target filter responses; solid black lines are the synthesized responses.  The inset 
shows a close-up view of the passband. 
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array, the microring networks become simpler, suggesting a trade off between the 

complexity of the networks and the number of stages in the array.  Note that the array 

configurations {4, 2, 2} and {2, 2, 2, 2} in Table 4.1 have been reduced to the optimum 

forms, which contain only one -phase shift element as indicated by the value ψk = 1. 

4.4 Summary 

In this chapter parallel cascaded microring networks were proposed as a generalized 

architecture for realizing very high order filters.  A synthesis procedure was developed 

for designing even-symmetric microring networks with symmetric spectral responses.  

The advantage of the parallel cascaded microring architecture is that it can realize 

transmission zeros without the need for negative coupling elements.  It was also shown 

that the inter-stage differential phase shift elements can be reducible to at most one.  

From the implementation point of view, the parallel cascade architecture allows for a 

very high order filter function to be decomposed in to multiple microring network stages, 

where each stage can be separately designed and optimized. 
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Figure 4.9. Group delay response of the 8th-order Chebyshev filter.  Gray dashed lines are the target filter 
responses; solid black lines are the synthesized responses.  
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Chapter 5 

Fabrication and Experimental Demonstration 

of Silicon Microring Filters 

 

 

In this chapter we experimentally realize and demonstrate microring add-drop filters in 

the silicon-on-insulator (SOI) material system.  First we discuss the development and 

optimization of the microring fabrication process flow for SOI at the University of 

Alberta Nanofabrication facility.  As part of this fabrication process development, several 

compact SOI microrings were made and characterized.  In particular, attempts were made 

to scale down the microring device footprints by reducing the radii of the microrings 

down to the order of the optical wavelength at 1.55 m.  Utilizing the process flow 

developed, a fourth order microring filter based on the parallel cascaded architecture 

developed in Chapter 4 is demonstrated.  To facilitate this demonstration, thermal control 

of individual microrings was required, which necessitated the development of additional 

process flow to fabricate micro sized Titanium/Tungsten (TiW) heaters on top of the 

microrings.   

5.1 Development of silicon-on-insulator fabrication process 

The fabrication process begins with the choice of the SOI wafer.  SOI wafers are 

commercially available to be readily purchased and used.  However, many varieties of 

SOI wafers are available, and knowledge of the SOI wafer technology 
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and corresponding application requirements must be considered before making a 

selection.  Originally introduced by IBM for low power operation in the CMOS IC 

process, SOI wafers have become an important material system for integrated photonics 

due to its potential for integration with CMOS electronics.  

 In general, a SOI wafer contains three layers as depicted in Figure 5.1. The top 

layer is a thin crystalline silicon layer with thickness in the range of hundreds of 

nanometers to one micrometer and the bottom layer is the substrate made of bulk 

crystalline silicon.  Sandwiched between these two layers is the buffer oxide (BOX) layer 

made of SiO2 with thickness in the order of a few micrometers.  The thin silicon slab 

bounded by air on the top surface and oxide at the bottom forms a high index contrast 

hetero-structure in the vertical direction that can confine light due to total internal 

reflection.   

 The silicon slab thickness for optical wave guidance usually varies between 200 

to 400 nm where the upper limit is to ensure single mode operation and the lower limit is 

to ensure strong mode confinement.  The BOX layer thickness typically ranges between 3 

to 1 μm to prevent mode leakage to the bulk silicon substrate.  Of the various process 

technologies to make SOI wafers, oxygen ion beam implantation [73] and wafer bonding 

process [74] are the prominent methods.  However, the oxide thicknesses achievable by 

these methods are usually less than a micrometer.  Later, the French firm SOITEC 

created a proprietary process called “smartcut” [75] which combines both ion 

implantation and wafer bonding processes.  The smartcut process was able to provide 

oxide layer thicknesses in the order of micrometers and a thin crystalline silicon layer 

(200-400 nm) on top which is well suited for photonic applications.  After various 

Handle Layer 

Insulator layer 
Crystalline
silicon 

SiO2 

Figure 5.1. Side view of a silicon-on-insulator wafer.
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considerations SOITEC SOI wafers with the following specifications were selected for 

use in our microring device fabrication: 

 Top silicon Thickness: 340 nm ± 40 nm  

 Buffer Oxide Thickness: 1000 nm 

 Handle wafer: 450 μm 

 Active and Handle wafer: 100 mm diameter P-type <100>. 

5.1.1 Fabrication process steps 

The goal of this fabrication process is to realize microring structures with waveguides 

whose cross-sectional dimensions are in the sub-micrometer range.  Another crucial 

feature to be realized is the coupling gap which is typically less than 200 nm.  Such sub-

micrometer features require high resolution patterning and hence electron beam 

lithography (EBL) was chosen to realize these features.  The fabrication process steps are 

shown in Figure 5.2 and are explained below: 

 

1) Dicing: The first step is to dice a 4'' SOI wafer into 1x1 cm2 chips for processing 

using a wafer dicer. To clean the debris due to dicing on the chip surface, the 

individual chips are immersed in an ultrasonic bath. 

 

2) Piranha clean: To further clean the surface of the chips from organic residues, the 

chip is immersed into a 1:3 mixture of hydrogen peroxide (H2O2) and sulphuric acid 

(H2SO4) bath, which is also known as Piranha solution, for about 15 minutes.  Piranha 

cleaning was followed by washing with de-ionized (DI) water and nitrogen blow 

drying to eliminate surface moisture. The diced and cleaned chip is illustrated in 

Figure 5.2 (a). 

 

3) Resist coating:  The next step is to coat a layer of the electron beam lithography resist 

poly-methyl-methacrylate (PMMA) 950K A2 onto the chip using a resist spinner.  To 

remove any surface moisture, the chips are prebaked at 100 oC on a hot plate.  Given 

the small size of the chip, the spread cycle of a conventional spin coating process was 
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eliminated.  Also it was found that the long durations for ramp time lead to drying of 

the resist before the spin cycle, which lead to non-uniform resist thickness.  Therefore 

ramp durations were reduced to 2 seconds.  The spin coating was then performed at 

4000 rpm for 40 seconds. The resist layer was measured to be approximately 90 nm 

thick as illustrated in Figure 5.2 (b).  Post baking at 180 oC for approximately 10 

minutes was done to remove any residual solvent from the resist. 

Figure 5.2. Silicon-on-insulator fabrication process for realizing 
optical waveguides and microrings. 

