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Abstract

RP-CDMA is a wireless multiple access technique that utilizes multiple spreading

codes and a multiuser detector to enhance link reliability and performance. We

propose a simple MAC protocol on top of the RP-CDMA Phy and apply it to the

multihop ad hoc network model. In addition to a MAC, we propose two signifi-

cant extensions to RP-CDMA aimed at improving throughput and reliability. We

test our network device using the ns-3 network simulator and compare its perfor-

mance to that of the well known 802.11 CSMA model. Our simulations confirm that

RP-CDMA can substantially improve link reliability and network performance, but

that a link level acknowledgement mechanism is required to ensure packet delivery

across the network. We investigate a simple acknowledgement policy and conclude

that it enables simultaneous high throughput and packet delivery while maintaining

low latency.
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Chapter 1

Introduction

The proliferation of wireless data networks in the last decade has provided ever

faster and more robust service. Since 1999, the popular 802.11 standard has pro-

gressed in data rate from an initial 1 Mbps to up to 600 Mbps in the current revi-

sion [49]. At the same time, fundamental limitations of the wireless channel have

necessitated increasingly complex signalling protocols and increasing bandwidth

allocations in order to support these ever faster services [39]. The primary lim-

itation which all wireless systems must contend with is the shared nature of the

wireless channel. Because any devices working in the same wireless channel must

necessarily share it with other devices in the network, mechanisms and protocols

for dividing up the available bandwidth among all of the network peers must be

developed. The result is that each device necessarily has only partial access to the

full channel capacity, and any errors in the coordination of channel sharing result in

transmission collisions, lost data, and diminished link reliability.

This problem is particularly evident in ad hoc networks. An ad hoc network is

one in which the network nodes join a common channel in the absence of any fixed

infrastructure or network controlling authority [45]. These nodes build a logical

network using the wireless channel and exchange routing information in order to

cooperatively pass traffic across the network. This is in contrast to the more familiar

base station model in which nodes join a network created and managed by a central

network node. The central node is responsible for admitting each network peer and

coordinating their transmissions so as to not collide.

We are specifically interested in the multihop ad hoc model here because of the
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additional challenges it presents compared to the base station model. In the presence

of a base station, network nodes need only coordinate their transmissions with the

base station, which can strictly control the behaviour of all of the nodes and ensure

that each node gets their share of the channel. Each node passes all of their traffic

through the base station and the base station tells the nodes when to transmit and

when to listen, so there is no need coordinate with any other node in the network.

In an ad hoc network, individual network nodes must coordinate among themselves

in order to pass messages between any of their peers. In the event that two nodes

cannot communicate directly, a multihop ad hoc network will pass messages from

node to node between the message originator and destination. Since the radio is a

half duplex device, nodes must decide when to exclusively transmit and when to

listen. Dividing up which nodes will transmit, to which other nodes, when they

do so, and how their transmissions are sent turns out to be a complex operation

in an environment which lacks any sort of central authoritative coordinating entity.

The consequence of getting this coordination function wrong is data loss, which

either results in delays as packets are retransmitted or outright loss as data simply

disappears from the network. The ad hoc environment is therefore somewhat more

challenging to work in, and presents unique problems that do not have obvious

solutions.

There are many ways in which several peers might coordinate access to a com-

mon wireless channel. Perhaps the most obvious approach is to try to avoid trans-

mitting at the same time as other nodes, which is the principle behind the popular

802.11 wireless standard [48]. Alternately, the available medium can be divided up

into multiple subchannels, and nodes can coordinate access to these subchannels in

a non-interfering way. Three of the most common ways to divide up the wireless

medium are to set up a time schedule (TDMA), divide different peers into different

non-interfering frequency groups (FDMA), or to use spread spectrum techniques

such as code division to separate users into different code channels (CDMA) [23].

Each of these methods has their own drawbacks, which we will discuss in Chap-

ter 2, but fundamentally they all suffer from the same limitation imposed by the

shared nature of the wireless channel: Because nodes need to avoid collisions they
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must organize multiple access to the channel, but this coordination must be done

using the shared channel itself. The coordination traffic, therefore, is itself subject

to collisions which causes the loss of both data traffic and coordination traffic. The

loss of coordination traffic may cause further data loss as the access coordination

function breaks down.

The root of this problem is the nature of the wireless channel itself and its unre-

liability due to collisions. Were the channel reliable such that multiple nodes could

transmit simultaneously without having to coordinate channel access then we could

dispense with the coordination function altogether. Without the need to coordi-

nate channel access then the decision of whether an ad hoc network node transmits

at any given time is simplified to deciding whether the intended receiver node is

listening. Determining whether a neighbouring node is listening is the inverse of

deciding whether they are transmitting, which can be simply estimated by listening

to the channel itself.1 With a reliable link it should therefore be possible for us to

construct an ad hoc network in which nodes can decide whether or not to transmit

without consulting any other nodes or external sources of information.

In this dissertation, we propose an ad hoc Medium Access Control (MAC) pro-

tocol built on top of such a reliable link, and evaluate its performance compared to

traditional 802.11 Carrier Sense Multiple Access (CSMA). This reliable link was

proposed by Schlegel et al.[42], and uses code division to separate individual pack-

ets into private channels, with the result that multiple packets can arrive simultane-

ously at a receiver with only a relatively small probability of colliding. We propose

two extensions to the link itself, and on top of it we propose a simple MAC protocol

which does not require any coordination between nodes. Our aim is to show that

with a reliable link it is possible to build ad hoc networks which exhibit improved

reliability, and hence performance, compared to networks built on top of traditional

wireless links.

In the remainder of this chapter we motivate our work by first discussing the

wireless link reliability problem in general and then identifying the characteristics

1We assume that nodes are continuously awake and do not have a sleep / wake cycle or some
other mechanism which causes them to have periods in which nodes are neither transmitting nor
listening.
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of a theoretical wireless link that would address this problem. With the problem

articulated, we identify a potential solution and then describe our approach to mea-

suring and testing its effectiveness.

1.1 Wireless Network Reliability

We are interested here in a reliable wireless ad hoc network. Network reliability

ultimately depends on link level reliability, with the successful routing of packets

through the network being dependent on the successful passing of packets across

each link along the way. As discussed above, the fundamental problem with wire-

less link reliability is the shared nature of the wireless channel.

If we take a moment to look back at wired Ethernet networks, we recall that

these networks once also had shared channels with the use of hubs, and also ex-

perienced collisions and loss. In Ethernet, the collision problem was solved by

switching from hubs to switches, which provided each node in the network with a

private channel to the switch. With the widespread deployment of switched packet

networks over interference-resistant cabling, reliable wired links have enabled ever

faster wired networks and eroded the requirement for complex protocols at the

MAC and link layers [50].

It is therefore natural to ask how we could achieve the same thing in a wireless

network. It is possible to separate transmissions into separate channels using ei-

ther time, frequency or code division, but the problem then becomes one of channel

coordination. Which node gets what channel, when and for how long? In an ad

hoc network a node may have a requirement to communicate with any or several of

its neighbours, and must therefore coordinate with each of them in order to decide

which time slot, frequency or spreading code to use for a given transmission. As

more load is placed on the network and more nodes contend for the same chan-

nel resources, this distributed coordination of orderly access to the channel breaks

down, resulting in declining link reliability and system performance.

Thus, in an ad hoc network, coordinating access to the shared wireless medium

among disparate nodes poses a significant challenge, particularly as this coordina-
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tion must be done using the wireless medium itself. This difficulty in coordinating

the orderly access to the shared wireless medium has resulted in complex MAC

and link layer standards for wireless networks [48], with limited success [56, 40].

Additionally, even if we could perform this coordination perfectly each node could

still access only a fraction of the total channel capacity, since nodes must take turns

transmitting and receiving.

Finally, the wireless channel must contend with external noise and interference.

There may be many wireless devices in a given area, each of which contributes

energy, and hence noise, to the wireless medium. Transmissions may reflect or

scatter off of physical objects in the environment on their way to their destination,

which can cause signal fading, multipath interference, or echoes, all of which must

be suppressed or otherwise handled by the wireless receiver [32]. In contrast, wired

networks are less susceptible to external interference, which can often be addressed

simply with shielded cabling, and the properties of the wire can be controlled so as

to mitigate against unrecoverable signal fading or distortion.

We see then that wireless network reliability is a different sort of problem from

its wired counterpart. Nonetheless, we can look to the wired link to identify those

properties which have enabled its rapid advancement in reliability and performance,

and try to construct a wireless link that exhibits some or all of those properties.

1.2 Problem Description

Ideally, we would like wireless networks to be more like wired networks, with sim-

ple and reliable links and protocols. In a modern wired network, the wire provides

each node with a private channel to their next hop, and is constructed so as to be re-

sistant to external interference. Under these conditions, there is no requirement for

nodes to coordinate access to the network, and so each node can transmit randomly

and simultaneously up to the capacity of the link. Translating this to a wireless

context, we desire a wireless link that holds the three qualities:

1. Each node has a private channel to each of their peers.

2. Signals are resistant to interference.
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3. Each node can access the channel without coordinating with its peers.

We will see that each of these properties is already available in the ad hoc wire-

less link, but not always together with the others. For example, we can easily

achieve private channels between peers by assigning each node a unique frequency

for communicating with each of its neighbours, but in order to use those frequencies

effectively the transmitting node must coordinate with an intended receiver about

when to switch to the private channel [46]. Similarly, we can adopt spread spectrum

techniques, such as code division, to overcome reasonable levels of external and in-

ternal interference, but must then coordinate between nodes for which spreading

codes or subcarriers to use, lest the signals be missed and lost [22]. Finally, we can

eschew coordination and have nodes simply broadcast when they have data traffic,

as in ALOHA [3], but this means that all nodes must work in a single channel.

Our problem is therefore to identify a means of accessing the wireless channel

that exhibits all three of these desirable properties simultaneously.

1.3 Aim

We shall see that a multiple access method, Random Packet Code Division Multiple

Access (RP-CDMA ) [42], has been proposed in the literature that comes very close

to meeting all of our desirable properties. We propose to apply this method to the

multihop ad hoc context and evaluate its reliability and performance, compared to

the popular Carrier Sense Multiple Access (CSMA) 802.11 standard.

RP-CDMA is a type of CDMA protocol that uses multiple spreading codes to

separate individual packets into private channels, where a channel is defined by

its spreading code. It therefore provides private channels for each communication,

and has the same interference-resistant properties of other CDMA protocols. By

virtue of its packet format, RP-CDMA also offers completely uncoordinated and

asynchronous channel access. It is these three qualities that make RP-CDMA a

promising candidate for a reliable wireless link. Previous work has investigated

the reliability and performance characteristics of RP-CDMA over single network

hops [43, 16], and here we investigate its application in the general multihop ad hoc
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context. Our aim is therefore to establish RP-CDMA as a suitable multiple access

method for reliable, high performance, ad hoc networks.

1.4 Approach

In order to test our thesis that RP-CDMA can form the basis of a reliable wireless

ad hoc link we undertook a performance study using simulation. To this end we

implemented a simulated RP-CDMA transceiver, constructed a MAC protocol on

top of it, and then tested the reliability and performance of multihop ad hoc net-

works using this network device. We evaluated our results both absolutely and in

comparison to an 802.11 network device under the same conditions.

In the process of our performance study we developed algorithms which define

the functioning of our proposed MAC protocol and identified parameters which

may be adjusted to optimize system performance under particular conditions. By

permuting each of these parameters throughout their range, we examined their ef-

fects on link reliability and system performance. In this dissertation we describe

the algorithms which make up our proposed MAC protocol and report the results of

our performance study.

1.5 Contributions

This work has two main contributions. The first contribution is our MAC protocol

itself, including the algorithms it employs and two extensions to the RP-CDMA

protocol which we propose to further improve reliability and performance. The

second contribution is our performance study, in which we test and evaluate the

RP-CDMA based network device and compare it to the familiar 802.11 CSMA

device.

The remainder of this dissertation proceeds first with a discussion of relevant

related work in Chapter 2 starting with other approaches to addressing our prob-

lem and their shortcomings, followed by a discussion of related RP-CDMA work.

Chapter 3 describes the RP-CDMA Physical Layer (Phy) specifically, and we dis-

cuss how we simulate this Phy in ns-3. We describe our MAC protocol in Chapter
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4, and detail our algorithms for deciding when to send packets and managing ac-

knowledgements.

Chapter 5 opens the discussion of our performance study. In this chapter we

describe our experimental setup, node configuration and method of generating data

traffic across the network, as well as describe our measurements and performance

parameters. Our results are presented in Chapter 6. Finally, we conclude and dis-

cuss some avenues for future work in Chapter 7.

Appendix A discusses a theoretical model of our system, which we use to verify

our model on a simplified example.
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Chapter 2

Related Work

In this chapter, we present a brief literature review of methods for improving wire-

less link reliability with a focus on their application in ad hoc networks. We begin

in Section 2.1 with a discussion of some classical ways of dealing with the problem

posed by interference and collisions, including carrier sense and collision avoid-

ance (CSMA/CA), time division (TDMA), frequency division (FDMA), and code

division (CDMA). After briefly evaluating these types of systems and their appli-

cation in ad hoc networks, we discuss RP-CDMA as a promising choice for ad hoc

networks in Section 2.2.

2.1 Other Approaches to Improving Network Relia-
bility

We discussed in Chapter 1 the problem posed by the unreliable wireless medium,

and concluded that the primary difficulty was that transmissions interfere with each

other and cause packets to become unresolvable, which necessitates coordinating

access to the channel. There have been many attempts to resolve this problem, with

varying degrees of success [29].

An obvious way to avoid collisions is to try to avoid transmitting at the same

time as other network nodes. This is the principle behind the popular carrier sense

multiple access with collision avoidance (CSMA/CA) mechanism, which is prob-

ably most widely known as the basis for the MAC in the popular 802.11 series

of IEEE standards [48] in which it is called the Distributed Coordination Function
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(DCF). In this scheme, nodes sense the wireless medium and apply a clear channel

assessment algorithm to determine whether it is occupied or not. If the channel is

determined to be not busy for a short period of time then the node proceeds with

its transmission. If the channel is determined to be busy then transmission is de-

ferred until the channel is not busy, after which nodes apply a binary exponential

backoff waiting period before attempting transmission again. In this way, several

nodes all waiting to transmit into the channel will probabilistically have one node

begin transmitting first, which will prevent the others from transmitting at the same

time and thus prevent collisions. In addition to this basic CSMA/CA mechanism,

802.11 specifies an optional channel reservation mechanism in which nodes wish-

ing to transmit will attempt to reserve the channel via special control packets that

reserve the channel (RTS) and acknowledge that it is reserved (CTS). Nodes which

overhear the RTS/CTS exchange will hold their own transmissions until the nodes

which reserved the channel have completed their transmission.

The RTS/CTS mechanism is intended to alleviate the hidden node problem,

which occurs when two nodes which cannot communicate with each other have

a shared neighbour. In this instance both of the nodes may sense the channel to

be free while the other is transmitting, which causes collisions and packet loss at

their shared neighbour. The intent with the 802.11 RTS/CTS mechanism is for both

sender and receiver to broadcast their channel reservation, which should prevent

hidden nodes from transmitting. Unfortunately, because the communications range

of the 802.11 radio is less than the interference range, there exists a space around

each node in which it is impossible to detect the channel reservation RTS/CTS ex-

change, but nonetheless possible to cause interference at the receiver. K. Xu et

al.[55] studied this problem and determined that an effective solution would be

for nodes to artificially limit which other nodes they communicate with, which

they view as a suboptimal solution to the problem. The converse of the hidden

node problem is the exposed node problem, which is caused when a given node ob-

serves a channel reservation RTS and holds its transmission, but is actually too far

away from the intended receiver to cause interference. The exposed node, therefore,

wastes potential bandwidth.
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Because the 802.11 CSMA/CA mechanism is vulnerable to the hidden and ex-

posed node problems, and the RTS/CTS channel reservation mechanism is of lim-

ited effectiveness, S. Xu et al.[56] concluded that 802.11 is not suitable for multihop

ad hoc networks. Additionally, the RTS/CTS serves as an example of the limited

utility of attempting to coordinate access to the contended channel using the channel

itself. If the primary problem with the shared wireless channel is packet collisions

and interference, adding another layer of coordination packets into the channel may

be counterproductive. This is the conclusion reached by Ray et al.[40], who con-

cluded that in the ad hoc context, the addition of RTS/CTS packets eventually leads

to congestion and decreased performance under increasing load.

There have been several attempts to modify the 802.11 DCF to avoid or alleviate

its problems, such as adding scheduling on top of the RTS/CTS exchange [33] or

coordinating non-interfering transmissions together [5], or predicting interfering

transmissions using node topology [34, 19], but none of them fully overcome the

limitations of the CSMA/CA and RTS/CTS approach to avoiding collisions.

Rather than attempt to avoid collisions in a single shared channel, an alternate

approach is to separate transmissions into non-interfering channels. There are three

common ways in which we can perform channel separation: using time, frequency

or code division. A channel is therefore one of a time slot, a frequency band, or a

spreading code. Each of these mechanisms has their own challenges.

In general terms, channel separation techniques in ad hoc networks typically

proceed similarly, following the same basic steps:

1. Nodes are synchronized into a series of rounds. At the beginning of each

round, nodes all join the control channel.

2. Nodes who wish to communicate with one another indicate their desire to do

so using some channel reservation exchange.

3. Successful channel reservations either select or are allocated a channel.

4. Transmitting or receiving nodes switch to their allocated channels and ex-

change data.
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The immediate problem with channel separation schemes that operate in this

manner is the synchronization of all the nodes in order to coordinate the channel

separation. Because ad hoc networks do not have any central authority or base sta-

tion which can dictate synchronization information, nodes must somehow decide

collectively when rounds begin and end. Fundamentally, this is the same prob-

lem that synchronization is attempting to solve: In order to not interfere with one

another, nodes must coordinate their transmissions, but in order to coordinate their

transmissions they must coordinate synchronization. Synchronization must be done

over the wireless channel itself, which makes synchronization vulnerable to inter-

ference and packet collisions. This is precisely the problem that motivates us here

to find a coordination-free ad hoc MAC.

Nonetheless, there exist channel separation mechanisms which attempt to per-

form each of time, frequency and code division. Zhu et al.[58] and Tang et al.[53]

both attempt TDMA in ad hoc networks, with varying success, while So et al.[46]

describe a FDMA system that envisions an 802.11 style RTS/CTS mechanism uti-

lizing multiple frequency channels. All of these systems require very tight timing

synchronization in order to operate effectively, and all are vulnerable to errors in-

troduced by coordination failures. FDMA systems such as the one presented in

[46], which have nodes switching their radios to different channels, are addition-

ally susceptible to a novel form of the hidden node problem in which some node

misses channel coordination traffic at the beginning of a round and selects the same

channel as another node for transmission.

Recently, Veyseh et al.[54] proposed a novel FDMA system that utilizes or-

thogonal frequency division multiple access (OFDMA) to separate transmissions

into OFDM subcarriers. OFDM is an increasingly popular choice for high capacity

broadband networks [57], and has been selected by the 3rd Generation Partnership

Project (3GPP) mobile phone standards group for the recently launched Long Term

Evolution (LTE) standard [1]. The appealing property of OFDM based systems

is that, while signals are separated into many subcarriers on separate frequencies

(called tones), all communications take place in a single frequency band. The or-

thogonal, frequency divided subcarriers are separated at the receiver using a fast

12



fourier transform (FFT), which means that if several users are communicating si-

multaneously on different groups of subcarriers then a single receiver can success-

fully decode all of them simultaneously. The ad hoc protocol proposed in [54]

proposes to do exactly this, and assigns users individual sets of tones which they

use to communicate. The proposed protocol avoids the global synchronization of

nodes by employing local synchronization between a single sending node and sev-

eral receivers. The coordination problem is not completely alleviated, however, and

a node which wishes to transmit must still initiate a transmission via request through

a control channel and negotiate which subcarriers will be used for which transmis-

sions. This coordination is subject to failure just as in any other protocol, and the

time required to perform coordination negatively affects system performance.

Rather than coordinating access to time slots, frequency bands or subcarriers,

CDMA systems coordinate access to spreading codes. The use of spreading codes

in CDMA systems allows for the joint detection of overlapping transmissions, and

makes CDMA systems resistant to interference and collisions. In these systems,

each outgoing bit is multiplied (spread)1 in the transmitter by a high frequency

pseudo-noise signal, which turns the bit signal into high frequency ’noise’ in the

channel. At the receiver, the same code is applied to the noise, which results in the

signal being recovered (despread). If multiple signals overlap at the receiver, the

application of each signals’ spreading code to the aggregate noise can return each

original signal in turn, which makes CDMA very attractive as the basis for an ad

hoc network radio. If we can allow for the overlapping of signals at the receiver and

still recover them, then we have effectively solved the collision problem and found

our reliable wireless link.

In order for a receiving node to be able to recover a CDMA signal from one of

its neighbours it must first know what spreading code was used at the transmitter.

This either requires nodes to have codes assigned to them ahead of time and which

are globally known, or it requires nodes to coordinate their communications using

a control channel. In the ad hoc context it is often impractical to assign codes to all

1Multiplied in this context typically means the bit signal is combined with the string of pseudo-
random 0 and 1 bits using exclusive or (xor).
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nodes and then distribute the book of codes to all of the other users, so codes are

typically selected through an on-line coordination process as they are needed. Typ-

ical schemes of this type have been proposed by Jin et al., which either have nodes

elect a single node to act as a temporary or pseudo base station [21], or which rely

on a channel reservation process much like RTS/CTS [22]. Thus, CDMA systems

in the ad hoc context typically suffer from the coordination problem as much as

their TDMA and FDMA counterparts.

However, the dominant problem in CDMA systems is not the coordination prob-

lem, but rather the near-far problem, which severely limits the ability of network

nodes to resolve overlapping signals [38]. Without this ability to resolve overlap-

ping transmissions there is little incentive to use CDMA at all, as the resistance to

interference and collisions properties are lost. The near-far problem occurs when

two incoming signals arrive with highly variable signal strengths, which is com-

mon when one transmitter is very near to the receiver and the other transmitter is

relatively far away. When this happens, the far signal is not recoverable even after

despreading because the near signal drowns it out. Thus, CDMA based ad hoc sys-

tems must coordinate their transmission powers as well as their codes in order to

achieve high performance over irregular ad hoc topologies.

Attempts to address the near-far problem typically involve adding power con-

trol information into the channel reservation process, such as in the proposal by Su

et al.[52], which proves to be more effective than similar schemes which do not

include power control. But by this point we are quite far from our intended aim,

which was to find a coordination-free ad hoc MAC protocol. If we wish to use

conventional CDMA detectors in our ad hoc network we must coordinate the distri-

bution of spreading codes and the transmission powers of each node in the network,

all in a distributed fashion. Even with all of this, coordination failures can still lead

to reliability problems, as all of this coordination is done over the wireless channel

itself.

In summary, single channel ad hoc systems tend to suffer from packet collisions,

and attempts to avoid collisions using CSMA/CA are prone to error. Attempts to

resolve these errors with coordination functions such as the 802.11 RTS/CTS mech-
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anism are not entirely effective, and may actually be counterproductive. Thus, it is

natural to investigate channel separation schemes for ad hoc networks as a means

to separate different users’ transmissions from one another. Channel separation

systems typically involve either tight time synchronization or some other form of

distributed coordination to control access to a limited number of time slots or fre-

quency bands, which reduces the error potential from all traffic in the single channel

to only the coordination traffic in the coordination channel, but which nonetheless

is still prone to error in the same way. CDMA systems are promising due to their

inherent resistance to interference, which promises to remove the requirement for

node synchronization, but they also introduce new problems of code and power

coordination between nodes.

It is with this in mind that we turn our attention to Random Packet CDMA

(RP-CDMA), which uses a novel packet format to overcome the requirement to co-

ordinate spreading codes, and a powerful multiuser detector to overcome the near-

far problem. With these problems resolved, RP-CDMA appears to be a promising

candidate for a reliable ad hoc wireless link.

2.2 Random Packet CDMA

RP-CDMA was first proposed by Kota and Schlegel et al. [28, 42], as a means

of uncoordinated, random channel access. In this initial effort, data packets were

transmitted in two parts by sending the packet header over a common header chan-

nel and the packet payload in a randomly selected data payload channel. The header

portion of each packet contained only enough information to identify and decode

the remainder of the packet in the payload channel, and the header channel was

thus comparatively lightly loaded under the assumption of large payloads. Each

node would listen to the header channel in order to identify transmissions in the

payload channels, and thus no coordination between nodes was required in order to

exchange spreading codes. Packet payloads were decoded in a multiuser detector,

which is a CDMA receiver capable up decoding up to K overlapping transmis-

sions simultaneously. The header channel was modelled as a lightly loaded Spread
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ALOHA channel, and the system was found to be limited by the capability of the

multiuser detector, K. With the use of iterative decoding in the multiuser detec-

tor, the authors concluded that the system could approach the Shannon limit of the

multiple access channel and was therefore limited by the capability of the multiuser

detector, as opposed to collision-limited in the common header channel. This is an

important result, since the common header channel is the only contended resource

in the RP-CDMA system. By showing that random access to this common resource

was sufficient to approach the information-theoretic bound on capacity, the system

was freed from the requirement to coordinate between nodes for wireless medium

access. This work was confirmed with traffic scenarios involving alternating light

and heavy users, along with a capacity analysis in Kempter et al.[24].

Kempter [25] subsequently examined the application of various multiuser de-

tectors in the RP-CDMA system in an effort to determine what kind of multiuser

detector would be required to match the initial results presented in [42], which as-

sumed an ideal detector capable of decoding any packet identified from the header

channel. This work confirmed that the header channel is not collision-limited, but

rather limited by the capability of the receiver in both the header detector and pay-

load multiuser detector. Various types of multiuser detectors were considered in

both [25] and [26], which concluded that a Partitioned Spreading CDMA receiver

performed best both in terms of reasonable spreading code lengths and resistance

to the near-far effect, but critically illustrated that high system performance could

be maintained even under high load [26].

Nagaraj et al. applied a CSMA channel access scheme to the common RP-

CDMA header channel in [35], and determined that overall system throughput

could be improved over the spread ALOHA random access case under particu-

lar traffic scenarios. Subsequently, Nagaraj et al.[36] reexamined the performance

characteristics of a random channel access scheme with a multiuser detector, and

concluded that as multiuser detector capability goes to infinity, system throughput

asymptotically approaches the optimal value. This result is both derived analyti-

cally and confirmed with simulations on a fully connected network with a simplified

packet reception model.
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Although random access may be optimal in the limit of multiuser detector capa-

bility, it is not optimal with limited detector capability. For the case of the limited

multiuser detector, Ghanbarinejad et al. proposed an adaptive probabilistic MAC

protocol for multiuser detector capable systems in which nodes used channel traffic

estimates to feed a probabilistic model of whether a node transmitted or not in a

given time slot [16, 17]. This work is similar in spirit to that presented by Kempter

et al.[24], which also adopted a feedback based adaptive MAC, and also concluded

that an adaptive probabilistic model is suitable for maintaining traffic loads below

the multiuser detector limit, K, compared to ALOHA style random transmission.

We found that much of the literature is focused on the relative performance of

various types of multiuser detectors, such as Kempter et al.[25, 26], or interested in

developing MAC protocols which maximize transmitter parallelism, such as Ghan-

barinejad et al.[16]. As a result, network configurations or simulations are typically

simplified to include a single receiver and several transmitters, as in [16], or sim-

ply to consider the probability of header collisions in the common header channel

as a measure of successful transmission, as in [42]. These approaches address the

transmission side of the packet transfer process, but ignore the state of the receiv-

ing node and specifically ignore whether the intended receiving node is actually

prepared to receive when a transmission begins. The CSMA work of Nagaraj et

al.[35] includes a notion of node behaviour during neighbour transmissions in their

performance evaluation, but this work appears to also consider only the probability

of a packet header collision and the probability of exceeding the detector capabil-

ity as the basis for system throughput. While these performance measures may be

appropriate in the case of a base station style of network in which multiple nodes

all communicate only with a powerful base station, it is not clear that it applies to

the multihop ad hoc network case. Specifically, in an ad hoc network it is not only

required that there be no header collision for a transmission to be successful, but it

is also required that the intended receiver not be transmitting at the same time, as a

half duplex radio cannot simultaneously transmit and receive. This aspect appears

to often be overlooked in the literature we surveyed. A node may find the header

channel unoccupied when it wishes to transmit, but if it is currently receiving one
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or more packet payloads - which may or may not be intended for it - then it cannot

switch to transmit unless it is willing to drop the current incoming packet(s). Simi-

larly, a node may find the header channel unoccupied when having a packet to send

to some neighbouring node, but if the neighbour is transmitting a packet payload

then it makes no sense to begin transmission to it until it finishes transmitting itself.

Thus, the state of the receiving node is an important factor when deciding whether

or not a particular transmission was successful.

With this in mind, we are focused on the application of RP-CDMA in a multihop

ad hoc network. Our survey of the literature provides evidence that the application

of a multiuser detector in ad hoc networks may have significant reliability and per-

formance advantages. Specifically, we believe that a sufficiently powerful multiuser

detector can let us approach the capacity of the multiple access channel, but we feel

that realistic ad hoc network conditions have not been adequately considered to this

point. As such, we seek to confirm that RP-CDMA can be applied successfully in

a general multihop ad hoc environment via network simulation.
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Chapter 3

Random Packet CDMA

RP-CDMA is a novel wireless CDMA protocol in which each packet is encoded in

two parts [42]. The packet header is encoded with a common spreading code that is

known to all nodes, and the payload is encoded with a randomly generated spread-

ing code. An identifier for the payload spreading code is placed in the header, so, as

a receiving node decodes the packet header, they obtain the code used to decode the

payload. Thus, each packet is self contained and any network node is able to decode

any packet in the network without any requirement to know beforehand which pay-

load code was used. When combined with a multiuser detector, RP-CDMA enables

a single node to receive several packets concurrently.

In this chapter, we first discuss RP-CDMA in general and follow with the de-

tails of our simulated implementation. Our general discussion of RP-CDMA in-

cludes its fundamental characteristics, including packet composition and transmis-

sion, spreading code selection, effective bandwidth and channel capacity. We then

discuss multiple packet reception and how the multiuser detector enables the recep-

tion of concurrent packets. These general properties are put into the context of our

reliable link properties from Chapter 1, and we will see how RP-CDMA addresses

each of them. With this theoretical discussion completed, we describe in detail how

our simulated RP-CDMA network device works, and describe the algorithms used

in our simulated device in order to transmit and receive packets.
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Figure 3.1: RP-CDMA packet structure from Schlegel et al.[42]

3.1 Fundamental Characteristics

As a CDMA spread spectrum system, RP-CDMA is inherently resistant to interfer-

ence and noise in the channel, just like other CDMA systems. It is this property

of spread spectrum that makes it a popular choice for wireless communication sys-

tems, and which underlies the requirement to employ spread spectrum in the ISM

frequency bands which are increasingly used for wireless systems of all types [12].

The novel property of RP-CDMA that distinguishes it from other CDMA proto-

cols is the way in which spreading codes are used to separate packets into individ-

ual channels without any requirement for a packet sender and receiver to coordinate

channel selection or access before data transmission. This distinguishes it from the

bulk of other CDMA protocols, which almost invariably either assign each node a

particular single spreading code to use for all transmissions [21], or which require

nodes to agree beforehand on which code will be used for a given transmission

using some kind of channel reservation system or through a coordination channel

[22]. We saw in Chapter 2 that these kinds of systems tend to suffer from problems

with the requirement for nodes to coordinate with each other before communicat-

ing, which fundamentally limits their effectiveness.

It is the RP-CDMA packet structure which enables asynchronous, uncoordi-

nated channel access by transmitting nodes. This structure, as described by Schlegel

et al.[42], is shown in Figure 3.1. In this figure, we can see that the packet is di-

vided into two sections, the packet header and the packet payload. The header con-

sists only of the synchronization bits (or access preamble), and the code id, which

indicates the spreading code used to encode the packet payload and any other in-

formation needed to decode the payload. The receiver similarly consists of two

stages: the header detection first stage, and the multiuser detector second stage. In
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the first stage, the receiver synchronizes to the header synchronization bits and ac-

quires the timing of the incoming packet. Once timing is recovered, the first stage

of the receiver decodes the code id portion of the packet, which contains all of the

information required to decode the packet payload, and hands this off to the second

stage along with the timing information. The second stage then decodes the packet

payload, recovering the data.

Because all nodes use the same spreading code to encode packet headers, any

node in the network can decode any packet header, and therefore can decode any

packet in the network. Fundamentally, this enables network nodes to operate asyn-

chronously, as there is no requirement to coordinate transmissions with other nodes

in order to exchange spreading codes or timing information.

3.1.1 Spreading Code Selection

The way in which the packet header is transmitted, in terms of spreading code used

or data encoding scheme, does not have to be the same as that of the payload in the

RP-CDMA system. It is in fact reasonable to select a stronger spreading code or

higher transmission power for the packet header than for the payloads because the

header channel is the only practically contended channel in the RP-CDMA system

[25].1 Thus, it is possible that multiple headers using the same spreading code

could overlap at a single receiver, and because the header detection stage is critical

in acquiring the packet timing, we may therefore employ a longer spreading code

for the packet header in order to achieve more gain, transmit headers with more

power, or we may choose a spreading code that has a low degree of autocorrelation.

For the payload spreading codes, we may employ any class of spreading codes

that we like, so long as there are sufficient codes such that it is unlikely that any

two neighbouring nodes will select the same code at the same time. Schlegel et

al.[42] suggest maximal length sequences (m-sequences) as possible candidates

due to their desirable autocorrelation and pseudorandom properties, but settle on

1Technically, the payload channels are also contended, but we shall see that by allowing for a
very large number of payload channels the probability that two neighbouring nodes simultaneously
select the same one is insignificant, which is why we say the header channel is the only practically
contended resource.
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random codes for the purposes of their analysis. This is a reasonable choice in the

asynchronous ad hoc environment, since asynchronously arriving packets will be

randomly offset from one another anyway, which will change the correlation values

between any specifically chosen set of codes.

3.1.2 Bandwidth and Channel Capacity

The bandwidth of a CDMA system is given by the length of the spreading code

employed and the bandwidth of the unspread signal, using Ws = GWd, where Ws

is the bandwidth of the spread signal, G is the spreading gain (which is the same

as the length of the spreading code), and Wd is the bandwidth of the original data

signal, which depends on the rate of carrier modulation, which for binary signalling

is simply Wd = 2R, where R is the data rate [51]. RP-CDMA is no different from

other CDMA systems in this regard, and the bandwidth occupied by RP-CDMA

depends on the length of spreading codes used in both the packet header and pay-

load. Because RP-CDMA is intended to be used for overlapping signals, the codes

chosen should be long enough to provide a low error rate in the low signal to noise

environment. Throughout our work, we assume a data rate of R = 1 Mbps, and

thus we will always assume the bandwidth of the RP-CDMA signal is given by

Ws = GWd = 2KR = 2K, where we assume that the number of users supported

by the multiuser detector, K, is equal to the length of the spreading codes used,

G, so we assume K = G. It is worth pointing out that Ws = 2K is a somewhat

pessimistic assumption, as more sophisticated signalling can achieve modulation

rates less than the data rate, and the number of users supportable in some multiuser

detectors is greater than the spreading code length. In particular, it should be pos-

sible to achieve K = 2G with sufficiently powerful decoders [42], but we assume

K = G throughout this dissertation.

The upper bound on the capacity of the channel is given by the Shannon limit

[51]:

C = Ws log2(1 + SNIR) (3.1)

Where C is the channel capacity in bits per second, Ws is the bandwidth of the
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channel in Hertz, and SNIR is the signal to interference plus noise ratio, SNIR =

Ps

N0+
∑N

i=1
Pi

. SNIR is simply the ratio of the signal power to the cumulative other

noise in the channel, which is just the thermal noise, N0, plus the sum of the signal

strength of all the other transmissions in the channel, denoted by the sum of the

individual signal strengths, Pi.

In RP-CDMA , the upper limit of the channel capacity thus depends on the band-

width used - which itself depends on the spreading code length - and the relative

signal strengths of all the signals in the channel. For our purposes, we are mostly

interested in the performance of our MAC protocol on top of the RP-CDMA link.

It has been established in the literature that with a sufficiently capable multiuser de-

tector it is possible to approach the Shannon limit for channel capacity [42, 25, 43],

and so we work within this result. Specifically, we assume a fixed data rate for our

transmissions of 1 Mbps, and leave the details of the data encoding, transmission

power levels, and multiuser detector decoding processes alone. This is not unusual,

as the literature routinely assumes, for the purposes of analysis, that a multiuser de-

tector of capability K can successfully decode up to K overlapping signals without

error, leaving aside the same transceiver operation details, as in [16, 36].