A Diced and Piranha cleaned SOI chip Spin coated PMMA layer on top 

E-beam exposed chip with patterns After E-beam development 

ICP-RIE plasma Si etching          Acetone bath clean 

(a) (b) 

(c) (d) 

(e) (f) 

90nm 
PMMA  
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4) Electron beam lithography (EBL): The electron beam lithography system used in our 

fabrication process is the 30 kV Raith 150 system.  As mentioned before electron 

beam lithography can produce patterns at high resolution, allowing sub 500 nm 

features to be accurately defined.  Also, given the 5 nm beam diameter of the electron 

beam, it is possible to achieve very smooth sidewalls for the waveguides.  In general 

the achievable resolution largely depends on the resist as well as the interaction of 

electrons with the resist.  The EBL resist chosen is one of the highest resolution 

resists available in the market, so the pattern quality achievable mainly depends on 

the electron dynamics with the resist, which is controlled by the parameters chosen on 

the EBL system.  When an electron beam is shot at the resist, it generates back-

scattered electrons in the neighbouring areas which effectively expands the exposed 

area.  This is called proximity effect.  It can be overcome in two ways: 1) by creating 

patterns with a predetermined bias to compensate for the expansion of the exposed 

area, 2) to reduce the dosage of electrons accordingly.  Low energy exposure is also 

known to help reduce proximity effects [76, 77].  Initial experimentations were 

conducted with a very low energy exposure at 2 kV acceleration voltage and 35 

μC/cm2 electron dosage. However, this reduced the pattern generation speed greatly 

which increased the risk of long write times and the associated errors occurring in the 

pattern due to variations in the machine environment like temperature etc.  After 

experimenting with the EBL parameters, the optimum parameters were determined to 

be: 100 μC/cm2 electron dosage, 20 μm aperture and 10 kV acceleration voltage. 

 Although EBL is good for high resolution patterns, the serial writing process 

makes it unattractive for large non-critical features such as long input/output 

waveguides that were up to 2 mm.  In the conventional writing process the EBL 

system divides the entire pattern into small blocks called write fields and performs a 

raster-scan type beam movement within each block to write the patterns.  There is 

another mode of writing called "fixed beam moving stage" (FBMS) [78] where the 

electron beam circles at a fixed location while the stage holding the chip moves to 

define the required pattern.  The FBMS mode was found to be a good approach for 

non-critical, long waveguide sections which serve as input/output waveguides.  

FBMS also eliminated the stitching errors in the patterns which usually occur at the 
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write field boundaries in the conventional writing process.  The final optimized EBL 

process involved a combination of the conventional electron beam write mode and the 

FBMS write process.  The EBL pattern generation on the chip is illustrated in Figure 

5.2 (c). 

 

5) Resist development: PMMA is a positive EBL resist, i.e. the exposed portion of the 

resist becomes soluble to the resist developer.  After an EBL exposure, the resist was 

developed in methyl isobutyl ketone (MIBK):iso-propyl alcohol (IPA) developer in 

the ratio of 1:3 for 30 seconds, followed by a rinse in IPA for 15 seconds and a rinse 

in de-ionized water for 15 seconds.  This was followed by a nitrogen blow drying to 

eliminate any moisture.  The chip at this stage looks as depicted in Figure 5.2 (d). 

 

6) Inductively Coupled Plasma Reactive Ion etching (ICP-RIE): In this step the goal 

was to transfer the developed high-resolution pattern generated by EBL accurately 

and smoothly on to the silicon layer as depicted in Figure 5.2 (e).  This is 

accomplished by dry etching the exposed areas of the silicon layer, with the 

undeveloped PMMA serving as the mask layer.  It is desirable that the etched side 

walls of the waveguides be as vertical and smooth as possible.  To achieve these etch 

characteristics, the Stanford Technical System’s inductively-coupled plasma reactive 

ion etching (ICP-RIE) machine was chosen to perform the required anisotropic etch.  

ICP-RIE is a dry etching process where removal of material occurs due to both 

chemical and physical (sputtering) processes.  The chemical etching could be 

controlled by adjusting the flow rates of the gases used in the chamber.  The physical 

etching due to vertical ion bombardment can be controlled by adjusting the energy of 

the ions.  By precisely controlling these physical and chemical etch rates, the desired 

etch characteristics can be achieved.  The chemistry used in the chamber was based 

on SF6/C4F8 gases which is similar to the Bosch process [79, 80] for deep silicon 

etching.  However, instead of the switching between etch and passivate cycles in the 

Bosch process, only the etch cycle was performed.  Gas flows of 40 sccm of SF6 and 

55 sccm of C4F8 were introduced in the chamber simultaneously whose pressure was 

held at 5 mTorr.  Plasma was generated by supplying an ICP power of 600 watts and 
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RF forward power of 20 watts.  The fluorine free radicals generated in the plasma 

performs the silicon etching while the C4F8 coats a protective fluropolymer in the side 

walls, which helps produce the vertical sidewall.  The energy of the ions transferred 

to the chip tends to raise the temperature of the silicon surface and to prevent this, the 

back of the substrate is cooled by liquid helium whose flow needs to be held constant.  

The 340 nm etch depth through the top silicon layer of the SOI chip required an 

etching duration of 27 seconds.  An SEM picture of the etched side wall of an optical 

Figure 5.3. a) SEM image of a fabricated SOI bus waveguide (400x340 nm2 ) with minimal 
surface roughness; b) SEM image of the cleaved edge showing a waveguide facet. 

(a) 

(b) 

200 nm 
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waveguide is shown in Figure 5.3(a), where the overall surface roughness achieved 

through the etching process can be seen to be fairly small.   

 

7) Post-etch processing: The remaining PMMA resist was then removed in an acetone 

bath under ultrasonic vibrations. The final fabricated and cleaned chip looks as 

illustrated in Figure 5.2(f).  The final step is to cleave the device to expose the 

waveguide facets for butt-coupling from the fibre to the strip waveguide for 

measurements.  An SEM picture of a cleaved waveguide facet can be seen in Figure 

5.3(b). 

 

5.2 Fabrication of single microring add-drop filters 

Using the fabrication process developed above, a single microring resonator with a 5.0 

μm radius in the add-drop configuration was fabricated.  The waveguide width and the 

coupling gap were designed to be 450 nm and 200 nm respectively.  Figure 5.4 shows the 

simulated transverse electric (TE) and transverse magnetic (TM) modes of the 450 nm x 

340 nm SOI waveguide at the 1.55 μm wavelength.  The eigenmodes were obtained using 

a finite difference mode solver.  For both polarizations, the waveguide was single moded 

and the modes were strongly confined within the waveguide. 

 

  

Figure 5.4. Mode profile of a 450x340 nm2 waveguide in (a) TM polarization and 
(b) TE polarization. 

(a) (b) 
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With the waveguide height fixed at 340 nm, we found that the waveguide width 

of 450 nm is very close to the limit of the single mode regime, beyond which the 

waveguide becomes multimode.  To prevent multimode operation in the event the 

waveguide width expanded due to possible fabrication errors, it was decided to lower the 

waveguide width in the range of 300-350 nm for future devices.  From the mode profiles 

it was confirmed that the field leakage to the substrate through the 1μm thick buffer oxide 

layer is negligible. 