3.2 Multiple Packet Reception

A basic iterative multiuser detector consists of a simple interference suppression

stage in front of a parallel bank of single channel decoders [44, 43]. The interfer-

ence suppression stage takes the aggregate received signal in and passes it to the

single channel decoders. As the decoders successfully decode their data, they pass

it back to the interference suppression stage, which then modifies the received sig-

nal passed back to the decoders. This feedback loop between the decoders and the

interference suppression stage allows for the iterative decoding of all of the indi-

vidual signals comprising the aggregate received signal. A multiuser detector with

capability K can decode up to K overlapping signals simultaneously, with the de-

coders made up of a fixed bank of decoding circuits, or possibly software processes

started up on demand by the receiver as packets arrive [42, 28].
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There have been several types of multiuser detector proposed and studied in the

literature, such as the simple linear matched filter, the decorrelator, and the min-

imum mean squared error (MMSE) decoder [44]. There are also decoders which

perform iterative signal cancellation, such as that proposed by Holtzman [18], and

which integrate signal cancellation with other techniques, such as in Partitioned

Spreading [41, 25]. Iterative cancellation decoders perform just as well as other

decoders when the signals arrive with equal power, but have an advantage when

multiple signals arrive with different power levels [42, 8, 25]. In this case, the it-

erative cancellation of signals allows the receiver to successfully decode all of the

incoming packets from strongest signal to weakest, in what is sometimes called

’onion-peeling’ [44, 25]. This property provides the receiver with inherent near-far

resistance [41], which we have already seen is a problem in CDMA systems, and

particularly in ad hoc CDMA systems.

Because of their performance with unequal signal powers, we will assume through-

out this dissertation that the multiuser detector employed in the RP-CDMA device

is of the iterative signal cancellation kind. The use of an iterative cancellation mul-

tiuser detector in RP-CDMA enables the final desirable property of the system by

eliminating the requirement for nodes to coordinate their transmission power levels,

which is the last problematic coordination point for CDMA systems. The employ-

ment of an iterative cancellation receiver allows RP-CDMA network nodes to trans-

mit with whatever power level seems appropriate for their purpose, and specifically

without input from their neighbours.

In addition to eliminating the need for nodes to coordinate with one another be-

fore transmitting, the capability of the multiuser detector to better resolve signals

when they are distributed in signal strength indicates that we can utilize transmis-

sion power as a second axis - in addition to time - in which to separate transmissions

within a given frequency band. Signals arriving in the same frequency band at the

same time can be successfully recovered using iterative cancellation from the most

powerful signal to the weakest signal. This property turns the near-far problem from

a weakness of CDMA systems to a strength. We will return to this in Chapter 4.
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3.3 Desirable Properties

In summary, because RP-CDMA employs code division, individual signals are re-

sistant to external interference in the same way as traditional CDMA systems. By

placing payload spreading codes in packet headers, each packet is transmitted in

a private channel and is decodable by any node in the network, with no require-

ment for coordination between nodes before transmitting data. Finally, the ability

to simultaneously decode multiple packets spread over a range of signal strengths

eliminates the need for nodes to coordinate their transmission powers. Thus, there

is no requirement for nodes to coordinate their transmission at all in the RP-CDMA

system, and, in these ways, RP-CDMA can achieve much of what we want from a

wireless link:

1. Random payload codes provide packet level private channels, except for packet

headers.

2. Code division provides resistance to interference, both external and from

other packets.

3. Multiple packet reception and packet formatting eliminate the need for chan-

nel access coordination.

Having now discussed what RP-CDMA is, how it works, and why it seems

promising as a basis for our reliable link, we can now move on to a discussion of

how we simulate it in ns-3.

3.4 Simulation of RP-CDMA

We simulate RP-CDMA in ns-3 through a custom network device. Since our aim

is to design a MAC protocol that uses a RP-CDMA based Phy to build an efficient

wireless network device, we must simulate the RP-CDMA Phy. We simulate this

down to the level of packets being sent through a wireless channel to other nodes

in the network. At this level we simply pass packets between nodes as a series of

bytes, and so do not simulate the actual encoding of bits or transmission waveforms.
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In general, a packet passed from the MAC layer to our RP-CDMA based Phy

will have a randomly selected payload spreading code assigned to it, the RP-CDMA

Phy header prepended, and be sent into a common wireless channel from which

it is received by all other nodes in the channel. The receiving Phy must decide

whether the received signal can be decoded based on the state of the receiver and

the instantaneous channel noise conditions, and then perform packet decoding in

the multiuser detector. In order for packet decoding to happen successfully, the Phy

must therefore simulate the working of a multiuser detector, as well as track the

noise level in the channel in order to measure interference.

In this section, we describe our simulated RP-CDMA Phy from the point of

view of a packet being sent down from the MAC layer from a transmitting node.

We follow the packet as it passes through the channel and into a receiving Phy. In

so doing, we describe our RP-CDMA Phy header, how we track channel noise, de-

code packet headers and payloads, and finally simulate the working of the multiuser

detector and pass packets up to the receiving MAC layer.

3.4.1 Simulator Preliminaries

Because we will discuss our algorithms, experimental design, and results in the

context of the simulator, it is useful at this point to briefly describe the simulator we

use, how it functions, and to what level of detail we simulate the network.

All of our simulations are performed with with the ns-3 network simulator.2

Though similarly named, ns-3 is not derived from the more familiar ns-2 project3,

but is an entirely new codebase and the respective development teams are not affili-

ated. That said, ns-3 aims to provide a highly realistic discrete event driven network

simulation stack upon which to perform network research down to the packet level

[30]. To this end, ns-3 provides a complete network stack, which allows researchers

to create realistic simulations from the application layer down to the physical layer

and into physical channels. At the application layer, programs have a normal net-

work sockets interface which takes packets and bytestreams. At the physical layer,

2http://www.nsnam.org/
3http://www.isi.edu/nsnam/ns/
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Figure 3.2: The ns-3 network stack. We created a network device with Link and
Physical layers, indicated with the dashed lines. The RP-CDMA transceiver works
at the Physical layer, and our MAC protocol works at the Link layer.
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channels provide facilities to model signal fading, interference and propagation de-

lay. The networking stack itself is modelled on the real world Linux kernel network

stack, to the degree that the actual network stack from a host Linux system can be

substituted for the simulator stack should a researcher wish to do so. Since the sim-

ulator is entirely software, it is possible for a researcher to simply modify various

parts of the realistic network stack and run simulations to evaluate performance.

This is, in fact, the network simulator’s raison d’être.

The ns-3 network simulator is an event driven simulator. This means that the

passage of time is simulated simply by executing a series of scheduled events. Any

component in the simulation can schedule an event to occur at some point in the

future and defines what action to take when the event is triggered. Once triggered,

the simulator performs the scheduled action. In this way, we can incorporate the

passage of time into our simulations. For example, when a packet is transmitted

by some node into the channel, we calculate the arrival time of that packet at each

other node in the channel by considering the transmission propagation speed and the

distance between the nodes. Once the arrival time is calculated, we can schedule the

simulator to process the arrival of the packet at that time. In this way, the simulator

can drive the simulation simply by processing events in the order of their scheduled

execution times.

In this context, our work involves the simulation of a MAC protocol built upon

a RP-CDMA based transceiver. As this type of device does not already exist in

the simulator codebase, we have therefore created from scratch a new ns-3 network

device which includes a Link and Physical layer. Figure 3.2 illustrates where in the

ns-3 network stack our device resides, which we have outlined with a dashed line.

At the Link layer we implement our MAC protocol, which decides when to transmit

and when to receive, and handles our link layer acknowledgements. Below the

MAC is the RP-CDMA based Phy, which handles the transmission of packets into

the wireless channel and packet reception. The remainder of this chapter describes

the simulation details of our Phy, and Chapter 4 describes the working of our MAC

protocol.
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3.4.2 Header Description

In the literature, the RP-CDMA header is usually described as containing only the

synchronization bits (or access preamble) and the payload code id [42, 28, 25].4

In theory, these two fields are all that is minimally required in order to identify the

packet payload and decode it, as they are sufficient for the radio receiver to first lock

on to the incoming transmission using the synchronization bits, and then identify

the payload spreading code to hand off to the multiuser detector for decoding. In

practice, the receiver needs to know other bits of information about the packet in

order to complete the decoding process, such as the length of the packet, any error

correction information, and any particulars about the encoding process such as the

amount of redundant information or information rate. This payload information

could be included in the packet payload itself, but we would then be putting the

payload decoder in the position of needing to decode some of the payload in order

to get all of the information required to decode the payload.

In our implementation, we include the synchronization bits, payload spread-

ing code id, packet length, packet cyclic redundancy check (CRC) and the packet

encoding information rate in the RP-CDMA Phy header. The extra fields beyond

the synchronization bits and the payload spreading code are included with the Phy

header instead of with the packet payload because they enable the multiuser detec-

tor to perform decoding of the payload without any additional information. Our

aim in doing this is to simplify the decoding of packet payloads in the multiuser

detector. To this end, we include the packet length so the multiuser detector will

know how long a packet is going to be, and thus when a specific transmission is

expected to end. The CRC is included so that the multiuser detector can easily per-

form basic error detection over the entire packet, and the information rate informs

the multiuser detector how much of the payload is redundant information to be used

for error detection and correction. Together, these fields enable the multiuser detec-

tor to decode the packet payload without having to consult any information inside

4We assume that the authors mean ’code id’ to be any information required to decode the packet
payload and not only the actual payload spreading code, but we could not find a detailed header
specification in the literature.
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Figure 3.3: RP-CDMA Phy header, showing header fields and their lengths.

the payload itself. Our Phy header showing each of these fields and their respective

lengths in bits is depicted in Figure 3.3.

For the sync portion of the header we use 40 bits. This is slightly shorter than

the 802.11 Short Physical Layer Convergence Procedure (PLCP) Preamble of 72

bits [48], but on the same order as the more recent 802.15.4 standard which also

uses 40 bit preambles in its Binary Phase Shift Keying (BPSK) mode [47]. The

number of bits in the sync header is therefore reasonable, and would be feasible in

a physical implementation. We assign 32 bits for the payload spreading code identi-

fier, which gives us a possible 232 codes to choose from when randomly selecting a

spreading code for a packet. We allocate 32 bits for the packet length, which allows

us to specify packet lengths up to 232 in size - much larger than we envision being

required, and also more than the 16 bits allocated for the same purpose by 802.11

[48]. We allocate 32 bits for the CRC, which allows us to make use of popular 32

bit CRC polynomials such as that specified by Ethernet [50], and which compares

favourably to the 16 bit CRC checks in both 802.11 and 802.15.4 [47, 48]. Lastly

we allow 8 bits for the information ratio, which allows us to specify up to 28 values

for the level of redundancy in the message, or the information rate, which is more

than required to specify typical values in the range of 2-12, or unusual values up to

256 [44].

3.4.3 Packet Transmission

A packet is passed to the Phy layer for transmission with or without a payload

spreading code assigned. This allows the MAC to optionally specify which payload

spreading code to use for a transmission when sending either acknowledgement

packets or retransmitting a previously sent packet. If no payload code is specified
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by the MAC, then the Phy will randomly select a spreading code. With the payload

spreading code decided, the Phy will construct the Phy header for the packet, as

described above in Section 3.4.2, and begin the process for transmitting a packet

into the channel. Once the packet has been transmitted, the Phy will return the

payload spreading code to the MAC.

At any time the Phy can be in one of four states:

1. The Phy can be idle (IDLE), and is neither transmitting a packet nor receiving

a packet

2. The Phy can be receiving either a packet header (RX HEADER) or a packet

payload (RX PAYLOAD)

3. The Phy can be transmitting a packet payload (TX PAYLOAD)

4. The Phy can be transmitting a packet header (TX HEADER)

In our system the MAC is aware of the Phy state, and makes the decision of

when to pass packets down to the Phy based on its own assessment of when the

device should transmit. The Phy is responsible only for transmitting the packets

passed to it from the MAC, and the MAC only passes packets to the Phy for trans-

mission when the Phy is in a state such that it can transmit them.

We can enumerate the behaviour of the Phy when a packet arrives from the

MAC for each of the possible states listed above:

1. If a packet arrives from the MAC while the Phy is idle, then the Phy will

transmit the packet header and then the packet payload normally. The Phy

state will go from IDLE to TX HEADER, and then to TX PAYLOAD as the

packet header and payload are transmitted respectively.

2. If the MAC passes a packet to the Phy while the Phy is receiving one or more

packets and is in state RX HEADER or RX PAYLOAD, all packet receptions

will be cancelled and the Phy will switch to the transmit state in order to

transmit the packet header and payload.
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3. If a packet arrives from the MAC while the Phy is transmitting a packet pay-

load, then the Phy will transmit the packet header and payload concurrently

with the already outgoing packet payload, with the Phy state switching to

TX HEADER and then back to TX PAYLOAD as the header and payload

go out. This is the basis of Simultaneous Transmission, which we discuss

in Section 4.2. If a packet arrives which brings the number of simultaneous

transmissions up to the limit of the multiuser detector,K, then the Phy signals

the MAC that no more packets can be transmitted.

4. The MAC will not pass a packet to the Phy when it is already transmitting

another packet header and is in the state TX HEADER.

We see then that once a packet is received from the MAC, the Phy will begin

transmitting it into the channel.

3.4.4 Channel Characteristics

Once transmitted from the Phy into the channel, the channel schedules packet ar-

rival at all other nodes in the channel. The distance, d, between the transmitting

node and each other node is calculated, and the transmission power, Ptx, is atten-

uated using the ns-3 Log Distance Propagation Loss Model, which decreases the

power at the receiver, Prx, using the formula:

Prx = Ptx − Lref − 10 · 3 · log10(d/dref ) (3.2)

Where Lref is the loss at the reference distance, dref , all distances are in metres

(m), and power is in decibels referenced to one milliwatt (dBm). For distances less

than the reference distance, d < dref , the signal strength is not attenuated, and so

Prx = Ptx. In ns-3, the default reference distance is 1.0 m, with Lref = 46.6777

dB, which is the Friis loss at 1 m and 5.15 GHz [30].

Once the power is attenuated with the propagation model, the packet is sched-

uled to arrive from the transmitter at each other node in the network using a straight-

forward constant speed delay, where the propagation delay is given by:
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Figure 3.4: Interference Model. We track the noise in the channel by packets.

Tdelay = d/c (3.3)

Where c = 299792458 m/s, the speed of light.

3.4.5 Interference Tracking

Whenever a packet arrives at a receiving Phy from the channel, the signal strength

is added to the interference model object, which records the start and end times of

each signal, along with the received signal strength in dBm. The interference model

therefore maintains a continuous trace of the cumulative signal strength measured

by the receiver, as illustrated in Figure 3.4.

Using this trace it is possible for the Phy to determine the signal to noise ratio

in any time interval. Given a start and end time for a signal, the interference model

can provide the noise level in the channel for each chunk of time in which the noise

level is constant. For example, in Figure 3.4, the noise level present in the channel

between the times t1 and t4 - during which the second packet is received - is broken

down into three noise level chunks, covering the time periods t1 to t2, t2 to t3 and

t3 to t4. For each of these periods, the signal to noise ratio can be calculated for

the second packet, from which we can calculate the probability of a bit error in the
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decoding of the given signal, and therefore calculate the probability of an error in

decoding the packet.

3.4.6 Packet Reception

Upon arriving at a receiver the packet signal strength and duration are recorded in

the device interference model, as described in Section 3.4.5. Once the interference

from the transmission is recorded, the Phy decides if it can actually decode the

packet. This happens in two phases: header reception and payload reception.

Because the packet header is sent using the common header spreading code, the

Phy is capable of decoding only one header at a time. The Phy must successfully

decode the packet header, extract its contents as described in Section 3.4.2, and then

pass off the payload reception job to the multiuser detector, which then decodes the

packet payload.

When a packet arrives from the channel at the receiving Phy, the Phy first de-

cides if it will be able to synchronize to and decode the header portion of the packet.

In general, the Phy will be able to decode the header if the signal power at the re-

ceiver is greater than some minimum detection threshold, and the device is in a

state such that it will be capable of detecting and devoting resources to header and

payload decoding. Therefore, when a packet header arrives at the receiving Phy, the

Phy will accept the packet and schedule the decoding of the packet header unless

any of the following criteria is met:

1. The signal strength is below the device detection threshold.

2. The device is transmitting.

3. The device is receiving another packet header (this is a header collision).

4. The device is already receiving K packets.

If the packet does not meet any of these criteria, then the Phy will accept the

packet and schedule a header decoding event for the time when the header will have

completely arrived at the receiver. Once the header has arrived, the Phy will calcu-

late the probability of successful header detection based on the signal to noise ratio
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in the interval between when the header began and ended, and compare this proba-

bility to a uniform random number between 0 and 1 to determine header reception

success. If successful the Phy will decode the header and then pass the packet in-

formation, including the payload spreading code and packet length, to the multiuser

detector for payload decoding.

3.4.7 Multiple Packet Reception

The multiuser detector can decode up to K packets simultaneously. In our imple-

mentation, the multiuser detector simply schedules a packet decoding event when

the packet is due to have finished arriving, and then computes the probability of

successful packet reception based on the signal to noise ratio measured by the inter-

ference model in the time between when the packet payload started and ended at the

receiver. This probability of successful reception depends on the characteristics of

the receiver and the type of error correction coding used, which we are free to sub-

stitute into our model based on the type of multiuser detector we wish to test in our

simulator. In particular, for the ideal receiver which always successfully decodes K

packets regardless of interference, we have the probability of successful reception

equal to 1. So in the ideal case, as long as the packet is not dropped by the Phy

for one of the reasons above, then it will be successfully received by the multiuser

detector. In this work, we performed all of our experiments with ideal receivers.

Once decoded by the multiuser detector, the received packet is passed up to the

MAC layer for handling and processing.

3.5 Summary

In this chapter, we began by discussing the properties of RP-CDMA as proposed

by Schlegel et al.[42]. This discussion included the fundamental properties of RP-

CDMA , including packet format, selection of spreading codes, required bandwidth,

and the properties of the multiuser detector. We related these properties to our

desired link properties from Chapter 1, and concluded that RP-CDMA could offer

us private channels for each packet, interference resistance, and coordination free
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transmissions, and was thus a suitable candidate for a reliable wireless ad hoc link.

With the theoretical evaluation complete, we began the discussion of how we

simulated RP-CDMA in the ns-3 network simulator. We began with the basic de-

tails of how the simulator works and then described our RP-CDMA packet header

format, which is designed to allow a packet payload to be decoded by the multiuser

detector without having to refer to any information in the packet payload itself. We

then traced a packet through the RP-CDMA Phy, as it was passed down from the

MAC, through the Phy, and into the channel. Once in the channel, we described

how a packet arrives and is processed by the receiving node Phy, including inter-

ference tracking, header collision detection, and multiple packet reception in the

multiuser detector, before being passed up to the receiving node MAC.

Having completed this discussion of RP-CDMA and how we simulate it, we

can now move on to the discussion our MAC, which drives the RP-CDMA Phy and

is one of the main contributions of this work.
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Chapter 4

MAC Description

In this chapter we will describe the details of our MAC protocol, which we designed

to operate on top of the RP-CDMA Phy. This MAC protocol and the accompa-

nying performance study is the main contribution of our work, and our aim is to

demonstrate that the RP-CDMA based network device can achieve relatively high

reliability and performance on an ad hoc network with a simple MAC protocol such

as the one described in this chapter.