Figure 5.5 shows a top view SEM image of the fabricated SOI microring.  For 

both the ring and bus waveguides, the widths of the waveguides were measured to be 440 

 5 nm.  The coupling gaps between the microring and the bus waveguides were 

measured to be 200  5 nm. The spectral characteristics of the microring device were 

Figure 5.6. Measurement setup for coupling the laser to an SOI microring. 
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Figure 5.5. SEM image of a silicon add-drop microring with 5.0 m radius. 
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measured using the experimental setup shown in Figure 5.6. A Santec TSL-210V 

continuous-wave tunable laser with wavelength range between 1510 nm and 1630 nm 

was used as the light source.  Although the straight waveguide supported both TE and 

TM polarizations, the microring had no observable resonances for the TE polarization, so 

the polarization state from the light source was adjusted to TM mode using a Thorlabs 

loop-fibre polarization controller.  The light was butt coupled into the input waveguide 

via a tapered lensed fibre from Oz-Optics which had an anti-reflection coating at the 

tapered end to minimize coupling loss.  The tapered fibre was mounted on a 3-axis piezo-

controlled translation stage with nanometer precision movement, which was used to align 

the fibre to the cleaved edge of the silicon waveguide.  The output light from the device 

was collected by another tapered fibre, which was then fed into a Newport InGaAs photo 

detector.  The spectral response of the device was obtained by sweeping the laser 

wavelength at a chosen step while the transmitted power at each wavelength was 

recorded sequentially.  Figure 5.7 shows the measured through and drop port spectral 

responses of the 5 μm radius microring.  The bandwidth, FSR, and Q-factor of the device 

were determined to be 0.2 nm, 16.5 nm and 7800, respectively.  The device had an 

insertion loss of ~ 1 dB and an out-of-band extinction ratio > 20 dB. 

 

 

Figure 5.7. The measured drop and through port characteristics of the microring. 
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5.2.1 Miniaturization of silicon microring resonators 

The successful design and characterization of the single SOI microring add-drop filter 

with a 5 μm radius initiated further exploration into the feasibility of realizing extremely 

compact microring resonators.  The motivation for reducing the microring radius comes 

from the fact that the footprint of a microring resonator scales with the square of its 

radius and hence decreasing the radius would enable denser device integration.  There is 

an added benefit that the free spectral range of the device also increases, which allows the 

filter to accommodate more WDM channels within one FSR.  However, the downside of 

reducing the radius is that the bending loss becomes more pronounced leading to 

degraded filter performance.  Because of the high bending loss, attempts to miniaturize 

microring resonators [81 - 84] until now have been restricted to bending radii of around 

1.5 μm.   

To explore the potential for further miniaturization of silicon microring 

resonators, numerical simulations were performed to assess the theoretical limits imposed 

by the bending loss.  The usual approach for determining the bending loss of a curved 

waveguide is to compute the complex propagation constant of the eigenmode of interest.  

We numerically solved the full-wave vectorial Helmholtz equation in the local cylindrical 

coordinate system [85] to determine the complex propagation constant of the microring 

waveguide.  Two SOI waveguide dimensions were considered: waveguide cross-

Figure 5.8. (a)  Dependence of the roundtrip bending loss and (b) theoretical intrinsic 
Q-factor on the ring radius at 1.55 m wavelength. 
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section of 300x340 nm2 [84] which was used in our work and waveguide cross-section 

250x450 nm2 [83] used by many other research groups.  Figure 5.8 (a) shows the plot of 

the roundtrip bending loss in a microring as a function of bending radii for both TE and 

TM modes.  The bending loss is seen to exhibit an exponential dependence on the 

microring radius.  It is also seen that there is a strong dependence of the bending loss on 

the waveguide aspect ratios as well as the polarization.  The 300x340 nm2 waveguide has 

a lower bending loss for the TM polarization while the 250x450 nm2 waveguide has a 

lower bending loss for the TE polarization.  Figure 5.8 (b) shows the plot of the 

theoretical intrinsic Q-factor versus the bending radius.  The intrinsic Q-factor was 

computed assuming that bending loss was the only source of intrinsic loss in the 

microring.  At a bending radius of 1 μm, Figure 5.8 (b) shows that a microring made of 

300x340 nm2 waveguide can have a theoretical intrinsic Q-factor of 5600 in the TM 

mode while a microring with the 250x450 nm2 waveguide can have a Q-factor up to 

23000.  These numerical simulations show that with the appropriate choice of the 

polarization and waveguide aspect ratio, one can achieve theoretical intrinsic Q factors 

limited by bending loss in the order of several thousands even for a 1m-radius 

microring. 

To experimentally validate the simulation results, a set of ultra compact SOI add-

drop microring resonators with radii of 1.5, 1.4, 1.3, 1.1, and 1.0 m were fabricated.  

The waveguide width was 300 nm and the coupling gaps between the bus and ring 

waveguides were fixed at 200 nm. In all the fabricated devices, the ring waveguide 

widths were measured to be 310  5 nm and the coupling gaps between the microring and 

(a) (b) 

Figure 5.9 SEM image of a silicon add-drop microring resonator (a) with 1.5 m 
radius (b) with 1.0 m radius. 

1.5 m 
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the bus waveguides were 200  5 nm. The SEM images of the 1.5 and 1.0 m devices are 

shown in Figure 5.9.  With TM polarized input light, the spectral responses measured at 

the through port and drop port of the microrings with radii 1.5 - 1.0 m are plotted in 

Figure 5.10.    

(a) 

Figure 5.10.  Measured spectral responses at the drop port (red) and through port (blue) of 
microring resonators with radius of (a) 1.5 m, (b) 1.4 μm, (c) 1.3 μm, (d) 1.1 μm, (e) 1.0 
μm.  The number m indicates the cavity mode number.  The inset in (c) shows a theoretical 
curve fit of the resonance spectrum at 1580 nm of the 1.3 m microring. 
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Radius 
(m) 

FSR 
(nm) 

Bandwidth
(nm) 

Insertion
Loss 
(dB) 

Coupling 
coefficient 
 

Roundtrip 
loss (dB) 

Intrinsic 
Q factor 

1.5 52 1.2 0.95 0.076 0.11 23,280 
1.4 55 1.0 1.9 0.034 0.045 40,280 
1.3 59.6 1.0 2.1 0.070 0.079 26,430 
1.1 71.7 3.0 15 0.047 0.52 1,920 
1.0 80.5 3.3 0.85 0.073 0.35 5460 

 
Table 5.1.  Measured and extracted device parameters for SOI microring resonators with radii 

between 1.0m–1.5 m. 

From the spectral measurements, the 3 dB bandwidth, FSR and peak insertion loss of 

each device were obtained and the results are tabulated in Table 5.1 [86].  The results 

show that for the smallest microring with 1.0 m radius, an extremely wide FSR of 80.5 

nm was obtained with an insertion loss of only ~1 dB.  The excessive insertion loss 

observed in the 1.1m-radius microring was most likely due to fabrication anomaly 

which affected the coupling junctions.  By performing curve fitting on the measured 

spectral responses, the ring-bus coupling coefficient and the roundtrip loss of each 

microring were extracted.  A typical curve fit is shown in the inset of Figure 5.10(c) for 

the 1.3 m-radius microring at the 1580 nm resonant wavelength.  The extracted field 

coupling coefficient  and the total roundtrip loss for each device are also listed in Table 

5.1.  Note that the roundtrip loss values in Table 5.1 represent the total roundtrip loss, 

which includes the bending loss, coupling junction loss, and surface roughness scattering 

loss. 

To assess the loss contribution due to coupling junction scattering, 3D finite 

difference time domain (FDTD) simulations of the coupling junctions between a 

straight waveguide and bent waveguides of radii from 1.0 to 1.5 m were performed.  

The coupling gap was fixed at 200 nm.  The simulated roundtrip coupling loss is 

plotted as a function of the microring radius (black dashed line) in Figure 5.11 (a).  The 

coupling loss varies inversely with the radius, which is expected since a small bend 

radius represents a more abrupt change in the coupling junction. Subtracting the 

coupling loss from the measured total roundtrip loss, we obtained the experimental 

intrinsic loss of the fabricated microrings.  In Figure 5.11 (a) the extracted experimental 

intrinsic loss (red diamonds) is plotted against the theoretical intrinsic loss due to 
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bending (blue line).  The extracted and theoretical values are in good agreement except 

for the 1.1 m-radius microring which was affected by fabrication anomaly.  It is noted 

that as the microring radius approaches 1.0 m, the coupling junction loss has a 

significant contribution to the total roundtrip loss, while the bending loss seems to play 

a less dominant role.   

Using the experimental intrinsic loss values in Figure 5.11(a), the intrinsic Q factors 

of the fabricated devices were computed.  The results are shown in Table 5.1 and are 

also plotted in Figure 5.11(b) (red diamonds).  For comparison, the theoretical Q factors 

due to bending loss alone, which represent the theoretical limit of achievable intrinsic Q 

values, are plotted in Figure 5.11(b) (blue line).  The excellent match between the 

experimental and theoretical values show that the intrinsic Q factors of our fabricated 

microring resonators (in particular, the 1.0, 1.3, and 1.4 m devices) are very close to 

the theoretically achievable limit. 

Finally, the group index ng of the SOI microrings were also computed from the 

measured FSR values of the resonators using the relation gRnFSR  22 , where  = 

1550 nm.  Figure 5.12 shows the group index as a function of the microring radius.  It 

is noted that the group index decreases from ~4.95 for R = 1.4, 1.5 m to 4.75 for R = 

1.0m.  The decrease in the group index with decreasing R can be explained by the fact 

that as R decreases, the mode in the microring waveguide becomes 

Figure 5.11. (a) Theoretical roundtrip bending loss (blue line), coupling junction loss (dashed 
black line) and measured intrinsic roundtrip loss (red diamonds) of microring resonators as 
function of radius. (b) Experimental values (red diamonds) and theoretical limit (blue line) of 
intrinsic Q factors of microring resonators as function of radius. 
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more loosely bound so the strong dispersive effect normally associated with the silicon 

waveguide core becomes less dominant.  The drop in the group index of the 1.5 m 

device (as well as its Q-factor in Figure 5.11(b)) is most likely due to proximity effect 

in the lithography process which may have caused a slight reduction of the coupling 

gap compared to the other devices.   

In summary we showed that ultra-compact microring add-drop filters with 

relatively low insertion loss are achievable for microring radii as small as 1 m.  

Theoretical simulations also indicated that the microring bending loss can be 

significantly improved by choosing an appropriate aspect ratio for the ring waveguide.  

We also showed that for ultra-compact microring add-drop filters, the dominant source 

of loss comes from scattering at the coupling junctions rather than the bending loss. 

5.3 Realization of a parallel cascaded microring ladder filter 

After validating the developed fabrication process with the demonstration of ultra 

compact single microring filters, we next attempted to realize high-order SOI microring 

filters based on the ladder architecture.  In particular we would like to realize a 4th-order 

elliptic optical filter with the following specifications: 

 25 GHz bandwidth,  

 < 0.05 dB ripple in the passband,  

 out-of-band rejection of 40 dB. 

Figure 5.12. Measured group index of ultra-compact microring resonators as 
function of the radius. 
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The transmission and reflection transfer functions of the prototype fourth-order filter are 

given as 
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where the normalized 3 dB bandwidth frequency is ωc = 1 rad/s. The transmission 

response has four poles at pk = {-0.2706 ± j1.1923, -0.7947 ± j0.5575}, and two 

transmission zeros at zk = {± j 2.4135} on the imaginary axis. The reflection transfer 

function Tr has four imaginary transmission zeros at rk = {± j 0.9311, ± j 0.4008}. Figure 

5.13 shows the amplitude spectral responses computed from the filter transfer functions.   

Using the parallel-cascaded microring filter synthesis procedure in Chapter 4, the 

above filter transfer functions were synthesized using a double-microring ladder structure 

with two cascaded stages and a differential π-phase shift.  Note that the transfer functions 

in equations 5.1 and 5.2 can be synthesized either with the 2D coupled architecture or the 

parallel cascaded architecture. However, the parallel-cascaded microring topology 

(a) 

Figure 5.13. Amplitude responses of the transmission (solid) and reflection transfer 
function (dotted) of the 4th-order 25 GHz-bandwidth elliptic filter.  The inset shows a 
close-up view of the passband. 
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was chosen over the 2D microring topology because it is much simpler to implement a 

single  phase shift element connecting two stages than realizing a negative coupling 

coefficient required in the latter architecture.  Figure 5.14 illustrates the layout of the 

designed parallel cascaded double-microring filter. The microring and bus waveguide 

width W is 300 nm.  The radius of the microring is 8µm and the center-to-center distance 

between the 2 microring stages is L = 25 µm.  Table 5.2 shows the field coupling 

coefficients and the corresponding coupling gaps of the filter design.  The designed 

coupling gaps in Table 5.2 were determined using the coupled-mode theory [87].   

The π-phase shift connecting the two microring stages was realized with a taper 

waveguide structure as shown in Figure 5.14.  The taper phase shift element was chosen 

to simplify the mask layout.  Here the π-phase shift between the upper bus taper 

waveguide and the lower bus waveguide is achieved by introducing an effective index 

difference between them.  Based on 2D-FDTD numerical simulations, we chose the 

upper bus waveguide width Wc of the π-phase shift section to be 600 nm.  To connect the 

600 nm waveguide section with the 300 nm waveguides without any abrupt changes, 

tapered waveguides of length Lt = 5 µm were introduced on both sides of the 600 nm 

waveguide.  From simulations, the required length of the wide waveguide section of the 

π-phase shift was found to be Lc=1.65 µm. 