Before describing the details of our MAC protocol, we first motivate its de-

sign in Section 4.1. We will see that the addition of the multiuser detector changes

the nature of the link reliability and performance problem, which motivates us to

propose two extensions to the standard RP-CDMA protocol: Simultaneous Trans-

mission and Payload Channel Acknowledgements. These extensions are designed

to make maximum use of the multiuser detector, improve system performance, and

reduce congestion in the common header channel. After describing these exten-

sions in Sections 4.2 and 4.3, we then describe our MAC protocol in Section 4.4,

and discuss acknowledgement policies in Section 4.5.

4.1 Motivation

Our investigation into the application of RP-CDMA in the multihop ad hoc con-

text was initially motivated by the observation that modern wireless ad hoc systems

suffered from the problems of packet collisions and interference, which fundamen-

tally limited their reliability and performance. Initially, we experimented with RP-
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CDMA by modifying the ns-3 802.11 stack to simulate a multiuser detector at the

physical layer, leaving the 802.11 MAC intact. These early experiments found that

packet losses due to collisions were indeed significantly reduced, as we had hoped,

but that system performance compared to the 802.11 CSMA model, while better,

was not dramatically improved. Based on these early experiments, we decided to

abandon the 802.11 model entirely and implemented RP-CDMA in its own sim-

ulated device from scratch. Our early experiments with this device found, again,

that even with our own MAC on top of the multiuser detector, our performance was

improved over the previous result, but not dramatically so.

When we investigated what was limiting the performance of our ad hoc network

even after the elimination of losses due to interference, the reduction of packet colli-

sions to negligible levels, and the removal of any need for nodes to coordinate their

transmissions, we found that there were two main causes of performance degrada-

tion: First, the dominant cause of packet loss was due to the receiving node being

in the transmit state when a packet arrived, and so the half duplex nature of the

radio became a significant problem, since nodes cannot both transmit and receive

simultaneously.1 Second, because an ad hoc network node may transmit to any

one of its neighbours either for packet forwarding or to actually deliver a message,

nodes must listen to their neighbours for incoming packets. This requirement fun-

damentally limited the performance of the system, as nodes had to wait for their

neighbours to finish transmitting a packet before commencing their own transmis-

sions.

Coupled with our observation that nodes were spending significant time waiting

for neighbour transmissions to finish, we observed that the multiuser detectors were

not being significantly loaded at any time, despite each node having large queues

of packets waiting to be transmitted. Rather, we found that with only one or two

nodes in a group transmitting at any given time (and the rest all waiting for the

transmissions to finish), the multiuser detectors in each node did not typically have

to handle more than one or two incoming packets at a time. This is a problem some-

1Notwithstanding the recent work by Choi et al.[10], who have constructed a prototype full
duplex radio using a clever form of signal cancellation.
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what unique to an ad hoc system where nodes must all listen to their neighbours,

and absent from a base station type system where all nodes transmit to the base

station. In a base station style system, such as that examined by Ghanbarinejad

et al.[16], maximizing the number of concurrently transmitting nodes is a viable

strategy to make the most use of multiuser detectors. In contrast, maximizing the

number of concurrently transmitting nodes in an ad hoc system only increases the

probability that the intended recipient of any transmission is transmitting itself, and

that the packet will be lost due to the half duplex nature of the radio.

Our early experiments with RP-CDMA in ad hoc networks were therefore of

limited success. Link reliability was significantly improved, but as we increased

the system load we still lost packets due to the half duplex nature of the radio,

and system throughput was limited by the need for nodes to take turns transmitting

to each other. Our problem therefore became how to limit the time nodes spent

transmitting while simultaneously increasing the number of packets transmitted.

Our solution to this problem lies in the multiuser detector. Our observation that

nodes’ multiuser detectors were relatively under-utilized while the transmit queues

filled up illustrated that our system was no longer constrained by the receiver capa-

bility, as it was when the system was limited by packet collisions and coordination,

but rather the system was now transmit capability limited. This observation has

motivated the design of our MAC protocol, in which we have coupled the powerful

multiuser detector with an aggressive transmission mechanism designed to mini-

mize the amount of time each node spends transmitting while making full use of

the multiuser detector capability.

We therefore propose to extend the RP-CDMA Phy with two additional features:

Simultaneous Transmission and Payload Channel Acknowledgements. We discuss

these features in the following sections, after which we will be in a position from

which we can describe our MAC protocol and acknowledgement mechanisms.
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4.2 Simultaneous Transmission

Simultaneous transmission is motivated by the observation that there is no require-

ment for packets arriving concurrently at a receiver to have been transmitted by

different senders. Furthermore, when we consider that a multiuser detector can re-

ceive multiple packets simultaneously it makes sense to pair this capability with an

equally capable transmitter. We therefore propose to exploit the capability of the

multiuser detector by having a transmitting node compute and transmit the aggre-

gate waveform of multiple packets, each with unique payload spreading codes and

power levels. In this way, a transmitter can use a single frequency band to separate

data in both time and transmission power. The only restriction is that packet headers

be staggered so as to not overlap and collide, and that a node not transmit a number

of simultaneous packets beyond the capability of the multiuser detector, K, since

there is no advantage in transmitting more packets simultaneously than the receiver

is able to successfully decode. Aside from these restrictions, we are free to transmit

multiple packets concurrently to one or many network peers.

Simultaneous transmission is effectively the inverse of multiple packet recep-

tion, but instead of the receiver decoding multiple packets simultaneously using

their unique spreading codes and iterative cancellation, the transmitter encodes mul-

tiple packets simultaneously using unique spreading codes and signal aggregation.

By assigning each packet a power level and then computing the aggregate waveform

of all packets, the transmitter is able to concurrently spread multiple packets over

the range of transmitter power capability. On the receive side, the multiuser detector

uses iterative cancellation to successively decode each packet from most powerful

to least powerful. In this way, a single transmitter can send up to K packets si-

multaneously - where K is the capability of the multiuser detector - as long as the

packet headers are staggered so as to not overlap. Because each packet is encoded

using a unique spreading code, there is no restriction on the intended recipients of

these aggregated packets, as the multiuser detectors at each other network node will

be capable of decoding all of the simultaneous packets in the same manner as if the

packets had arrived from different transmitters simultaneously.
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Figure 4.1: Simultaneous transmission of multiple packets to one or more receiving
nodes, with spreading code indicated by line type. Note that only packet headers
share a spreading code, and are therefore staggered so as to not overlap by some
number of packet header intervals, denoted by Lh. In a given frequency band, we
distribute data in both time and power, which allows us to transmit multiple packets
in the same time it takes to transmit just one packet, denoted here between points a
and b.

Simultaneous transmission is illustrated in Figure 4.1, which shows three pack-

ets being transmitted simultaneously. Each packet payload is encoded with a unique

spreading code, indicated by the line type, and is labelled with the intended receiver

of the packet. Figure 4.1 also illustrates how simultaneous transmission enables us

to reduce the time a node spends transmitting while increasing the amount of data

transmitted, because it enables a single transmitter to fit more data into unit time.

Note that the transmitter is able to commence transmission of packets P2 and P3

before the transmission of P1 is complete, which means that both P2 and P3 will

finish transmission earlier than they would if they were transmitted one at a time.

Being able to fit more data into unit time allows each node to reduce the amount of

time spent in the transmit state, which we expect will reduce the number of packets

lost due to the half duplex nature of the radio. At the same time, by fitting more

data into unit time, more time is available to other nodes in the system for their

turns transmitting.

The risk with simultaneous transmission is that in the event of two or more

nodes beginning transmission at the same time many packets may be lost to header

collisions rather than just one or two. This risk can be illustrated if we imagine

the classic hidden node problem, where two sending nodes share a receiving node

41



but cannot communicate with each other. Without simultaneous transmission, if the

two sending nodes each transmit one packet such that their headers collide at the

receiving node then both packets will be lost. With simultaneous transmission, the

same situation could result in up to K packets lost from each sending node, or 2K

packets in total.

In order to mitigate this risk, we stagger simultaneous packet headers by a ran-

dom number of packet header intervals, which we denote by Lh.2 After transmitting

a packet header the transmitter waits for a number of header intervals in the range

[1, I), and then begins transmitting the next packet. Now if two sending nodes be-

gin transmitting at exactly the same time to a common receiving node, their first

packets will collide at the receiving node, but because we randomly stagger each

subsequent simultaneous packet it is possible that their headers will interleave and

be successfully received. Thus, in the case where two nodes begin transmission at

the same time, traffic from either of them destined for third parties may still be re-

coverable. This is why we randomly stagger our packet headers rather than transmit

all of the packet headers in a block.

Simultaneous transmission is our primary solution to the transmitter bottleneck

we observed in our early RP-CDMA experiments. By sending several packets con-

currently, a single sending node is able to exploit the full capability of the multiuser

detector at the receiver while reducing the time required to send a given amount of

data.

4.3 Payload Channel Acknowledgements

Payload channel acknowledgement refers to the practice of encoding both the packet

header and payload of an acknowledgement packet (Ack) using the payload spread-

ing code of the packet being acknowledged. This is in contrast to the standard RP-

CDMA procedure of encoding the packet header using a common code, and the

payload with a random code. Because the transmitter knows which payload codes

it used to send packets to its neighbours, it can listen for acknowledgements us-

2A packet header interval is just the time it takes to transmit one packet header, which we saw in
Figure 3.3 has Lh = 144 b = 18 B.
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Figure 4.2: Payload Channel Acknowledgements. By sending both the header and
payload of an Ack packet using the payload spreading code of the packet being
acknowledged, load is reduced on the common header channel. In this figure, the
type of line used to depict the packet headers and payloads represents their differ-
ent spreading codes. Because the packet headers for Ack packets are sent using a
payload code instead of the common header code, multiple Ack packets can be sent
concurrently.

ing those same codes, and both the header and payload of the acknowledgement

packet can be encoded using this payload code. In this way, acknowledgments are

sent entirely in the packet payload channel, and do not impact the common header

channel. Furthermore, when combined with simultaneous transmission, up to K

acknowledgement packets can be transmitted simultaneously with no requirement

to stagger the packet headers. As a result, a transmitter can send up to K acknowl-

edgements in the same time it takes to send one, which significantly reduces the

load that acknowledgement packets place on the transmitter and network.

This is depicted in Figure 4.2, where we show two Ack packets and one data

packet being sent simultaneously. Again, the spreading code used to transmit a

particular packet header or payload is indicated by line type. Because Ack packet

headers are each sent with the same code as their payload, there is no requirement

to stagger Ack packet headers.

Payload channel acknowledgements further reduce the time spent by a node in

the transmit state, which allows each node more time to transmit new data. This

further enables our MAC to minimize the amount of time spent transmitting, and

by reducing the number of headers sent in the common header channel, decreases

the probability of packet header collisions.
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4.4 MAC Protocol

We can now begin our discussion of our MAC protocol. Because we are interested

in simple MAC protocols that do not require coordination between nodes, we con-

sider a simple random backoff based MAC. This MAC is similar in spirit to the

802.11 backoff mechanism, but whereas 802.11 uses a binary exponential back-

off algorithm to determine how long to wait after failing to gain the channel, we

use a simple uniformly random backoff interval with no feedback or adjustment in

the event of successful or failed transmission. Our backoff mechanism is therefore

simpler than that in 802.11 [48].

Our MAC maintains a drop tail queue of packets which have arrived from the

network layer but have not yet been transmitted. This queue can hold up to M

packets, and any packets which arrive while the queue is full are dropped. Once

a packet enters the queue, the MAC begins the process of trying to send it. When

having a packet to send, the MAC first checks the Phy to determine if it is ’safe’

to transmit and, if so, sends the packet to the Phy for transmission after waiting

a random number of packet header intervals in the range [1, B). If the Phy starts

receiving a packet while the MAC is waiting, then the transmission is postponed

until the transceiver becomes available again, at which time the MAC repeats the

random backoff procedure.

Algorithm 4.1 shows the Phy level evaluation of whether it is ’safe’ to transmit.

This algorithm simply returns true if the Phy is idle or if it is currently transmitting

fewer than K packet payloads, and otherwise returns false. It is worth noting here

that we are using the Phy state to find our solution to the problem of determining

whether or not the channel is occupied at any given time. A more common solution

to this problem is to perform a clear channel assessment (CCA) by estimating the

noise floor in the channel and comparing that estimate with the current channel con-

ditions [48]. In our solution, we consider the channel to be unoccupied if the Phy is

not actively receiving any packets. This means that we are not performing a CCA

in the same manner as 802.11, but are rather substituting the CCA function for the

activity status of the Phy. This is conceptually simpler than trying to guess what the
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noise floor is in the clear 802.11 channel, and also practically simpler since the Phy

knows directly whether or not it is currently processing any incoming packets. The

potential risk of assessing whether or not it is safe to transmit at a given time in this

manner is that it may ignore evidence that there is traffic in the channel that has not

been picked up by the receiver. This eventually depends on the properties of the

radio receiver, such as the average number of header synchronization bits required

before the receiver acquires the timing of a particular signal or the packet encod-

ing scheme chosen, but we proceed on the assumption that if the radio is actually

capable of reliably detecting and synchronizing on an incoming transmission, then

our mechanism of simply querying the Phy for its status would be sufficient in a

real implementation, particularly since the RP-CDMA system is highly tolerant of

overlapping transmissions.

Algorithm 4.1 Phy CanTx()
MPR is the multiuser detector, with capability K
TxList is the list of packets currently being transmitted
State is the state of the transmitter.

if State = IDLE then
return true

end if
if State = TX-PAYLOAD and TxList.size ≤ MPR.K then

return true
end if
return false

Algorithm 4.2 shows the algorithm for selecting a random backoff period be-

fore beginning a transmission. In order to support simultaneous transmission, this

function checks the Phy for its state and returns a random time in the range [1, B)

header intervals initially, or in the range [1, I) for simultaneous transmission.

Algorithm 4.3 puts these two together into the algorithm that executes whenever

the device has data to send, and is visually illustrated in Figure 4.3. In this diagram,

when the MAC has a packet waiting to be sent from its queue, it enters the diagram

at the top. It first checks if the Phy is ready to transmit. If not, then the MAC

will wait until the Phy notifies it that it is available to transmit. Once the Phy

is available, then the MAC waits a random number of packet header intervals in

45



Algorithm 4.2 MAC CalculateBackoffTime()
B is the initial maximum number of header intervals to wait
I is the maximum simultaneous transmission header intervals
Lh is the length of a packet header
S is the channel speed
Phy is the device Phy

if Phy.State = TX-PAYLOAD then
return Rand(1,I) ·Lh/S

end if
return Rand(1,B) ·Lh/S

the range [1, B), then checks again if the Phy is still available. If the Phy is still

available to transmit after the backoff period, then the MAC forwards the packet to

the Phy for transmission. The Phy will then begin transmitting the packet into the

channel.

Algorithm 4.3 MAC SendFromQueue()
Data is the queue of packets that need to be sent
Phy is the device Phy layer

while not Data.Empty() do
while not Phy.CanTx() do

Wait()
end while
Wait(CalculateBackoffTime())
if Phy.CanTx() then
Next← Data.PopFront()
Phy.Send(Next)

end if
end while

We implement the random backoff period in order to resolve header channel

contention in the event of several neighbouring nodes all wishing to transmit at the

same time. This is easily illustrated with a simple example with three neighbouring

nodes, depicted in Figure 4.4. Suppose that nodes A, B and C are neighbours and

can all communicate with each other. Suppose that node C has a packet to transmit

to node A, and both nodes A and B have packets for each other. If node C begins

transmitting its packet (4.4a), both nodes A and B will wait until C’s transmission
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Phy.CanTx()

Wait(CalculateBackoffTime())

Send Packet to 
Phy

FalseTrue

Wait until the Phy 
is available

Send Packet from 
MAC Outgoing 

Queue

Phy.CanTx() False

True

Figure 4.3: MAC Sending Algorithm. When the MAC has a packet to send, it first
checks of the Phy can transmit. If so, it waits a random number of packet header
intervals, then sends the packet to the Phy for transmission.
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(a) C sends to A
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B

(b) Both A and
B send, causing
loss

A C

B

(c) A sends after
random backoff

A C

B

(d) B sends after
random backoff

Figure 4.4: An example showing why we implement a random backoff algorithm
in our MAC. After C finishes sending to A (a), if both A and B were to commence
transmission immediately then their packets would both be lost (b). If both A and
B choose a random backoff interval, then A can send into the channel first (c), and
then B afterwards (d).

is complete before sending their packets. As soon as the transmission from node

C ends, the MACs in nodes A and B will be notified that their Phys are no longer

receiving any packets. At this point, if our MAC protocol did not wait before send-

ing their packets to the Phy, then both nodes A and B would immediately begin

transmitting their packets to each other. Since we have half duplex radios, neither

A nor B would receive the packets from one another, and both packets would be

lost (4.4b). However, if both nodes A and B randomly select a backoff period, then

there is some probability that they select different random periods and one of them

will begin transmitting first. Suppose node A begins transmitting first (4.4c). In this

case, nodes B and C would wait until the transmission from A was complete, after

which node B would randomly wait for some time period, and then would com-

mence transmission to node A (4.4d). Thus, the random backoff period prevents

nodes from all trying to transmit at once as soon as a transmission finishes.3 Our

random backoff period then is designed to facilitate orderly access to the channel by

one node at a time. Having only one transmitting node at a time is important in ad

hoc networks because a node may have packets for one or several of its neighbours,

and so it is best if only one node transmits at a time in a given set of neighbours.

We use a random backoff period because it does not require the nodes to coordinate

their channel access, which was one of our design goals from Section 1.2.

3The problem of many entities all trying to do the same thing at once, resulting in nothing being
accomplished, is sometimes called the Thundering Herd Problem. http://en.wikipedia.
org/wiki/Thundering_herd_problem
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We have seen here that our MAC is conceptually straightforward. We apply

a uniform random backoff mechanism before initiating a transmission, and once

transmitting utilize simultaneous transmission to send as much data as possible in

given time. Having described how our MAC works, we turn our attention to ac-

knowledgement mechanisms.

4.5 Acknowledgements

In our work, effectively addressing the acknowledgement problem came down to

answering the question of when to ack. In a system designed with the limiting con-

straint that a single node can only receive one packet at a time from only one trans-

mitter, such as 802.11, it seems obvious that the acknowledgement should come

immediately after the single packet was successfully received. In the RP-CDMA

based system we propose here, a node may be receiving several packets concur-

rently - perhaps from different sending nodes - and it becomes problematic to send

an acknowledgement after each packet is received because switching to the radio

transmit state necessarily means dropping any packets that are not fully received.

Our focus when developing acknowledgement policies in this work was there-

fore much more on solving the problem of when to send acknowledgements, rather

than how. Our acknowledgement policies thus send an acknowledgement for each

successfully received packet. This may seem problematic at first glance, but when

we consider that payload channel acknowledgements and simultaneous transmis-

sion remove ack traffic from the common header channel and compress sending

many ack packets into the time required to send only one, we see that acknowledg-

ing every packet is an algorithmically simple solution that actually has relatively

little impact on the system.