 

Stage 1 Stage 2 
Field 

coupling 
coefficients 

κ0  = 0.27  κ1 = 0.05 κ2 = 0.27  κ3 = 0.14 κ4 = 0.11 κ5 = 0.14 

Designed 
coupling 

gaps 
g0 = 200 g1 = 340 g2  = 200 g3  = 265 g4 = 265 g5 = 265 

Measured 
coupling 

gaps 
265 ±10 432 ±10 267 ± 10 335 ±10 339 ±10 333 ±10 

Table 5.2: Field coupling coefficients and the corresponding designed and measured coupling gaps of a 4th-
order elliptic microring ladder filter with 2 stages. All the coupling gaps are in nm. 
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Figure 5.15 shows an SEM image of the fabricated SOI double-microring ladder 

filter. The measured coupling gaps of the device are also listed in Table 5.2. The 

measured waveguide widths and radii of the rings are 265±10 nm and 8 µm, respectively.  

It is seen that for this device, the fabricated waveguide widths and coupling gap values 

Figure 5.15. SEM image of the fourth-order double-microring ladder filter. 
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are largely mismatched from the designed values.  This is mainly due to exposure dosage 

variation within the particular EBL writing job which caused a narrowing of the 

waveguide widths and a corresponding increase in the coupling gaps. 

The chip was then cleaved and the device was measured. The measured spectral 

responses with input light in TM polarization at port 1 and port 2 (defined in Figure 5.13) 

are shown in Figure 5.16 (a) and (b) respectively.  It can be seen that the port 3 response 

(dotted red) with input at port 1, and port 4 response (dotted red) with input at port 2 are 

different from one another.  The resonance dips in the port 3 response shown in Figure 

5.16 (a) are due to microrings 1 and 3, while microrings 2 and 4 induce 
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Figure 5.16. (a) Measured spectral responses at the port 3 (dotted red line) and port 4 (blue line) of the 
microring doublet with input in port 1 (b) Measured spectral responses at the port 4 (dotted red line) and port 3 
(blue line) of the microring doublet with input in port 2. 
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the resonance dips in the port 4 response shown in Figure 5.16 (b).  On the other hand, 

the port 4 response (blue) with input at port 1 and port 3 response (blue) with input at port 

2 are similar because, in both the cases, the light goes through all four microrings before 

exiting at the drop port.  It is clear from the measured responses that all four microring 

resonators are detuned from each other, resulting in the measured filter response being 

drastically different from the theoretical response in Figure 5.13.  The detuned microrings 

are attributed mainly to fabrication variations in the device dimensions.  In order for the 

device to work as designed, it is clear that a post-fabrication method for adjusting the 

microring resonances is needed to correct for the resonance mismatch. 

5.4 Thermal tuning of silicon microring resonators 

In the previous section we saw that due to imperfections introduced during the fabrication 

process, the physical dimensions of the fabricated microrings deviate from the designed 

values.  This leads to unintended shifts in the microring resonances.  One way to control 

this is by performing post fabrication resonance tuning for each microring, for example, 

by causing a small change in the refractive index of the silicon microring to 

correspondingly shift its resonance.  To achieve a change in the refractive index one can 

use the thermo-optic effect in silicon by applying localized heating at each microring. 

This requires micro scale heaters to be installed precisely on top of each microring. Thin 

metal wires with micrometer scale dimensions can act as heater elements due to the 

resistance of the wires and the corresponding joule heating.  In this section we describe 

our work on developing a process for fabricating micro heaters to achieve thermal tuning 

of silicon microrings. 

5.4.1 Design of micro heaters 

The micro heaters were to be positioned on top of the microrings as illustrated in the 

schematic shown in Figure 5.17.  Figure 5.18 depicts the cross-sectional view of a chip 

with a heater element.  The micro heaters are made of a thin metal film such as Gold (Au) 

or Titanium (Ti) fabricated into a serpentine shape which covers the top of the 

microrings.  These thin metal films have high resistivity given their small dimensions so 
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that when a DC current is passed through them, the power dissipation due to I2R losses in 

the thin film leads to a temperature rise in the cladding region immediately below the 

heater.  This temperature rise then diffuses down through the cladding layer and heats the 

silicon waveguide, causing its refractive index to decrease.  The serpentine shape of the 

micro heater is used to achieve longer length of the heating element over a smaller 

Figure 5.18.  Cross sectional view of the heater elements to be fabricated on top of the microrings. 
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Figure 5.17.  Top view of the heater elements to be fabricated on top of the microrings. 
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surface area.  The long heater length gives a higher resistance and requires less DC 

current to achieve a desired power dissipation.  The top SiO2 cladding layer serves two 

purposes.  It provides optical isolation for the waveguide modes in the top vertical 

direction from the metal layer (heater element).  It also eliminates the topography of the 

silicon layer where the microrings are fabricated and provides a flat surface for the 

heaters to be fabricated.  The design approach used to design the micro heaters is as 

follows:  

 

1) First the worst case resonance shift required in a microring is determined.  From the 

knowledge of the FSR of the microrings, it can be deduced that the worst case shift 

(Δλ) is half of the FSR value. 

   FSR
2

1
 .        (5.3) 

For an operating wavelength of 0  = 1.55 μm, R = 8 μm and ng = 4.7, the FSR is 

calculated to be 10.17 nm which gives the worst case wavelength shift Δλ = 5.085 nm 

for our device. 

 

2) Given the amount of tuning required (Δλ) for the worst case scenario, the rise in 

temperature (ΔT) needed at the microring with SiO2 cladding is given by [88]: 
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where effn  is the effective index and 
dT

dn
is the thermo-optic coefficient of the 

material.  Given the thermo-optic coefficients of silicon and SiO2 as 1.86x10-4 K-1 and 

1.5 x10-5 K-1 respectively, we calculated the tuning sensitivity to be 
T


= 75 pm.K-1, 

which gives a worst case temperature rise of 68 K.  Converting to celsius and adding 

the room temperature of 22 °C gives us a temperature of 90 °C to be maintained at the 

waveguide core.  The effects due to thermal expansion were found to be small and 

negligible. 
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3) Once the temperature required to be maintained at the waveguide core is calculated, 

we used a finite difference method to solve the 1D heat diffusion equation to get an 

approximate estimate of the temperature to be maintained at the top of the cladding 

layer (Ttop).  Assuming 1μm SiO2 cladding thickness ( cladt ), it was estimated that the 

cladding thermal loss accounts for 40 °C, which makes Ttop to be 130 °C.  Using 

Fourier’s law of heat conduction for 1D in a steady state case, the power topP required 

to maintain this temperature at the top of the cladding layer is 

 
clad

surf
top t

TkA
P


 ,       (5.5) 

where k = 1.4 W/(m·K) is the thermal conductivity of SiO2, cladt is the cladding 

thickness, surfA  is the heating surface area on top of the microring.  For a surfA = 

65x10-12 m2, topP  was approximately estimated to be 10 mW. 