The problem of when to ack is illustrated in Figure 4.5. In this figure we see

that if the receiving node sends an acknowledgement after the first packet, P1, is

received at time a then the second and third packets, P2 and P3, will be lost because

the radio is half-duplex. Similarly, if we choose to send an acknowledgement after

P2 then P3 will be lost. We can extend this reasoning to the general case and see
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Figure 4.5: When to send acknowledgements? If an acknowledgement for P1 is
sent at time a, then P2 and P3 will be lost because the radio is half-duplex. If the
receiver waits until time c to send an acknowledgement, then host A will be left
waiting in the interval [a, c].

that for any fixed timeframe or number of packets that a receiving node waits before

sending acknowledgements can yield a case where some packets are dropped as the

radio switches to transmit. Thus, trying to guarantee that an acknowledgement will

be sent in some fixed period will inevitably lead to lost packets at the receiving node.

In the multiuser detector environment, the receiving node therefore benefits from

being able to wait for longer periods before sending acknowledgement packets.

At the sending node, we have an additional problem. If the sending node knows

that the receiving node will guarantee acknowledgement within some fixed time-

frame after receiving a packet, then it must refrain from transmitting within this

timeframe or else it may miss the acknowledgement. This time spent waiting for

acknowledgements causes delay in the transmission of subsequent packets. In this

situation, the sending node can minimize delay of subsequent packets if the re-

ceiving node sends an acknowledgement as soon as possible. As system load is

increased the receiving node’s benefit from longer delays before transmitting ac-

knowledgements conflicts with the sending node’s benefit from minimal delays be-

fore receiving them.

We see then that trying to choose a fixed timeframe in which to send an acknowl-

edgement becomes an effort in balancing the needs of the receiving and sending

nodes. The receiving node prefers to wait and receive as many concurrently arriving

packets as possible before transmitting acks in order to minimize dropped packets,
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Figure 4.6: Immediate Ack will wait up to 1 MTU time period after P1 arrives
before sending an acknowledgement. Adopting this policy allows packets P2 and
P3 to be received, but P4 will be lost.

and the sending node prefers that the receiving node transmit an acknowledgement

as soon as possible in order to minimize waiting time and wasted bandwidth.

With this in mind, we can identify two main classes of acknowledgement policy:

those with fixed time acknowledgements, and those with non-fixed time acknowl-

edgements. In a fixed time system, the receiving node will guarantee acknowledge-

ment within some fixed timeframe of having received a packet, and in an non-fixed

time system the receiving node makes no such guarantee. In our work we refer

to these policies as Immediate Ack and Eventual Ack, respectively. We describe

Immediate Ack in Section 4.5.1, and Eventual Ack in Section 4.5.2.

4.5.1 Immediate Ack

Immediate Ack implements the intuitive practice of sending a packet and then wait-

ing for an acknowledgement. If an acknowledgement is not received in some fixed

timeframe, which we call the Acktime, then the packet is retransmitted. Packets

are retransmitted some number of times, R, before being dropped.4 The receiving

node, therefore, must guarantee that an acknowledgement is sent before the Acktime

expires in the sending node.

When combined with simultaneous transmission, the sending node sends one

or more packets concurrently, but as soon as transmission of the first packet is

complete the device stops adding new packets, completes all simultaneous trans-

missions, and begins waiting for acknowledgements from the receiver(s). For each

4We set a default number of retries, R = 7, in our experiments, which follows the 802.11
standard.
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sent packet, if an Ack is not received in the Acktime then the sending node retrans-

mits the packet immediately, up to R times. After receiving a packet the receiving

node tries to send an Ack immediately, but will delay for a time period long enough

to complete reception of a single maximum sized packet, which is just the device

MTU divided by the channel speed. This is illustrated in Figure 4.6, where the

imaginary packet labelled MTU indicates the amount of time the receiving node

will allow before switching to transmit and sending acknowledgements for P1, P2,

and P3. This waiting time permits the receiving node to finish reception of any

packets from the same sending node that were sent simultaneously with the first

packet before sending acknowledgements. If packets are still being received after

waiting for the MTU period (from a third node), the receiving node will break off

packet reception in order to send Acks. From the receiving node point of view

this acknowledgement policy implements a guaranteed fixed time after receiving

a packet in which an acknowledgement will be sent, while still allowing several

packets to be received concurrently. From the sending node point of view, the Im-

mediate Ack policy may be thought of as a type of ’Stop and Wait’, since the sender

stops sending and waits for acknowledgements after sending out some number of

simultaneous packets along with the first packet.

The choice for Acktime therefore should be longer than the minimum time in

which a receiving node could possibly complete the first packet reception, wait one

MTU period, and then transmit an Ack. In practice we also add a small random

time period to the standard Acktime when deciding how long to wait before re-

transmitting an unacknowledged packet. This small random time is meant to avoid

replaying packet header collisions. What we mean here is if it happens that two

nodes begin transmitting such that their packet headers collide at a receiver, then

those packets will be lost. If both nodes then retransmit their packets after wait-

ing for the Acktime, then the packets will collide again at the same receiver. In this

situation, the two sending nodes will deterministically collide with their retransmis-

sions each time they retransmit. In order to avoid this situation, each sending node

adds a small random time value to the Acktime, which serves to slightly randomize

node retransmission time. When retransmitting several packets, a single node must
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be careful to not schedule retransmissions such that the packet headers overlap, and

so each node ensures that its scheduled retransmission times are strictly increasing.

We are now in a position where we can write our algorithms for sending node

retransmission and receiving node acknowledgement transmission. We show these

algorithms in Algorithms 4.4 through 4.7. We begin with the algorithm used in the

sending node when a packet is sent from the MAC down to the Phy for transmis-

sion, the Immediate Ack OnSend(), Algorithm 4.4. This algorithm sets the packet

retransmission counter to zero and calls the ScheduleRetransmission() Algorithm

4.5 to schedule the retransmission time for the packet, p. When the scheduled event

fires, the packet is immediately retransmitted via the Retransmit() Algorithm 4.6. If

an acknowledgement for a packet arrives before the scheduled retransmission, then

the retransmission event is cancelled.

Algorithm 4.4 Immediate Ack OnSend(p)
p is the packet just transmitted

p.retransmissions← 0
ScheduleRetransmission(p)

Algorithm 4.5 Immediate Ack ScheduleRetransmission(p)
p is the packet to schedule retransmission for
min retry time is the earliest a retransmission can be scheduled
Acktime is the minimum waiting time before retransmitting
B is the maximum initial backoff period
Lh is the packet header length
S is the channel speed

X ← Rand(1,B) ·Lh/S
W ← Now() +Acktime +X
if W < min retry time then
W ← min retry time +X

end if
min retry time ← W + Lh/S
Schedule(W , Retransmit(p))

Upon receiving a packet, a receiving node will attempt to send an Ack within the

fixed time it would take to receive a MTU sized packet. This is shown in Algorithm

4.7, which details the algorithm used when a data packet is received.
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Algorithm 4.6 Immediate Ack Retransmit(p)
p is the packet to retransmit
R is the maximum number of retransmission attempts

p.retransmissions← p.retransmissions + 1
Phy.Send(p)
if p.retransmissions < R then

ScheduleRetransmission(p)
end if

Algorithm 4.7 Immediate Ack DataReceived()
p is the data packet received
Dev is the network device
Phy is the network device Phy
S is the channel speed

MaxWait← Now() + Dev.MTU / S
while not Phy.CanTx() and Now() <MaxWait do

Wait()
end while
Phy.Send(p.Ack)

These algorithms constitute our fixed time acknowledgement policy. We now

describe our non-fixed time acknowledgement policy.

4.5.2 Eventual Ack

Whereas the Immediate Ack policy is designed to guarantee to the sender that an ac-

knowledgement will be sent for a received packet within some fixed timeframe, the

Eventual Ack policy is designed to minimize the disruption that acknowledgements

have on the receiving network device. In terms of when to send acknowledgements,

as illustrated in Figure 4.5, the receiving node chooses to send acknowledgements

whenever all packet receptions are complete, and so will never break into a packet

reception to send an acknowledgement. At the sending node, it does not make

any sense to wait indefinitely for an acknowledgement, and so the sending node

continues sending data normally, trusting that past packets will be acknowledged

whenever their recipients have an opportunity to get around to it.

In implementation, this acknowledgement policy is simpler than the Immediate
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Ack policy. At the receiving node, waiting until all packet receptions are complete

is equivalent to waiting for the channel to become free, and so Ack packets can be

inserted into the regular outbound data queue, but given priority over ordinary data.

At the sending node, data packets are simply pushed out as soon as possible. The

primary difficulty for the sending node is deciding when a packet has been lost.

Because a packet acknowledgement may arrive at effectively any time, the absence

of an acknowledgement packet does not necessarily mean that the packet was lost,

only that its acknowledgement was not yet sent.

To enable a node to accurately identify lost packets, we can rely on the ordering

of sent and acknowledged packets. Each node maintains four ordered lists: Data,

Retries, Acks, and Sent. In the sending node, when a packet is passed to the device

MAC from the network layer for transmission, it is put into the Data list, and after

being sent to the Phy layer and transmitted the packet goes into the Sent list. At

the receiving node, when a data packet is received an Ack is put into the Acks list.

Whenever the device assesses that it is safe to transmit, as determined by the MAC

SendFromQueue() Algorithm 4.3, then the device will transmit packets from the

Acks, Retries and Data lists in that order. In this way, Ack packets are prioritized

first, Retry packets second, and new packets last.

Because Ack packets are put into the Acks list in the same order in which their

data packets were received and the sender maintains the Sent list in the same order

in which packets were sent, the sequence of Ack packets from a receiving node

should therefore be in the same order as the corresponding packets in the sending

node Sent list. This enables the accurate identification of lost packets by the sending

node: After getting an Ack from a receiving node, the sending node can mark as

lost any packet that was sent to the same receiving node and is between the front

of the Sent list and the acknowledged packet. Lost packets are put into the Retries

list, and upon retransmission are moved to the end of the Sent list to preserve the

ordering.

The Eventual Ack policy slightly modifies the SendFromQueue() function in

the MAC to support sending packets from each of the Acks, Retries and Data

queues in priority. Algorithm 4.8 shows the modification, where we simply send
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data from each of the queues in order. In this version, SendFromQueue() will trans-

mit Ack packets until all waiting Acks are sent or the multiuser detector limit of K

is reached. Afterwards, if it is still clear to transmit after sending Acks, then the

device will transmit one Retry or one new Data packet. Note that the device con-

tinually checks the Phy CanTx() method to determine that it is still safe to transmit,

since each packet sent may change the state of the device. In particular, after send-

ing a Retry packet, the next call to the Phy CanTx() method will return false because

the device will be transmitting the retried packet header.

Algorithm 4.8 Eventual Ack SendFromQueue()
Data, Retries, Acks, Sent are ordered lists.
Phy is the device Phy layer

while not Data.Empty() and not Retries.Empty() and not Acks.Empty() do
while not Phy.CanTx() do

Wait()
end while
Wait(CalculateBackoffTime())
while Phy.CanTx() and not Acks.Empty() do
Phy.Send(Acks.PopFront())

end while
if Phy.CanTx() and not Retries.Empty() then
Next← Retries.PopFront()
Phy.Send(Next)
Sent.MoveToBack(Next)

end if
if Phy.CanTx() and not Data.Empty() then
Next← Data.PopFront()
Phy.Send(Next)
Sent.PushBack(Next)

end if
end while

Algorithm 4.9 shows how the device identifies previously sent packets as having

been lost. This procedure simply iterates through the Sent list looking for a match

to the Acknowledged packet. Any packets that were sent to the same receiving node

before the Acknowledged packet are marked for retransmission, since the ordering

of the Sent and Acks lists ensures that an Ack would have already been sent had the

packet been received successfully.
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Algorithm 4.9 Eventual Ack ReceiveAck(Ack)
Ack is the Ack just received

for i = Sent.First to i = Sent.Last do
if Sent[i].Destination = Ack.Sender then

if Sent[i].Sequence = Ack.Sequence then
Sent.Erase(i)
return

else
Retries.PushBack(Sent[i])

end if
end if

end for

The only remaining case to handle is the instance where all of the packets sent

to a particular receiving node are lost. If this happens, then the sending node will

never receive any Acks for any of those packets, and will therefore never identify

those packets as lost using Algorithm 4.9. To guard against this, we can employ

a very long timer in the sending node which, when it expires, marks a packet for

retransmission. Thus, in Eventual Ack, we employ very long values for Acktime,

and when a packet remains in the Sent list for longer than Acktime it is put into the

Retries list.

4.6 Summary

In this chapter we have described our RP-CDMA network device MAC layer. We

began by motivating our design decisions, and specifically noted that the addition

of the multiuser detector in the receiver changes the system performance limitation

from that of packet reception capability to packet transmission capability. This ob-

servation motivated our two extensions to the RP-CDMA protocol, simultaneous

transmission and payload channel acknowledgements, which aim to pair the pow-

erful multiuser detector with an equally powerful transmitter in the ad hoc network

environment. We then described the algorithms which determine how our MAC de-

cides when to transmit, and finally discussed the acknowledgement problem in the

presence of multiuser detectors. Particularly, we found that the possibility of receiv-
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ing several overlapping packets simultaneously complicates the decision of when to

send acknowledgement packets. Finally, we outlined two acknowledgement poli-

cies which we implemented in our system, one which guarantees acknowledge-

ments in a fixed timeframe after packet reception, and one which does not.
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Chapter 5

Experimental Setup

The goal of our performance study is to evaluate the reliability and performance of

our RP-CDMA network device in the multihop ad hoc context, so our experiments

were designed to allow us to perform this evaluation. The ns-3 simulator and our

RP-CDMA MAC protocol have several configurable parameters which we describe

here, and at the end of each experiment we measured the performance of the system.

In this chapter we will describe each of our configurable parameters, whether they

were fixed or varied between experiments, and what output we measured to evaluate

performance.

Each of our experiments consisted of some number of nodes placed in a two

dimensional field with sufficient spacing between them such that the network is

connected but not fully connected. This ensured that there was some degree of

multihop required for packets to traverse from one end of the network to the other.

During experiments each node generated data traffic with exponentially distributed

packet inter-arrival times and uniformly distributed destination node.

In each experiment we measured the number of packets which entered the net-

work and packets which arrived at their final destination. For each packet arriving

at its final destination, we recorded the time it took to traverse the network from its

originating node. At the end of each experiment, we used the aggregate statistics of

all the packets which successfully arrived at their final destination to determine how

many packets were lost, average system throughput and average end to end delay.

For ease of reference, we show all of the fixed values, variables, and measured

values in Table 5.1. In this table, the fixed parameters are set globally for all exper-
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iments, and the variable parameters are the system parameters we will investigate

in our performance study. The measured values are our performance metrics.

The remainder of this chapter describes the setup and configuration of our ex-

periments in detail. Our aim is to enable the reader to create similar or identical

experiments in ns-3, and so we will discuss some of the implementation details in

the simulator. We begin with a discussion of the simulator configuration in Section

5.1, followed by the node configuration and network topology in Section 5.2. We

then discuss how the nodes behaved during each experiment, and particularly how

they generated traffic in Section 5.3. We discuss system calibration and experiment

duration in Section 5.4 and then how we measure system performance in Section

5.5. Section 5.6 describes a 2k factor analysis investigating the relative impacts that

our variable system parameters have on performance.

5.1 Simulator Configuration

We describe here the configuration of the ns-3 simulator, with the aim of providing

sufficient detail to enable the independent replication of our results.

Random numbers were generated using the built in ns-3 random number gen-

erator (RNG), which itself is based on the MRG32k3a generator by LEcuyer et

al.[31]. This is the same RNG as that used in ns-2, and features a large number

of independent streams, each of which has a large number of substreams. Specific

streams and substreams can be selected via seeds and run numbers. Each random

number variable in ns-3 uses its own RNG. Since substreams of the same stream

do not overlap, we used a single seed and advanced the run number to produce

independent trials. In all of our experiments, we used a seed value of 12345 and

incremented the run number from 1 to the number of trials we wished to perform.

We performed most of our experiments with 10 trials, and therefore usually used

run numbers 1 through 10. Experiments with significantly more trials did not appre-

ciably affect our results, and so we considered 10 to be sufficient for our purposes.

Our experiments are therefore reproducible by setting the seed and run number to

the same as the trial we wish to reproduce.
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Fixed Parameters
Parameter Description
RNG Seed The random number generator seed. Fixed for all

experiments.
RNG Substream The random number generator substream id.

Changed for independent replications.
Channel Speed The data rate of the wireless channel.

Number of Nodes The number of nodes in each experiment.
Runtime The duration of each experiment.

UDP Data Size The data packet size in UDP data experiments.
TCP Data Size The data stream size transferred in the TCP exper-

iments
Variable Parameters

Parameter Description
Network Topology The network topology. Either Grid or Random.

Offered Load Per Node The load offered to the network by each network
node. Determined by data arrival rate, λ, and
UDP/TCP Data Size.

Ack Policy The acknowledgement policy used, as described
in Section 4.5.

Acktime The elapsed time before a sending node MAC will
retransmit an unacknowledged packet.

I Upper bound for the simultaneous transmission
inter-packet backoff time, as described in Section
4.2.

B Upper bound for the initial backoff time, as de-
scribed in Section 4.4.

M Maximum size of the MAC data queue, in packets.
K Capability of the multiuser detector. The maxi-

mum number of packets that the detector can re-
solve concurrently.

Measured Values
Measured Value Description

Percent Packets Lost The fraction of packets that were sent down by the
Sender application, but not received at the destina-
tion Receiver application.

End to End Delay For those packets that arrived at their final desti-
nation Receiver application, how long they took
to traverse from Sender to Receiver.

System Throughput The total amount of data that successfully tra-
versed the network from Sender to Receiver, di-
vided by the experiment runtime.

Table 5.1: System Parameters and Measurements
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Network routing was via the Optimized Link State Routing (OLSR) [11] and

Static routing implementations from ns-3. Since our nodes were static, we did

not require a more sophisticated routing algorithm, such as Ad-hoc On-Demand

Distance Vector (AODV). We are not specifically concerned with evaluating the

performance of the network routing algorithm in this work, and therefore chose

OLSR and Static because they are effective with relatively low overhead. With the

combination of Static and OLSR routing, node routing tables would be populated

at the beginning of each experiment via OLSR broadcasts, and thereafter nodes

would find routes via their Static entries. OLSR did continue to broadcast routing

information throughout the experiments, even though the routing tables did not

change after their initial population. We consider this routing traffic in the channel

to contribute to the practical realism of our simulations.

Channel speed was set to 1 Mbps, which was chosen because it facilitates easy

comparison to 802.11, which uses a simple Differential Binary Phase Shift Key-

ing (DBPSK) Direct Sequence Spread Spectrum (DSSS) implementation at this

speed [48]. We assume a relatively simple BPSK DSSS CDMA modulator in our

RP-CDMA system, which can be compared to the 802.11 equivalent in a straight-

forward manner when working with channel capacity and bandwidth. We acknowl-

edge the existence of more sophisticated modulation and symbol encoding schemes,

such as those used for high speed 802.11n [49] or those employed in various mul-

tiuser detectors [44, 25], but these can be layered on top of the underlying CSMA

and RP-CDMA based devices without changing the fundamental comparison. We

therefore choose the simplest implementation of each device and set the channel

speed to 1 Mbps.

5.2 Node Configuration and Topology

Our experiments focused on two node configurations: grid and random. In the grid

topology, our aim was to provide a regular network topology in which individual

nodes had an approximately equal number of neighbours. To this end, we designed

our grid such that nodes could communicate with their neighbours along the same x
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Figure 5.1: Grid Topology Configuration. In this topology, nodes can communicate
with their neighbours on the same x and y axis, but cannot communicate diagonally.
This is illustrated with the node communication radius R, centred on node 11.

and y axis, but could not communicate diagonally. This is illustrated in Figure 5.1.

In this figure, the node communication radius is illustrated with the circle of radius

R centred on node 11. We used a 4× 4 grid of nodes in all of our grid experiments,

as this offered a network with a maximum of 6 hops on which experiments would

complete on available hardware in a reasonable period of time.

The distance between nodes of 125 m was chosen empirically. We performed

experiments over a range of node spacings and measured the packet loss as we

increased the distance between nodes. From these results we selected a distance

that would allow nodes to communicate along the x and y axes, but not diagonally.

We show our packet loss results in Figure 5.2. In this figure, we can see that as the

inter-node spacing increases to 160 m that system packet loss increases to 100%,

indicating that we have surpassed the effective range of the nodes. We can see

that if we space the nodes at 125 m, then the diagonal distance between nodes is
√

1252 + 1252 ≈ 177 m, which is beyond the maximum transmission distance.

We derive the same result analytically using the device default transmit power,
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Figure 5.2: Grid topology effective range. As we increase the distance between
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too large. From this we can estimate the effective range of the nodes.
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Figure 5.3: The 16-node random topologies tested.

our loss propagation model, and the device detection threshold. We use a default

transmit power of 16.0206 dBm and a detection threshold of -96 dBm, and we can

solve for the maximum distance using Equation 3.2:

d = dref · 10
Ptx−Prx−Lref

30

= 1.0 · 10
16.0206+96−46.6777

30

= 150.6942

Which agrees with our observation that packet loss increases to 100% after 150

m. Note that we have chosen our default transmit power and detection threshold

to match those of the ns-3 802.11 model, which facilitates comparison between the

two.

In addition to our grid topology, we also experimented with random topologies.

In these experiments we generated 10 different random connected topologies with

the same average node density as our grid topology, so 16 nodes inside a 375× 375

m box. Node placement was uniformly random in both x and y. These topologies

are shown in Figure 5.3.

Nodes were static throughout each experiment, since we are interested here in
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evaluating the effects of the reliable link on packet loss and system performance,

which does not require node mobility.

5.3 Node Behaviour

Each simulation started with a 200 second warm up period in which nodes identified

routes through the network to each other node. In these 200 seconds, the OLSR

routing protocol exchanged routing information with each neighbour several times,

until the routing table was fully populated. OLSR continued to update the routing

tables throughout the experiment, but because the nodes were not mobile the routing

tables did not change after the initial warm up period. Once the routing tables were

populated, the ns-3 Static routing algorithm was able to return routes to each other

node in the network.

After the warm up period, each node began generating data traffic. Data traffic

was one of either UDP or TCP traffic, described below, though we performed the

majority of our experiments using UDP. Each node was equipped with a Sender and

a Receiver application, which resided at the topmost Application layer in the ns-3

network stack, illustrated in Figure 3.2. The Sender application was responsible

for generating data and sending it into the network, and the Receiver application

would listen to the network for data addressed to itself. Each node’s Sender would

schedule its next send event using a local exponential random variable with a mean

value specified as part of the experiment. When these events were triggered, the

node would uniformly randomly select another node in the network and send a

fixed sized chunk of data to its respective Receiver. Our experiments were with a

fixed data size and varying mean time between send events. In this way, we were

able to gradually increase the offered load per node to the network and measure the

effect.

As each packet was generated and sent into the network it was tagged with a

monotonically increasing 32 bit sequence number unique to the originating Sender.1

At the Receiver, the tuple formed by the originating node and the sequence number

1Each 16 node experiment typically generated a number of packets on the order of millions, so
we are not concerned about the sequence numbers wrapping.
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formed a unique packet identifier which we used to eliminate duplicates. Each

Receiver maintained a buffer of the last 60 seconds worth of received packets, which

was checked for duplicates before a newly arrived packet was counted. In this way,

we eliminated duplicate packets at the Receiver.

At the end of each experiment we had a 20 second cool down period during

which nodes would continue to pass traffic across the network but would not gener-

ate any more new traffic. In this way, we ensured that the last few packets generated

had enough time to arrive at their final destination. Any packets still in the network

at simulation end time after the cool down period were counted and considered lost.

5.3.1 UDP Data

For the UDP data, packet size was fixed at 1500 B. Thus, at each send event a node

would send a single 1500 B packet into the network to another randomly selected

node. After sending a single packet, a node would schedule its next send event,

which would be sent to another randomly selected node.

1500 B packets were used because this is the MTU for Ethernet basic frames

[50], and therefore seems like a reasonable size packet to work with. After IP, MAC

and Phy headers, each 1500 B packet occupied 1569 B in the physical channel.

5.3.2 TCP Data

For TCP data flows, we used larger data sizes and correspondingly larger mean time

between send events. When using TCP, each node would randomly select another

node in the network and send it 100 kB of data. After initiating a data transfer nodes

would then schedule the next sending event, which would initiate data transfer to

another node in the network. Thus, it was possible that a node may have had more

than one TCP transfer in progress simultaneously. Our selection of 100 kB for our

data transfer size was based on the size of the average basic web page, which is on

the order of a few hundred kilobytes [13]. By default, the ns-3 TCP implementation

uses the New Reno implementation [15].

In this work, we tested TCP data transfers only in the grid configuration.
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Figure 5.4: Steady state system throughput, sampled every 5 seconds and averaged
over 100 second intervals. We see here that the system enters steady state almost
immediately.

5.4 Calibration and Runtime

Before embarking on a series of experiments, it is prudent to evaluate our system

performance at steady state and verify both that it reaches steady state and how long

it takes to do so. The simplest way to do this is to periodically sample the system

performance and visually identify the steady state region.

We show such a sample in Figure 5.4, which shows the sampled system through-

put for a data run with 16 nodes in the grid topology and an offered load per node

of approximately 0.18 Mbps, for a total offered load to the system of approximately

2.8 Mbps. In this chart, data traffic begins at 200 seconds and terminates at 10200

seconds. We see that during this period the system throughput is approximately 2.8

Mbps, with some oscillation around this value.

For the same experiment, we can also measure the data queue lengths of all the

nodes in the system, which we show in Figure 5.5. We can see in this figure that

the individual node queues are typically holding around one packet or less, and the

system as a whole averages a little less than 6 packets waiting at any time. We can
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Figure 5.5: Steady State queue length. We show the average queue length of each
node along with the system aggregate queue length for both (a) 100 second averages
and (b) 500 second averages, sampled every 5 seconds.

increase the number of samples in each data point to eliminate some of the noise

from Figure 5.5a, which results in Figure 5.5b. In this figure, we can see that only

four nodes are typically holding a packet at any given time: Nodes 6, 7, 10 and 11.

If we recall the grid topology from Figure 5.1, we see that these four nodes are in

the middle of the grid, and therefore have more neighbours and are more likely to

forward traffic across the network.

Finally, we seek to confirm that our system is stable under heavy loads, and so

perform the same experiment as above but we increase the offered load per node

from 0.18 Mbps to 1.0 Mbps, which is the highest offered load per node tested in

any of our experiments in this work, and is also equal to the channel speed. Figure

5.6 shows our results, where we can see that the total number of packets waiting

in the system oscillates between 200 and 250 for the duration of our experiment.

We also see the separation of nodes into three distinct groups, which correspond

to the number of neighbours each has. One set of nodes, Nodes 6, 7, 10 and 11,

typically hold between 30 and 40 packets, which we again attribute to their being

in the middle of the grid topology and each having four neighbours. Nodes 1, 4,

13 and 16 average around 1 or 2 packets when sampled, which we can attribute
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Figure 5.6: Steady State queue length with high load. We see that the aggregate
system queue length remains stable over the entire experiment, even when each
node offers a load of 1 Mbps to the system.

to their being in the corners of the network, having only two neighbours each, and

thus not typically forwarding as much traffic at any given time. The remaining

nodes typically hold around 10 packets, which corresponds to these nodes being

situated along the edges of the network and having 3 neighbours each. Critically,

we see that even under heavy loads, the system reaches the steady state quickly and

remains there for the duration of each experiment.

We conclude from Figures 5.4 through 5.6 that the transient in our network is

fairly short, and so we do not remove it from our data. Rather, we simply run the

system for a long time and use all of the data, which should effectively reduce the

transient period data to insignificance. We therefore performed all of our experi-

ments over a period of 10000 seconds, which allows us to capture significant data

at the system steady state.

We have now described all of our fixed system parameters and their values,

which are summarized in Table 5.2.
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Fixed Parameters
Parameter Value
RNG Seed 12345

RNG Substream 1-10
Channel Speed 1 Mbps

Number of Nodes 16
Runtime 10000 s

UDP Data Size 1500 B
TCP Data Size 100 kB

Table 5.2: Fixed System Parameters

5.5 Measurements

Since our goal is to evaluate the reliability and performance of the RP-CDMA based

ad hoc network, we measured the system packet loss, end to end delay, and through-

put for each experiment. These three metrics together allow us to estimate the

system reliability through packet loss and delay, and performance through system

throughput. In the remainder of this section, we discuss our measured metrics in

detail.

5.5.1 Packet Loss

Packet loss was measured by counting the number of unique packets that arrived

at their destination Receiver application compared to the number of packets sent

into the network by the Sender applications. Thus, packet generation and reception

was counted at the application layer, which is the topmost layer in the ns-3 network

stack shown in Figure 3.2. At this level, the Sender and Receiver applications are

shielded from what is happening below them in the stack, and only interact with the

transport layer below them. In particular, the Receiver only ever sees a packet when

that packet is addressed to it specifically. Thus, intermediate nodes which merely

forward packets on their way to their final destination do not see or count packets

as they are forwarded along a route with multiple hops.

One of the consequences of our measurement methodology is that the actual

traffic present on the network is somewhat higher than what we measure. Since we
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only measure end to end packet loss at the application layer, we ignore all of the

other network traffic required in order to support the network itself. Specifically,

none of routing packets, retransmissions nor acknowledgement packets are seen

at the application layer, since these are generated in the network and link layers.

These additional sources of network traffic are present in all of our experiments,

and do have an effect on our results, but are just not counted directly. Recall that

OLSR continues to broadcast routing information throughout each experiment, and

if we utilize an acknowledgement mechanism then acknowledgement packets and

retransmissions also add to the load on the network. All of these things are present

in the simulated wireless channel and therefore impact the system performance,

but are not seen by the application layer and so are not counted when we measure

packet loss.

We do this because we are interested in the reliability of the network from the

point of view of the primary customer, which is the user. To count routing traffic and

particularly retransmissions towards system packet loss is not meaningful because it

does not capture the level of service afforded to the user by the network. Similarly,

performing experiments in the absence of this traffic detracts from the realism of

the simulation.

5.5.2 System Throughput

We calculated system throughput as a function of packet loss. Specifically, the prod-

uct of the number of packets which were not lost and the size of those data packets

gives us the number of bytes passed through the network, which we divide by the

simulation run time to get the throughput. Again, we make these measurements

from the application layer, and so only the size of the actual data portion of each

packet was counted. So, if a Sender application passes a 1500 B packet down to the

UDP transport layer, when that packet is eventually received at the target Receiver

application, the contribution to system throughput is 1500 B.

Again, this shields our measurements from the implementation details of the

network. A 1500 B packet generates 1569 B in the RP-CDMA channel, which pro-

portionally increases the load on the network. Since we are interested in the system
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performance from the point of view of the user, we only measure how much user

data successfully traverses the network. As the system itself is actually transport-

ing somewhat more than just the 1500 B sent from the application layer once we

account for IP, MAC, Link, and Phy headers, some readers may wish to call our

measurement the Goodput, but we use the term Throughput in our work.

5.5.3 Average Delay

End to end delay is simply the difference between the time when a packet is deliv-

ered at its final destination and when it was generated and sent into the network. We

use a ns-3 packet tag to indicate the time when a packet was generated at the Sender

application. This tag is checked by the destination Receiver, which records the time

taken for the given packet to traverse the network. Packet Tags are a convenience

abstraction in the ns-3 simulator, and do not contribute to the size of a data packet

as it passes through the network stack.

5.6 2k Factorial Analysis

Having discussed our fixed parameters and our measured values, we now turn our

attention to the variable parameters listed in Table 5.1. The first three of these pa-

rameters - network topology, offered load per node and acknowledgement policy -

represent the major factors in our performance study. In our results, we will first in-

vestigate system performance on the grid topology, then on random topologies, and

on each topology we will investigate the effect of our acknowledgement policies.

Each of our results will be presented as a set of curves showing the effect on our

three measured values as a function of offered load per node. This leaves several

of our RP-CDMA device parameters to investigate: the time before retransmission

(Acktime), simultaneous packet spacing maximum (I), initial backoff maximum

(B), MAC data queue length (M ), and multiuser detector capability (K). To get

an appreciation for how these device variables impact system performance, we can

design a 2k factorial series of experiments [20] with a fixed offered load per node,

network topology, and acknowledgement policy.

73



We performed a 25 set of experiments on our grid topology, with offered load

per node of 0.5 Mbps and the Eventual Ack policy. We varied the RP-CDMA device

parameters Acktime, I , B, M , and K in the following ranges:

Variable Low (-1) High (+1) Input Label
Acktime 0.5 s 3.0 s xA

I 2 10 xB
B 2 80 xC
M 50 ∞ xD
K 11 ∞ xE

With 5 variables, we must perform 25 = 32 experiments for each of the possible

combinations of the high and low values for our parameters. Table 5.3 shows each

of our experimental inputs, along with the results of our 3 measured values.

We can calculate the Sum of Squares Total (SST), or total variation, for each of

our measured values using the usual formula SST =
∑25

i=1(yi−ȳ), where yi iterates

over each of the results for a measured value, and ȳ is the average of those results.

We can then calculate how much of the variation is attributable to the variables

xA...B, and all of their combinations, xAB, xAC , . . . , xABCDE . These results are

shown in Table 5.4. In this table, we see that the capability of the multiuser detector

(xE) is the dominant factor which affects all three of our performance metrics. In

particular, packet loss and system throughput are almost entirely attributable to the

capability of the multiuser detector, which accounts for approximately 98% of the

variation in our results. End to end delay performance is also mostly attributable to

the capability of the multiuser detector, xE ≈ 29%, though the size of the MAC data

queue also has a significant impact, xD ≈ 15%, as well as the interaction between

the two, xDE ≈ 15%. The effects of the simultaneous packet spacing, xB, and

the initial backoff window, xC , both also accounted for a non-negligible amount of

the variation in the end to end delay, accounting for xB ≈ 2.9% and xC ≈ 6.3%

respectively.
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xA xB xC xD xE Loss (%) Throughput (Mbps) Delay (ms)
1 1 1 1 1 0.3393 7.976 205.0
1 1 1 1 -1 66.56 2.676 8963
1 1 1 -1 1 2.086 7.836 205.2
1 1 1 -1 -1 57.89 3.369 817.4
1 1 -1 1 1 0.3113 7.977 141.2
1 1 -1 1 -1 72.33 2.214 3211
1 1 -1 -1 1 0.7741 7.940 140.4
1 1 -1 -1 -1 68.65 2.508 1344
1 -1 1 1 1 0.2783 7.982 165.6
1 -1 1 1 -1 66.31 2.696 5230
1 -1 1 -1 1 1.144 7.912 166.2
1 -1 1 -1 -1 59.44 3.246 794.7
1 -1 -1 1 1 1.850 7.854 159.7
1 -1 -1 1 -1 69.23 2.461 1368
1 -1 -1 -1 1 2.386 7.811 156.0
1 -1 -1 -1 -1 68.68 2.505 1211
-1 1 1 1 1 0.3409 7.976 207.1
-1 1 1 1 -1 69.08 2.474 10582
-1 1 1 -1 1 2.209 7.826 207.0
-1 1 1 -1 -1 57.74 3.381 793.7
-1 1 -1 1 1 0.3445 7.975 141.8
-1 1 -1 1 -1 74.77 2.018 3295
-1 1 -1 -1 1 0.5354 7.959 136.2
-1 1 -1 -1 -1 69.08 2.474 949.8
-1 -1 1 1 1 0.2981 7.980 166.2
-1 -1 1 1 -1 67.10 2.632 5228
-1 -1 1 -1 1 1.244 7.904 165.8
-1 -1 1 -1 -1 59.82 3.215 742.0
-1 -1 -1 1 1 1.650 7.870 158.1
-1 -1 -1 1 -1 69.17 2.467 954.6
-1 -1 -1 -1 1 2.370 7.813 154.6
-1 -1 -1 -1 -1 68.46 2.523 767.4

Average 33.83 5.295 1529

Table 5.3: Loss, Throughput and Delay results for 2k analysis.
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From this analysis, we expect that for a given load the dominant factor impact-

ing packet loss and system throughout on the grid topology will be the capability

of the multiuser detector, with the other variables making almost no difference.

This is encouraging for our thesis that the use of a multiuser detector in RP-CDMA

can result in significant reliability and performance benefits in our wireless ad hoc

network.

5.7 Summary

In this chapter we have described our experimental setup, including the simulator

configuration, network topology, node behaviour, experimental transient, steady

state and runtime. We have also described our system measurements, which we

will use to evaluate system performance in our experiments, and performed a basic

analysis of how our variable system parameters impact system performance on our

grid topology. We now move on to our results.
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Chapter 6

Results

In this chapter, we present our results. Along with the algorithms which constitute

our MAC and acknowledgement policies, this performance study is the main con-

tribution of of our work. Here, we will explore the reliability and performance of

our RP-CDMA network device on both grid and random topologies, and investigate

the effectiveness of our acknowledgement policies. After an initial assessment and

comparison to 802.11 CSMA, we will investigate the effect of changing our variable

device parameters with the aim of maximizing system reliability and performance.

Each of the results in this chapter shows the effect of varying one of the variable

parameters from Table 5.1 while keeping the others fixed. For each value of our

varied parameter we generated a data series measuring the system performance as

the offered load per node was increased. All of our data series were then plotted

on the charts, which allows us to see the effect of changing the variable parameter.