 

4) Assuming negligible radiation and convection losses, the power dissipation in the thin 

film metal heater at a given DC current Idc would be completely transferred to the 

cladding as topP .  Then the amount of thin film resistance Rthin required to dissipate 

this power topP  can be calculated as 

   
2
dc

top
thin I

P
R  .        (5.6) 

 

5) Given a particular metal of choice, the dimensions of the heating element can then be 

calculated from the value of Rthin as 

   
bh

L
Rthin


 ,        (5.7) 

where  is the resistivity of the metal used, L is the total length of the heater, b is the 

width and h is the thickness of the cross section of the heater. 
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Assuming the heater material to be gold (ρ = 22.14x10-9 Ω.m), the thin film resistance 

required would be 100Ω for a DC current Idc = 10 mA.  For a heater cross-section 

dimensions of b = 500 nm, h = 100 nm, we calculated the required heater length L = 225 

μm.  The resistivity of the gold thin film can be increased by increasing the thickness of 

chromium which is usually deposited as an adhesion layer for gold.  This results in 

reduced heater lengths around the range of 100 - 150 nm. 

5.4.2 Fabrication of micro heaters 

The implementation of heaters on the silicon microring resonators requires additional 

fabrication steps to be developed.  The new fabrication process flow used to install the 

micro heaters on top of the microrings is shown in Figure 5.19.  This process flow 

assumes that the microrings are already fabricated on the silicon layer and the chip is un-

cleaved. 

  

1) Cleaning:  Before processing the chip further, an oxygen plasma cleaning was 

performed to eliminate any resist left from the silicon layer processing.  This was 

followed by a Piranha clean to eliminate any possible organic dust on the surface. 

A cleaned chip is illustrated in Figure 5.19(a). 

 

2) PECVD SiO2 Deposition and Etch back:  SiO2 cladding layer of about a 

micrometer thick was laid on top of the microring layer to provide optical 

isolation for the waveguide modes from the metal layer as well as to provide a flat 

surface for the heaters to be fabricated.  In order to achieve a good quality 

cladding layer, SiO2 deposition based on Plasma Enhanced Chemical Vapour 

Deposition (PECVD) process was used.  The choice of SiO2 as a cladding layer 

also compliments the underlying BOX layer providing a uniform refractive index 

environment around the silicon waveguides.  However, simply depositing a 1 μm 

thick SiO2 would replicate the topography with all the features from the silicon 

layer.  In order to eliminate the silicon layer topography, a 10 μm thick SiO2 layer 

was deposited which filled in and closed all the trenches and left the top surface 

relatively flat as shown in Figure 5.19(b).  The 10 μm thick SiO2 layer required 
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multiple cycles of PECVD SiO2 deposition interspersed with clean cycles at 

ultrasonic Acetone bath.  Using a blanket etch process, 9 micrometers of the 

cladding layer was etched back leaving a relatively flat 1 μm thick SiO2 layer 

ready for heater fabrication as shown in Figure 5.19(c).  The SiO2 blanket etch 

was performed with the STS reactive ion etching (RIE) machine. 

Cleaned SOI chip with microring 
patterns 10 μm PECVD SiO2 deposition

Etch back to 1 μm thick 
PECVD SiO2 

E-beam lithography 
based heater patterning 

Metal deposition based on e-beam 
evaporation/RF sputtering 

Lift - off and remaining 
heater layer 

Figure 5.19 Thin film heater fabrication process flow. 

(a) (b) 

(c) (d) 

(e) (f) 
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3) Electron beam lithography:  Electron beam lithography’s overlay process for 

precise multi-layer patterning was used to align and pattern the heaters precisely 

on top of the microrings.  To achieve the ~ 1 μm sized features of the heater and 

to meet the requirements of the subsequent lift off process, a thicker EBL resist 

(PMMA A7) was used which provided a 600 nm thick layer @ 4000 rpm spin 

speed.  The electron beam write process was done in two steps.  In the first step 

the serpentine areas as well as all the features less than 2 μm were written with a 

30 kV accelerating voltage at a 30 μm aperture.  The remaining big features, 

which still required electron beam based precision alignment, were written in a 

de-focused state using a 120 μm aperture.  The bigger aperture provided high 

enough beam current to write large features faster.  Also the de-focussed electron 

beam wrote the features with a big spread which helped in writing large non-

critical features.  Some of the big features were written using the FBMS mode.  

The EBL patterned chip is depicted in Figure 5.19(d).  The electron beam resist 

development process uses a similar recipe mentioned in section 5.1.1 except that 

the development time in MIBK:IPA (1:3) was increased to 1 minute due to the 

thicker resist. 

 

4) Metal layer deposition and lift off:  Gold (Au), titanium(Ti), platinum(Pt), 

titanium/tungsten(TiW) alloy were all identified as good candidates as heater 

materials.  However the final material of choice for the heater was arrived at 

based on experiments.  Initially Au was chosen as the heater material due to the 

readily available fabrication recipes and ease of processing.  A 150 nm of gold 

was deposited on top of the developed PMMA A7 resist layer using RF sputtering 

as illustrated in Figure 5.19(e).  The lift off process consisted of immersing the 

chip in acetone bath for 2 hours and subsequently agitating the chip in an 

ultrasonic acetone bath for 15 minutes.  The outcome of this process is depicted in 

Figure 5.19(f).  A microscope picture of the well defined serpentine 
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shape of the gold heaters, precisely aligned on top of the microrings can be seen 

in Figure 5.20.  The gold heater’s serpentine section had 800 nm width and 

provided resistance values up to 150 Ω.  However, the low current carrying 

capacity of the heater design and subsequent issues with electro-migration at 

higher current densities eliminated gold as a candidate for the heater. Subsequent 

experiments with Pt, Ti and TiW alloy based heaters led us to finally choose TiW 

alloy as the heater material because of its relative improvement in durability as 

well as the simplicity of the fabrication process.   

TiW alloy deposition was done using an RF sputtering process.  As this is 

a non-standard material for sputtering, several experimental depositions were 

done and the optimum deposition pressure and deposition power were found to be 

13 mTorr and 200 Watts, respectively.  Figure 5.21 shows the fabricated micro 

heaters based on TiW alloy.  The TiW film has a resistivity of 0.58x10-6 Ω.m, 

which is higher than Au and provided resistances in the order of several kΩ. 