Each data series was composed from 10 independent trials with identical inputs but

incremented RNG substream. Error was calculated as the 95% confidence intervals

over our 10 independent trials.

This chapter proceeds through our results starting with our grid topology in

Section 6.1. On this topology, we initially compare 802.11 performance with our

RP-CDMA device without acknowledgements. We then investigate the effect of

varying the capability of the multiuser detector, K, the effect of the Immediate and

Eventual acknowledgement mechanisms, and also briefly investigate TCP perfor-

mance. With this initial investigation on grid topologies completed, we present our

results on random topologies in Section 6.2. On random topologies we investigated
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the effect of each of our variable system parameters, with the aim of maximizing the

RP-CDMA system performance. After analysing the effects of each of our system

parameters, we will again compare the RP-CDMA result to that of 802.11.

6.1 Grid Topology

Recall that our grid topology consisted of 16 nodes separated such that they could

communicate with their neighbours on the x and y axes, but not diagonally, as per

Figure 5.1. We present results here for 802.11, RP-CDMA without acknowledge-

ments, with the Immediate Ack Policy, and finally with the Eventual Ack policy.

Our aim in this series of experiments is to analyse the relative performance of our

system and acknowledgement policies in a fixed, regular topology. We then apply

the lessons learned on the grid system to random topologies in Section 6.2.

6.1.1 802.11 CSMA and RP-CDMA No Ack

We begin with a simple evaluation of the 802.11 system and compare it to RP-

CDMA without acknowledgements. Before presenting our results, we briefly dis-

cuss how we fairly compare 802.11 to RP-CDMA .

Our experiments with 802.11 were performed simply by replacing the RP-

CDMA network device with the stock ns-3 802.11 network device in the simulator

and running the same series of experiments that we performed with RP-CDMA . In

order to compare the two fairly, we limited the RP-CDMA experiments to the same

bandwidth as that occupied by 802.11.

In the 1 Mb DSSS mode, 802.11 utilizes differential binary phase shift keying

(DBPSK) to transmit data in the 2.4 GHz ISM band. Each symbol is DSSS modu-

lated with an 11-chip Barker sequence, which spreads the 1 Mbps data signal over

22 MHz using the formula B = 2R‖~c‖, where R is the data rate, and ‖~c‖ is the

magnitude of the spreading code used [51, 48]. The bandwidth occupied by 802.11

is therefore 22 MHz [48].

We can construct a corresponding case with RP-CDMA by utilizing the same

data rate and spreading code length. With a spreading code length of 11, we as-
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sume we can have a multiuser detector with capability at least K = 11 [42]. With

equal bandwidth, we can fairly compare the performance of the 802.11 CSMA pro-

tocol with that of our RP-CDMA protocol. In addition to constraining RP-CDMA

to a multiuser detector with K = 11 when comparing to 802.11, we also ideal-

ized the 802.11 Phy to ignore interference effects. Because our experiments with

RP-CDMA were conducted under the assumption that the multiuser detector can

successfully resolve up to K overlapping signals, and therefore ignored interfer-

ence effects in the channel, we made the same assumption when experimenting

with 802.11.

With interference effects ignored, we can isolate the relative effectiveness of

the 802.11 CSMA collision avoidance approach and contrast it with the RP-CDMA

approach of mitigating collisions by putting packets into individual channels. We

disabled the optional 802.11 RTS/CTS mechanism throughout, since it does not

obviously improve system performance, may actually impair it [55, 40], and our

initial experiments indicated it was of limited usefulness.

Figure 6.1 shows our results for No Ack on the grid topology, where we have

compared to the 802.11 result under the same configuration. Recall that in No Ack,

nodes began transmitting packets after a short random backoff period when they

were not busy receiving any packets and continued to send packets simultaneously

until there were no more to send. Receiving nodes did not send acknowledgement

packets, and so if a packet was lost in the network then the system did not try to

recover. In these results, we limited our multiuser detector to capability K = 11, in

order to fairly compare 802.11 with RP-CDMA .

We see that even when limited to K = 11, RP-CDMA offered superior perfor-

mance across the entire tested range. We can see in Figure 6.1a that RP-CDMA lost

fewer packets than 802.11 under the same loads, which corresponds to the higher

measured system throughput shown in Figure 6.1c. We see in Figure 6.1b that

RP-CDMA offered much improved end to end delay compared to 802.11 and was

on the order of 200 ms at the highest load tested. The end to end delay result for

802.11 has a strange artifact around 0.1 Mbps where delay briefly decreases, then

resumes increasing as as offered load per node reaches approximately 0.1 Mbps.
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This is a byproduct of the grid network topology, and indicates that as the load on

the system increases its multihop capability is affected. Specifically, as the 802.11

system drops more packets, the only packets that successfully reach their intended

Receiver - and which are subsequently measured - are those which do not require

a large number of hops. Thus, the measured average delay briefly decreases, and

then steadily rises again as load continues to increase.

We can examine the relative causes for packet loss in the RP-CDMA case to

try to determine why packets were lost in the network. For the RP-CDMA No

Ack experiments, we have three possible causes for packets being lost at the re-

ceiver: Header Collisions, Transmitting, and Receiving errors. A Header Collision

happens if more than one packet header overlaps at the receiver. In this case, the re-

ceiver will only synchronize to the first packet to arrive and all others will be lost.1

A Transmitting error occurs when a packet arrives while the intended receiver is

transmitting, and is thus incapable of receiving due to its half-duplex radio. All

packets that arrive while a node is transmitting are dropped. A Receiving error can

occur for a number of reasons in our model, but in the case of RP-CDMA No Ack,

Receiving errors occur when a particular receiver’s multiuser detector capability is

exceeded. So for a multiuser detector with capability K = 11, any packets that

arrive concurrently beyond the 11th packet are lost.

Figure 6.2 shows the relative reasons for packet loss as a function of offered

load per node for the RP-CDMA No Ack experiment with overall losses shown in

Figure 6.1a. Figure 6.2 shows us that as we increase the offered load per node, the

fraction of lost packets that are lost due to exceeded multiuser detector capability

grows, while the fraction of packets lost due to header collisions drops. It makes

sense that as the offered load per node increases that more packets would be lost

due to exceeded multiuser detector capability, and thus proportionally less due to

1This is exactly the same behaviour as the ns-3 802.11 implementation, which continues to at-
tempt to decode the first packet to arrive and decides afterwards whether the interference from the
collided packet is sufficient to cause the first packet to be lost. Some models would drop all packets
involved in a collision [17], but in the ns-3 802.11 model and in reality the receiver would continue
to attempt to decode the first packet. The possibility that some data may be recoverable from CDMA
systems even in the event of collisions is the same property which allows Spread ALOHA using a
single spreading code to recover from some collisions [4].
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Figure 6.1: RP-CDMA with no acknowledgements (No Ack), and limited to mul-
tiuser detector capability K = 11 on the grid topology. Without any acknowledge-
ment mechanism, RP-CDMA offers superior metrics across the entire tested range
compared to 802.11.
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Figure 6.2: RP-CDMA No Ack Loss Reasons with K = 11. We see that as the
offered load per node increases, the proportion of packets that are lost due to the
capability of the multiuser detector being exceeded grows as a fraction of all lost
packets.

packet header collisions. It is thus worthwhile to examine how system performance

could be affected by a more capable multiuser detector.

Figure 6.3 shows our results when we remove the K = 11 restriction on our

RP-CDMA multiuser detector, keeping all other things constant. Compared to the

K = 11 case, increasing the capability of the multiuser detector results in lower

packet loss and higher throughput at the cost of marginally higher end to end delay.

These results are expected, as increasing the number of delivered packets in the

network is expected to increase the time required to deliver each of them. Our result

for packet loss is particularly encouraging, as the number of packets lost drops from

more than 50% to less than 20% at the upper end of our offered load.

We have now seen that with equal bandwidth, our RP-CDMA based system

outperforms the 802.11 CSMA system, and that given an infinite multiuser detec-

tor, RP-CDMA can perform much better. Since we do not have infinite capability

multiuser detectors in reality, it makes sense to examine what multiuser detector

capability would be required to approach the K =∞ ideal case.
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Figure 6.3: RP-CDMA No Ack with K = ∞. We see that increasing the capabil-
ity of the multiuser detector, K, from 11 to ∞ yields superior performance in all
metrics.
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Figure 6.4: RP-CDMA No Ack for varying multiuser detector capability, K. We
see here that for values of K greater than approximately K = 50 that our results are
almost identical to the infinitely capable multiuser detector.
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Figure 6.4 shows our results for a range of values for K. We see that per-

formance approaches the ideal result as K increases, with K = 50 being almost

indistinguishable from the ideal, K = ∞, result. For values of K higher than 50,

the results overlap with the K = ∞ result. Our review of the literature leads us

to believe that detector capabilities in the range of K = 50 are not unreasonable

[36, 17].

While it is encouraging that our RP-CDMA based device can significantly out-

perform the 802.11 CSMA based device, we still lose significant numbers of pack-

ets under relatively high loads, even with infinitely capable detectors. This observa-

tion motivates our investigation of acknowledgement mechanisms, which we begin

in the following section.

6.1.2 Immediate Ack

Recall that the Immediate Ack policy is a fixed time interval acknowledgement

policy, and so a receiving node will guarantee that an acknowledgement will be

sent for a received packet within some fixed time interval. Because the sending

node knows when to expect an acknowledgement, it will stop transmitting and wait

to receive acknowledgements after sending some number of simultaneous packets.

Immediate Ack is compared to No Ack in Figure 6.5, which shows Immediate

Ack with various values for Acktime plotted against No Ack for the ideal, K = ∞

case. We see that under light load the Immediate Ack policy can achieve lower end

to end packet loss with roughly equal throughput compared to No Ack, but at the

cost of higher latency as nodes must stop and wait for acknowledgements before

continuing. As the offered load per node increases, the Immediate Ack policy be-

gins to fail and packet losses climb rapidly. Under higher loads, the Immediate Ack

policy regularly breaks off packet receptions in order to send acknowledgements

and retransmissions. This has a cascading effect, where cancelled receptions incur

more retransmissions, which cause more cancelled receptions, and so on. Under

these load conditions it becomes better to simply not send acknowledgements at

all, and we see that the Immediate Ack policy eventually begins to perform worse

in every metric than No Ack. Note the scale of the horizontal axis in Figure 6.5,
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which is shorter than the scale we have been using previously.

We attempted several modifications to the Immediate Ack protocol, including

varying values for Acktime in the receiving node and varying values for the ac-

knowledgement transmission time in the receiving node. None of our experiments

yielded better results than those presented in Figure 6.5. The fundamental prob-

lem with the Immediate Ack policy is that nodes must continually switch between

sending and receiving in order to meet the fixed times for sending and receiving

acknowledgement packets, which results in compounding packet losses as the load

on the network increases. On the receiving side packets are lost as the receiving

node switches to transmit acknowledgements and cuts off packet reception, and on

the sending size, bandwidth is wasted and delay incurred as sending nodes wait for

acknowledgements.

Given this result, we ask how do we maintain the desirable characteristics of the

No Ack policy - the low latency and high system throughput - while keeping packet

loss low or negligible, such as with the Immediate Ack policy under low load. Our

proposed solution to this problem is the Eventual Ack policy.

6.1.3 Eventual Ack

Recall that the rationale behind the Eventual Ack policy was that even under rela-

tively high load a significant portion of packets successfully traverse the network,

and we need only an effective way to identify those few lost packets. With Eventual

Ack, the sending node thus continues to send data packets and does not wait for ac-

knowledgements, just as in the No Ack policy. When the channel becomes free a

receiving node sends any accumulated Acks first, then any packets which need to be

retransmitted, and finally any new packets. When a receiving node eventually trans-

mits acknowledgement packets, the corresponding sending nodes can then identify

which, if any, of their previously transmitted packets were lost and schedule them

for retransmission. From the point of view of the MAC layer, the Eventual Ack pol-

icy superficially resembles the No Ack policy in that acknowledgements are treated

much the same as ordinary data traffic, and the sending node does not wait for ac-

knowledgements before continuing with other transmissions. Eventual Ack differs
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Figure 6.5: Immediate Ack performance with ideal multiuser detector and grid
topology. We see that sending acknowledgements after receiving a packet can im-
prove link reliability under light load, but these gains are lost as load increases.
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from No Ack in that it does use acknowledgements to confirm packet reception, and

differs from Immediate Ack in relying primarily on the ordering of acknowledge-

ments to infer lost packets, leaving the timeout mechanism as only a guard against

all packets to a given neighbour being lost.

Our aim in this section is to determine the bounds of our approach. By testing

our system on the fixed, regular grid topology, we can determine the upper bounds

of our system performance by testing with idealized parameters. To this end, our

experimental baseline in this section will use the same parameters as our best re-

sults for No Ack with the infinitely capable multiuser detector, namely K = ∞,

initial backoff maximum B = 10, simultaneous transmission backoff I = 10 and

data queue size M = ∞. Figure 6.6 shows our results comparing RP-CDMA No

Ack to Eventual Ack under these conditions. These results show the effectiveness

of the Eventual Ack policy, which offers superior packet delivery rates and system

throughput compared to No Ack across the tested range. Our system throughput

result shows that even under high load the system effectively carries all of the traf-

fic offered to it, at the cost of a slightly higher delay. At the highest load tested,

packet loss for the Eventual Ack policy was on the order of 0.3%, which indicates

that our acknowledgement mechanism successfully identified and retransmitted lost

packets. This result is very encouraging, as it shows that given sufficient resources,

the RP-CDMA based net device with a simple acknowledgement policy is capa-

ble of achieving negligible packet loss with reasonable delay on a multihop ad hoc

wireless network, for our given number of nodes and network topology.

We tested a range of values for Acktime in the range 0.25 ≥ Acktime ≥ 1.5 s

and found that for values greater than 0.5 s, the results were effectively identical.

We therefore take the parameters in Figure 6.6d as our baseline, and our results

with these parameters on the grid topology to be the upper bound on the possible

performance of our system. From here, we will attempt to approach this upper

bound with different network transport and topologies. In the remainder of our

results, we will first briefly investigate TCP performance on the grid, and we will

then return to UDP data on random topologies.
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Figure 6.6: Eventual Ack policy compared to No Ack on the grid topology with
K = ∞ and Acktime= 0.5 s. Eventual Ack offers lower packet loss within our
tested range while maintaining low end to end delay and high throughput.
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6.1.4 TCP Data

In this section, we briefly investigate TCP performance on the grid. We saw above

that with UDP data, the system was able to effectively carry all of the load offered to

it by the nodes. TCP performance on wireless links has previously been identified

as a significant problem [9, 14, 37], and there have been several proposals in the

literature to modify TCP in various ways to overcome these problems [6]. Among

the reasons often cited for poor TCP performance over wireless links is that packet

loss is often attributable to collisions or other link layer loss, which TCP incorrectly

reacts to as congestion [14]. With a reliable RP-CDMA link, we expect that TCP

performance will be improved.

We recall that with TCP data, each node would randomly select another node

in the network and send it 100 kB via TCP. Because TCP breaks up this data and

transfers it in smaller chunks, we show here only our system throughput result and

omit the end to end delay of each TCP encapsulated packet, which is not indicative

of overall performance, and the packet loss, which is not meaningful because TCP

guarantees packet delivery.

We show our results with TCP data transfers in Figure 6.7, which shows (a)

TCP performance with RP-CDMA compared to 802.11 and (b) TCP performance

with RP-CDMA with both K = 11 and K = ∞. In these results, we see that

RP-CDMA does indeed improve system throughput compared to 802.11, but does

not approach the performance obtained with UDP transfers. Furthermore, we see

in 6.7b that this result is not sensitive to the capability of the multiuser detector, and

that increasing the detector capability from K = 11 to K = ∞ does not improve

TCP performance.

It is natural to ask what is happening to cause these results. Whereas system

throughput with UDP packets improved steadily as we increased the load offered to

the system, TCP briefly improves, but beyond approximately 120 kbps of offered

load per node rapidly declines and begins to level off at approximately 200 kbps

of system throughput. We examined the congestion windows of each of the TCP

sockets in the system, and found that the window size steadily increased initially,

but would sometimes collapse down to the slow start value and remain there. As
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(a) RP-CDMA compared to 802.11
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Figure 6.7: TCP Data Transfer Results. TCP achieves better performance with RP-
CDMA than with 802.11, but does not approach the performance achieved with
UDP.

TCP sockets reduced their throughput, the number of sockets with data to trans-

fer would increase as the nodes continued to initiate transmissions to other nodes.

With more sockets attempting transfers, system throughput was further degraded

as contention for available resources increased. We know from our results with

RP-CDMA No Ack that some packets are lost in the system (Figure 6.6), and we

therefore suggest that it is possible that the reasons for our TCP performance re-

sults are partially attributable to the same causes as identified with 802.11 - namely

that losses at the link layer cause TCP to react inappropriately and assume network

congestion.

Our experiments with TCP in ns-3 were also delayed by bugs in the ns-3 TCP

implementation. Until very recently, a bug existed in the ns-3 TCP stack which

caused sockets to occasionally stall completely, which made it impossible to per-

form meaningful experiments. While we do not believe that our results here are

attributable to problems with the ns-3 TCP implementation, it is nonetheless a pos-

sibility.

Regardless, our results with TCP are somewhat disappointing. We had hoped

that a reliable link would significantly alleviate or eliminate the well known prob-

lems with TCP over wireless links, but found that while RP-CDMA does perform
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better than 802.11, it does not fundamentally change the nature of the problem,

which is that under heavier loads TCP performance rapidly diminishes. We believe

this topic deserves further investigation, which we recommend in Section 7.2, but

for now return to UDP data transfers and investigate our system performance over

random topologies.

6.2 Random Topologies

Now that we have seen how our system performs on a regular grid topology, we

investigate random topologies. We will use UDP data transfers in the remainder of

our results, and our aim is to approach the result obtained on the grid topologies,

which, with UDP data, was effectively negligible packet loss and low latency. We

shall see in this section that achieving high reliability and performance on random

topologies is more difficult than on the grid topology, and so we will investigate

the performance effects of varying our system parameters in the following sections.

Once we have identified a set of our system parameters that achieve high reliability

and performance with ideal receivers, we will take away our ideal receiver assump-

tions and will limit both the size of the data queue, M , and the multiuser detector

capability, K. With this completed, we will return to our comparison with 802.11.

6.2.1 No Ack

We begin again with No Ack. Figure 6.8 shows a comparison between No Ack on

the grid topology and No Ack on random topologies with ideal receivers. In this

figure, we can see that the performance on our random topologies was similar to

that of the grid topology, with the exception of end to end delay, which increased

rapidly compared to the grid case.