Figure 5.20 Fabricated gold micro heaters. 
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5) Bonding pads and Wire bonding:  Once the heaters were fabricated they were 

connected to aluminum(Al) bonding pads.  Optical lithography, RF sputtering and 

lift-off processes were used to define the bonding pads.  The chip was then 

cleaved to expose the optical waveguides for butt coupling with the optical fibres.  

The cleaved chip was then mounted onto a slot in a custom made printed circuit 

board (PCB) using an epoxy as shown in Figure 5.22.  Thin wires of gauge 26 

were used to connect the pads between the PCB and the chip.  Electrically 

conductive silver(Ag) epoxy from MG Chemicals was used to perform the wire 

bonding between the PCB tracks and the bonding pads on the chip.  The wire 

bonding was manually done under a microscope and the resulting bonds can be 

clearly seen in Figure 5.22. 

Figure 5.21. TiW alloy based heaters. 
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5.4.3 Thermally tuned microring filter response 

To test the thermal tuning of the microring filter response, the chip mounted PCB was 

connected to multiple DC current sources. Each micro heater element was connected to a 

LM 334 based variable current control circuitry.  The adjustable current source circuits 

were capable of supplying up to 10 mA of DC current in increments of 100 μA.  The TiW 

micro heaters in Figure 5.23 were measured to have the following resistances: 

Micro heater 1 = 5.8 kΩ 

Micro heater 2 = 4.2 kΩ 

Micro heater 3 = 5.7 kΩ 

Micro heater 4 = 4 kΩ 

Micro heater 5 = 2 kΩ 

 
Figure 5.23. TiW heaters with corresponding numbers. 

1

2

3

4

5
Port 1 

Port 2 

Port 3

Port 4

Figure 5.22. The PCB mounted, wire bonded chip.  

Mounted chip Ag epoxy Bond  PCB 
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  TM polarized CW light was input at port 1 of the device and the drop port 

transmission response was measured at port 4.  Figure 5.24 shows the initial drop port 

(port 4) spectral response (blue curve) of the fabricated device without thermal tuning.  

The resonance peak corresponding to each microring is labelled.  Initially microheater 1 

was tested to assess the performance of the heaters.  By applying a DC current in 

increments, it was observed that the resonance of microring 1 had a red shift at the rate of 

0.8 nm/mA.  Next we applied 1mA DC current to the micro heaters 1 and 3 which 

resulted in the drop port spectral response shown by the red curve in Figure 5.24.  It can 

be seen that the resonance of microring 3 has shifted and aligned with resonance of 

microring 4.  The thermal tuning of microring 1 has also shifted the aligned resonance 

peaks of microrings 1 and 2 slightly.   

By adjusting the DC currents flowing through each of the micro heaters, the 

corresponding resonances of the microrings were tuned until all the resonances were 

aligned together as shown in Figure 5.25.  The thermally aligned peak in Figure 5.25 was 

attained with micro heaters 1 & 2 maintained at 6.0 mA and micro heaters 3 and 4 

maintained at 2.0 mA and 1.0 mA respectively.  Further adjustment of this aligned peak 

by fine tuning the heaters was attempted in order to produce the designed filter response.   

However, over heating caused micro heaters 1, 2 and 3 to be destroyed and this 

unfortunately rendered the chip without full thermal tuning capability. 
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0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

No
rm

ali
ze

d 
Po

we
r Ring 1 & 2

Ring 3 Ring 4

Figure 5.24. Drop port responses with no thermal tuning (blue curve) 
and response with tuning of heaters 1 and 3 (red curve). 
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Nevertheless the aligned resonance peak obtained in Figure 5.25 could be further 

analyzed to investigate the response of the ladder filter.  From the plot, we obtained a 

3dB bandwidth of 100 GHz and an insertion loss of 3.5 dB.  The FSR was measured to be 

10.5 nm (1.31 THz), which corresponds to a round trip time Trt of 0.764 ps.  We next 

performed a numerical curve fit on the aligned peak using the energy coupling model of 

the microring ladder filter to extract the device parameters.  The result is shown in the 

inset of Figure 5.25.  A good fit was achieved between the measured and the theoretical 

response. The corresponding extracted energy coupling and field coupling coefficients of 

the device are shown in Table 5.3.   

Energy couplings Field couplings Other parameters 

0 = 12.4 ns1 0 = 0.342 LossL = 39.8 ns1 

1 = 306.2 ns1 1 = 0.234 Phase shift ψ 

2 = 12.4 ns1 2 = 0.342  

3 = 20.18 ns1 3 =0.558  

4 = 102.8 ns1 4 =0.0785  

5 = 20.18 ns1 5 =0.558  

Table 5.3. Extracted device parameters from the curve fit. 
 

Figure. 5.25. Drop port response with final tuned resonances with appropriate 
thermal tuning at each micro heater.  The Inset shows the curve fit performed on 
the thermally tuned peak.  
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Although the extracted parameters have largely deviated from the original design 

parameters, the curve fit validates the fourth order filter response of the fabricated 

microring ladder structure. 

The heater burnout was the primary reason for the inability to further fine tune the 

filter, to achieve the designed filter response.  On inspecting the destroyed heaters it was 

found that there were unintended sharp bends in the metal due to the localized surface 

roughness in the PECVD oxide layer.  PECVD oxide experiences a process called flaking 

when depositing very thick films.  During flaking, the deposited oxide tends to form 

clumps causing localized surface imperfections of the order of 100 nm.  If a surface 

imperfection is a trench of 100 nm deep, it causes the metal laid on top of it to bend 

abruptly into this trench.  These sharp bends cause higher current density to localize at 

those locations, causing very high power dissipation and eventual burn out of the heaters.  

One way to overcome this problem is to use a good quality spin-on-glass (SOG) solution 

spun on top of the PECVD oxide to smooth out the localized surface roughness, or to 

completely replace the PECVD oxide layer by a thick SOG layer.  Another approach 

could be to use a chemical mechanical polishing (CMP) process to smooth out the SiO2 

surface. 

5.5 Summary 

In this chapter we developed the fabrication process to experimentally demonstrate 

microring add-drop filters in the SOI material system.  Initially single microring add-drop 

filters were demonstrated.  We then explored the potential for miniaturization of silicon 

microrings and showed that ultra-compact microring add-drop filters with insertion loss 

around 1dB are achievable for microring radii as small as 1m.  We also attempted to 

demonstrate a fourth order microring ladder filter which highlighted the necessity for post 

fabrication resonance tuning.  Additional fabrication process to install microheaters on 

top of the microrings was developed and a thermally tuned fourth order microring ladder 

filter response was demonstrated. 
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Chapter 6 

Conclusions 

 

 

Although the industry has gone forward with the demonstration of SOI microring based 

WDM devices, most of those devices are still based on single microring resonators.  In a 

truly dense WDM system single microring devices cannot offer the required spectral 

characteristics like high adjacent channel isolation and flat top passband. Without using 

densely packed WDM channels, silicon based optical interconnects would become an 

overhead rather than being a simple, elegant solution.  Therefore, the ability to realize 

high-order microring filters with advanced spectral characteristics is important for future 

silicon optical interconnect technology.  

Given this background the goal of this research work was to explore, propose and 

demonstrate new coupled resonator topologies based on compact microring resonators in 

the SOI material system which can be used to realize advanced optical filters.  In this 

thesis work we have proposed and analyzed two new microring architectures that are 

capable of realizing complex optical transfer functions.  We also developed the synthesis 

procedures for these architectures.   

In order to demonstrate the proposed architectures, we developed a fabrication 

process flow for the silicon-on-insulator material system at the University of Alberta 

nanofabrication facility. Several single microring add-drop filter devices were 

demonstrated during which we also explored the feasibility of realizing extremely 
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miniaturized microrings.  This effort resulted in the successful demonstration of a 1um 

radius add-drop microring resonator with a low insertion loss. 

We attempted to demonstrate a fourth order add-drop microring filter using the 

proposed parallel-cascaded microring network architecture.  Due to fabrication induced 

resonance mismatch among the microrings, it was found necessary to use a post 

fabrication microring resonance tuning method.  This prompted us to develop additional 

fabrication processes to install micro sized heaters on top of the microrings.  Using these 

heaters we thermally tuned the microrings and demonstrated a fourth order filter 

response. 

6.1 Key contributions of the thesis work 

6.1.1 General 2D coupled microring topology 

In this thesis we proposed two microring architectures capable of realizing high-order 

optical transfer functions containing transmission zeros.  The first architecture is based on 

a 2D array of direct-coupled asynchronous microring resonators.  A direct analytical 

synthesis procedure was developed which allows arbitrary filter shapes to be designed 

and realized.  In order to demonstrate the versatility of the proposed architecture and the 

synthesis technique, three numerical examples were provided illustrating spectral 

properties such as symmetric spectral response with transmission zeros, asymmetric filter 

response and a response with both flat transmission amplitude and group delay.  A 

disadvantage of the proposed architecture is that it requires at least one negative coupling 

element for filters with transmission zeros on the imaginary axis.  Negative coupling 

requires long coupling lengths which makes the fabrication challenging.  

6.1.2 General cascaded microring network topology 

To overcome the above disadvantage with the 2D direct-coupled microring topology, a 

second architecture was proposed based on cascaded microring networks that can realize 

symmetric filter responses with transmission zeros without the need for any negative 

coupling elements.  Effectively, the new architecture decomposes a 2D microring 

network containing negative coupling elements to a parallel cascade of smaller networks, 

each containing only positive coupling elements.  A synthesis technique was developed 



 111

by which the target optical transfer function is split into multiple stages and each 

individual stage is then synthesized and optimized separately.  Both the 2D coupling 

topology and cascaded network architecture were shown to provide multiple possible 

device layouts for the same filter response, from which an optimum design in terms of 

ease of fabrication can be chosen. 

6.1.3 Demonstration of ultra-compact silicon microring resonators 

We explored the feasibility of reducing the foot print of silicon microring resonators by 

reducing the bending radii.  Through numerical analysis the impact of bending loss on 

shrinking the microring radius was analyzed for different microring waveguide aspect 

ratios and polarizations.  It was found that by choosing the right waveguide aspect ratio 

one can achieve very small microring resonators high quality factors for a given 

polarization. Bending loss limited theoretical intrinsic Q factor in the order of several 

thousands was shown to be achievable even for a ring radius as small as 1μm.  This was 

confirmed with experimental demonstrations.  For 1μm ring radius, a bending loss 

limited intrinsic Q-factor of over 5000 was demonstrated, which was found to be in good 

agreement with the numerical prediction.  These demonstrations could pave the way for 

realizing large scale densely integrated silicon photonic systems in the future. 

6.1.4 Demonstration of a silicon microring ladder filter response 

A fourth order filter based on the cascaded microring network architecture was 

fabricated. To correct the resonance mismatch due to fabrication errors, thermo-optical 

tuning of the microring resonances was employed which required the microrings to be 

equipped with microheaters on top.  By applying some initial thermal tuning to the 

fabricated microring ladder device, a fourth order spectral response was achieved 

although the observed spectral characteristics had largely deviated from the target design.  

Finer tuning to achieve better filter response was not possible due to a breakdown of the 

microheaters.  A better microheater design along with an improved planarization method 

could provide more stable heaters that would allow finer control over the resonance 

tuning so that the target filter shape could be achieved. 
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6.2 Future research directions 

6.2.1 Post fabrication tuning of microring devices 

The demonstration of the fourth order microring filter illustrated the lingering issues 

associated with fabrication errors and the corresponding resonance de-tunings that 

accompany such multiple microring based devices.  Thermo-optic tuning has been used 

as a post-fabrication tuning mechanism in the research arena to achieve the desired filter 

characteristics.  However, it may not be feasible to install micro sized heaters in a dense 

WDM system with several tens of channels accommodated in it due to the amount of 

power dissipation required to tune these microrings.  For our device a maximum power of 

200mW in microheater1 was required for tuning approximately over 5nm of wavelength 

range.  The additional fabrication steps (section 5.4.2) involved in installing the 

microheaters is a costly overhead.  Post fabrication tuning mechanisms that make a 

permanent correction based on UV based polymer cladding [89, 90] have been proposed 

to overcome this issue.  Recently another potential post fabrication tuning methodology 

based on femtosecond laser ablation was proposed and demonstrated [91].  Here the 

resonance of the silicon microring was tuned by shooting a femtosecond laser pulse at it.  

It was shown that by controlling the amount of energy in the laser pulse shot, the amount 

of tuning can be controlled.  Although more research needs to be done on this, it is a 

promising technique that could provide a simple low cost alternative. 

6.2.2 High-order microring filters 

The permanent post fabrication methodologies discussed in the previous section could 

pave the way for an easier way to realize the proposed high-order microring filters in the 

future.  With a reliable low cost post fabrication tuning method available, a future 

direction of this research would be to use the proposed microring architectures to 

demonstrate other advanced optical signal processing functions such as dispersion 

compensation and maximally flat group delay filters for optical buffering.  Also 

exploring and demonstrating the modularized filter design technique afforded by the 

cascaded microring network architecture is another direction for this research.  Such an 

approach would allow extremely high order filters (e.g., N > 10) to be realized.  This 

would involve decomposing a given transfer function into multiple modules, where each 
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module may not even need to reside on the same chip.  Each module could be realized on 

a separate chip which then can be optimized individually after fabrication.  Finally all the 

modules could be put together via optical fibre connections to realize the complete filter.  

Such an implementation strategy would also have high failure tolerance, since in the even 

that a filter stage fails; only this stage has to be replaced without discarding the entire 

filter. 
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