It is straightforward to understand why the average end to end delay is higher on

the random topologies. Compared to the grid topology, the random topologies have

areas of relatively high and low node density. In the areas of high node density, it

is less probable that a given node will begin transmitting first after determining that
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Figure 6.8: No Ack performance on grid and random topologies. We see that on
the random topologies, packet loss is slightly less, but delay is higher.
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it is safe to transmit.2 Thus, packets waiting to be transmitted from a given sending

node will wait relatively longer in the outbound data queue. As a result, the average

time taken to reach a given destination is longer. Note that even with this increased

delay, system throughput is comparable to the grid topology case, and packet loss

is slightly lower under higher loads.

Despite this positive result, our RP-CDMA device still exhibits unacceptably

high packet loss without an acknowledgement mechanism, and so we turn our at-

tention to the Eventual Ack policy.

6.2.2 Eventual Ack

On random topologies, Eventual Ack performance was seriously degraded com-

pared to the grid topology case, as can be seen in Figure 6.9. In this figure, we

can see that Eventual Ack on random topologies initially performed similarly to the

grid result, but as offered load per node exceeded approximately 0.15 Mbps, system

performance degraded rapidly. At this highest offered load per node, packet loss on

the random topologies was greater than 80% and end to end delay was on the order

of 30 seconds.

When we compared Eventual Ack to No Ack on the random topologies the re-

sults were similar and are shown in Figure 6.10. In this figure, we see that Eventual

Ack initially performed better than No Ack, but as the offered load per node in-

creased, the performance began to degrade. Again, this indicates the system sensi-

tivity to node density. In particular, when several nodes were all within transmission

range of one another each node waited longer before gaining access to the channel.

As each node offered more load to the network, it became more difficult for any

node to transmit their queued acknowledgements before the Acktime retransmission

timers fired in the respective sending nodes. In this case, a sending node retransmit-

ted prematurely, which caused further load on the network, resulting in more delays

and premature retransmissions. The result was that system performance degraded

rapidly beyond a particular offered load per node.

We have many parameters which we can vary in our MAC, and in the following

2The probability of a node transmitting first is shown in Appendix Equation A.14
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Figure 6.9: Eventual Ack performance on grid and random topologies. We see here
that compared to the grid topology, Eventual Ack on random topologies performs
poorly.
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Figure 6.10: Eventual Ack policy compared to No Ack on random topologies. We
see that Eventual Ack does not perform as well as No Ack under higher loads, as
packets are retransmitted prematurely.
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sections we vary each of them to determine their effects on system performance,

in an attempt to improve performance on our random topologies. We will begin

in Section 6.2.3 by investigating the eventual ack retransmission timeout value,

Acktime. We will then adjust the inter packet spacing for simultaneous transmission,

I , discussed in Section 4.2. After that, we will investigate in Sections 6.2.5 and

6.2.6 the MAC initial backoff period, B, and data queue size M , from Section 4.4.

Finally, we will put all of this together in Section 6.2.7, where we will vary the

capability of the multiuser detector, K, to determine what kind of capability we

might need to achieve good results.

6.2.3 Effect of Varying Acktime

We tested various values for the worst case timer mechanism in the range 0.5s ≤

Acktime ≤ 3.0s. These results are shown in Figure 6.11, and show that as the Ack-

time increased, system performance improved and eventually surpassed that of No

Ack. This shows that as we remove the premature or unnecessary retransmissions

from the channel, Eventual Ack was able to correctly identify only those packets

that were actually lost, and retransmit only those.

What is most interesting about these results is that as we increased the Ack-

time, all of our performance metrics were steadily improved. As Acktime increased,

packet losses decreased, delay was reduced, and system throughput increased. Fur-

thermore, the confidence intervals in our results became more narrow, indicating

that not only was the system performing better, but was also more stable. With these

observations in mind, we suggest that it may improve system performance even fur-

ther if we disabled the retry timer altogether, and effectively set Acktime = ∞. If

we recall, the Acktime retry timer mechanism was only intended as a guard against

the edge case scenario in which all packets to a given neighbour node were lost.

Rather than performing this function, it seems that the timer retry mechanism is

actually more likely to cause unnecessary retransmissions, which in turn causes

packet loss rather than alleviates it. The consequence of disabling this retry timer is

that we will no longer be able to recover from the case when all packets to a given

neighbour are lost, which means that it will have to be dealt with by upper layers
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Figure 6.11: Evantual Ack with varying Acktime. We see here that as we increase
the Acktime, the performance of the Eventual Ack policy begins to surpass that of
the No Ack policy.
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in the network stack. Given that the intended outcome of not protecting against

this case in the MAC layer is that overall packet loss is reduced, we consider this

consequence to be acceptable.

We see in Figure 6.12 the result of setting Acktime = ∞. In this figure, we

see that for most of the tested range, the longer Acktime value did not significantly

alter the results, but as the offered load per node approached 0.5 Mbps, we see that

disabling the timer retry mechanism yielded superior packet loss and end to end

delay results. Additionally, the confidence intervals for our results were smaller,

indicating improved system stability.

From these results, we conclude that having the timer retry mechanism is un-

necessary and even counterproductive. It is clearly not required in order to achieve

high performance in our system, and the Eventual Ack policy appears to be able

to accurately identify lost packets through the ordering of sent and acknowledged

packets alone.

6.2.4 Effect of Varying Simultaneous Packet Spacing, I

We now turn our attention to the simultaneous packet spacing, I . Recall from Sec-

tion 4.2 that I is the maximum number of header intervals between simultaneous

packets transmitted from a single sender. Higher values of I will mean that simul-

taneous packets will be more spread out in time, and smaller values for I mean

simultaneous packets will be more compressed. We have thus far presented all of

our results with I = 10, which matches our value for the initial backoff period

B = 10. This number was chosen arbitrarily, and we now investigate whether

I = 10 is the optimal value, or if some other value yields improved performance.

Our primary concern here is that if we reduce the value of I too much, then we

may lose more packets to header collisions in the event that more than one node

begins transmitting at about the same time within range of a common neighbour.

Said differently, while we are less concerned about the hidden node problem in RP-

CDMA , it is still possible for packet headers to collide, and in the hidden node

situation packing simultaneous packet headers together more tightly may result in

more header collisions. Alternately, if we choose a value of I that is too large,
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Figure 6.12: Eventual Ack with Acktime = ∞. We see here that disabling the
timer retry mechanism in Eventual Ack yields superior metrics for packet loss, end
to end delay and system throughput under high loads.
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then simultaneous packets may be spaced somewhat farther apart, in which case the

average number of simultaneous packets will fall and we will make less efficient

use of the available time in which a given node may transmit.

We tested various values for I in the range 2 ≤ I ≤ 10, and show our results

in Figure 6.13. We see in this figure that for progressively smaller values of I that

performance improved. In particular, end to end delay was smaller for smaller I ,

while the effects on packet loss or throughput were less obvious. In order to see

if there was any noticeable effect on packet loss for varying I , we expanded our

offered load per node range out from 0.5 Mbps to 1 Mbps, which is equal to the

channel speed.

We see in Figure 6.14 our results after expanding the range of our experiments.

It is evident from these results that we can achieve better performance for smaller

values of I , and so we choose I = 2 as our preferred value. Note that for I = 2, our

algorithm for randomly selecting a number of backoff slots is constrained to always

select 1, since we choose an integer slot in the range [1, I), and so always choose 1

for I = 2. It is worth mentioning that we considered choosing I = 0, and thus not

staggering simultaneous packet headers at all, but chose not to in order to provide

some spacing between packet headers in which to allow the theoretical transceiver

time to hand off one packet to the multiuser detector and prepare to sync to the next

one, similar to the role of the SIFS time in 802.11 [48].

Of final note with these results, we can see in Figure 6.14c that the system

maintained almost linear throughput to offered load per node with the inter-packet

spacing set to I = 2. This is notable because for an offered load per node of 1

Mbps, which is the top of our tested range, each node in the network was able to

access a capacity almost equal to the channel speed, which is also 1 Mbps. This

demonstrates the potential of simultaneous transmission, as it allows transmitting

nodes to fit large amounts of data into whatever slice of the shared channel they are

able to access.
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Figure 6.13: Eventual Ack with varying simultaneous packet spacing, I . We see
here that shorter values for I provide improving system performance. For I = 2,
simultaneous packets are uniformly spaced with one packet header between them.
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Figure 6.14: Eventual Ack with I = 2 and I = 7. We see here that for very high
offered loads, that we achieve better performance with I = 2, rather than larger
values.
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Figure 6.15: Eventual Ack with varying initial backoff, B.

6.2.5 Effect of Varying Initial Backoff Period, B

Having selected a preferred inter-packet spacing, I , we turn our attention to the

initial backoff period, B. With a shorter initial backoff interval range we expect

that the probability of more than one node starting to transmit at the same time will

be higher.3 We expect that this higher probability of multiple nodes transmitting at

the same time will result in more lost packets due to both packet header collisions

and packets arriving while the receiving node is in the transmit state.

3This expectation is derived in the Appendix Section A.2.3.
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Figure 6.16: Number of retransmissions per sent packet for various values ofB. We
see here that for values ofB > 10, the number of retransmissions is only marginally
improved.

Our results for various values ofB are shown in Figure 6.15. From these results,

we can see that a value for B = 2 was clearly worse in every metric than our other

tested values. For all other values we tested, our results for packet loss and delay

were within error of each other, indicating that our system is less sensitive to the

range of possible initial backoff periods. This is understandable if we consider

that the job of the acknowledgement policy is to retransmit packets after they are

detected to be lost. Thus, even if smaller values of B yielded increased numbers of

lost packets, as long as the acknowledgement and retransmission mechanism was

effective then those packets would eventually reach their intended receiver node and

be counted.

It is instructive, therefore, to examine the number of retransmissions for each of

our possible values for B. These results are shown in Figure 6.16, which shows the

number of retransmissions per sent packet as a function of the offered load per node.

We measured the number of retransmissions at the MAC level, and the number of

sent packets at the application level, and so this metric tells us the average number

of times each packet sent into the network was retransmitted. We see from these
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results that for values ofB > 10, the improvement in the number of retransmissions

was marginal, while the overall system performance was approximately the same.

If we substantially increased the initial backoff period B into the range of 60 or 80

header intervals we did note a decrease in the average number of packets lost under

high loads and the average number of retransmissions per packet, but the effect on

system throughput and end to end delay was less clear.4

We conclude from this discussion that our system can achieve reasonable per-

formance with initial backoff periods in the range B ≥ 10. For more dense node

configurations than tested here we expect that larger initial backoff periods would

benefit system performance, but that for our purposes setting B = 10 is sufficient

to achieve high performance.

6.2.6 Effect of Limited Device Data Queue Size, M

Up to this point, we have considered systems with infinite data queues but recognize

that this is an unrealistic assumption. We therefore wish to identify how limiting

the size of the MAC data queue affects performance. We expect that as the MAC

queue decreases in size that more packets will be dropped both as they arrive from

the sending node application layer and from neighbouring nodes.

Our results are shown in Figure 6.17, which shows that as we increased the

device queue length system performance increased towards the infinite queue length

result, which was as expected. As we increased the length of the data queue the

number of lost packets decreased and system throughput correspondingly increased,

at the cost of higher end to end delay. This result makes sense when we consider that

a shorter data queue means that fewer packets would be accepted into the system for

transmission, but each accepted packet would have less time to wait as the overall

number of packets accepted into the system (and hence the load) was smaller.

At this point in our performance study we have identified several parameters we

can vary in order to increase the performance of our system, and now begin turning

our attention towards what would achievable in a realistic device. To this end, we
4In the Appendix, Figure A.7 shows that this result is attributable to the probability of more than

one node starting transmission at the same time becoming insensitive to the initial backoff period
for values in the range B > 30.
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Figure 6.17: Eventual Ack with limited MAC data queue size, M .
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wish to select a value for the maximum queue length, M , that we can adopt going

forward in our experiments and which is not objectionable from a memory resource

point of view. If we consider the default Queue object in ns-3, we see that it has a

default maximum length of 100 [2], which for our 1500 B sized packets, works out

to 150 kB of queue memory, plus some extra for packet headers, etc.. This seems

reasonable, and so we adopt M = 100 for our subsequent experiments.

6.2.7 Effect of Limited Multiuser Detectors

Finally, we turn our attention to limiting values for the multiuser detector, K. We

began investigating the limitations imposed by realistic systems in the previous sec-

tion, and found that limiting the amount of buffering available in the sending nodes

has the expected effect on system performance, and that larger queues result in bet-

ter packet delivery rates at the cost of higher latency. In this section, we investigate

limitations on the multiuser detector capability, K, and try to determine what kind

of detector we would need in order to approach the ideal case where K =∞.

Figure 6.18 shows how the multiuser detector capability, K, impacted the sys-

tem performance. In this figure, we show our ideal results against results with

limited multiuser detector capability. Typical values for K found in the literature

are in the range 5 ≤ K ≤ 20 [43], though values of 100 ≤ K ≤ 500 are sometimes

discussed [17, 36]. Our results show that as we increased the detector capability

system performance steadily approached the ideal, K = ∞, result. Specifically,

for each value of K tested, system performance matched the ideal result for some

range of offered loads per node, and this range increased in size as we increased the

detector capability. These results are as expected, though when we compare them

to the results shown in Figure 6.4, where we varied K on the grid topology, we can

see the net effects of the random topology and particularly the limited data queue

size.

6.2.8 Comparision to 802.11 CSMA

Finally, we can compare our RP-CDMA device performance with that of 802.11 on

our random topologies. Again, we limit ourselves to K = 11 in order to make a fair
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Figure 6.18: Eventual Ack with limited multiuser detector and data queue size
M = 100.
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bandwidth comparison, and also limit our device to a data queue size of M = 100,

with parameters B = 10, I = 2. These results are shown in Figure 6.19. We see in

these results that the RP-CDMA device again performed better than 802.11 across

the tested range.

6.3 Summary

In this chapter we started with an initial assessment of RP-CDMA on a simple grid

topology, and found that RP-CDMA system performance exceeded that of 802.11

even without any acknowledgement policy. We experimented with two acknowl-

edgement policies, one which guaranteed packet acknowledgement within a fixed

time frame and one that that did not. We found that the fixed time acknowledge-

ment policy did not perform well, primarily because of the need to cut off multiple

packet receptions in order to meet acknowledgement time guarantees. In contrast,

the Eventual Ack policy, which did not guarantee when acknowledgements would

be sent, performed very well on our grid topology and effectively reduced packet

losses to negligible values even under high loads while maintaining low end to end

delay.

On random topologies, we investigated the effect of varying the Acktime for

our Eventual Ack acknowledgement mechanism and found that timed retransmis-

sions were unnecessary, and could actually be counterproductive. We adjusted the

amount of spacing between simultaneously transmitted packets, I , and found that it

was better to try to fit more packets into less time than to worry about packet header

collisions between different transmitting nodes. When we varied the initial backoff

period before transmission was initiated, B, we found that overall system perfor-

mance was not highly sensitive to values for B > 10 on our 16 node topologies.

After investigating these system parameters, we found that the RP-CDMA system

could maintain an almost linear throughput response to offered load per node up to

the channel speed of the network.

After exploring the limits of system performance with ideal receivers, we ap-

plied limitations to both the data queue size in the MAC, M , and the capability
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Figure 6.19: Eventual Ack compared to 802.11 on random topologies. We see here
that the RP-CDMA device performs better than the 802.11 device across the tested
range.
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of the multiuser detector, K. We found that limiting the resources available to the

system reduced its performance under high loads, but that as we allocated more re-

sources to the system in terms of queue space or multiuser detector capability that

system performance approached the ideal result. Finally, we showed that even with

limited capability our RP-CDMA device offered superior performance to 802.11

under identical conditions.

From our results, we conclude that RP-CDMA is a promising wireless mul-

tiple access protocol for multihop ad hoc networks. By sending packet payloads

in private channels and employing a multiuser detector to enable the spreading of

simultaneous packets over varying transmission power levels, RP-CDMA can pro-

vide wireless nodes with reliable links to their neighbours. We have investigated

the effects of several device parameters on system performance on both grid and

random topologies, and found that it is possible to set parameter values which si-

multaneously enabled both low packet loss and low latency. We have seen that with

reasonable resource limits on the device data queue and multiuser detector capabil-

ity the RP-CDMA device can continue to provide relatively high system throughput

while maintaining low latency, and in particular can deliver superior performance

to 802.11 in the same bandwidth.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation we have investigated the application of RP-CDMA to wireless

multihop ad hoc networks with the aim of improving wireless link reliability and

network performance. We have proposed extending the standard RP-CDMA proto-

col with simultaneous transmission and payload channel acknowledgements, with

the goal of improving network throughput and reliability while maintaining a rela-

tively light load on the common packet header channel. We have described a simple

MAC that can be built on top of the RP-CDMA multiple access method that main-

tains low latency and high throughput even under high load, and presented a simple

acknowledgement policy that reliably delivers packets while maintaining these de-

sirable qualities.

We have performed simulations of our RP-CDMA network device using ns-3 on

a 16 node network in both grid and random topologies. Our results showed that the

RP-CDMA net device is capable of maintaining high packet delivery and through-

put in addition to low latency even under heavy load - up to the point where each

node in the network offered a load equal to the channel speed. We have compared

our results to the popular 802.11 CSMA/CA multiple access method, and found

our RP-CDMA device offers superior performance and reliability across our tested

range.

In our introduction we suggested that the steadily increasing performance and

reliability of wired networks is rooted in the nature of the wired link, and asked
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how a wireless link might have the same qualities. We identified RP-CDMA as

a promising wireless link option because of the novel way in which it transmits

packets in randomly assigned private channels without any coordination required

between sender and receiver. By eliminating the need to coordinate between nodes

for medium access, we were able to propose a simple MAC protocol and acknowl-

edgement policy that enabled high system throughput and low delay while reliably

delivering packets over multiple network hops. Our simulation results suggest that

a reliable wireless link can enable reliable, high performance multihop ad hoc net-

works.

7.2 Future Work

In this dissertation we have universally presented results employing an ideal re-

ceiver which neglected interference. While CDMA is resistant to interference, it

would be informative to consider its effects in our simulations. As future work we

would like to verify our device performance with interference effects included. At

the same time as we consider interference, it would also be useful to apply error cor-

rection and information coding mechanisms in order to more closely approximate

a realistic multiuser detector.

If we step up from the network device level, we believe that it would be worth-

while to investigate end to end reliability mechanisms between the sending and

receiving nodes at the network transport level. We briefly investigated TCP per-

formance in Section 6.1.4, and found that while RP-CDMA improved performance

compared to 802.11, it did not approach the performance obtained with UDP. We

believe that TCP is worthy of further investigation, particularly an investigation into

the effect of our Eventual Ack policy on performance, and investigating modifica-

tions to TCP which may improve performance such as TCP Vegas [7]. While mod-

ifications to TCP have already been shown to to marginally improve performance

over wireless links [14], we do not believe we should limit ourselves to TCP-only

solutions and believe it would be worthwhile to investigate alternate end to end

reliability mechanisms that specifically leverage the properties of the RP-CDMA
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link.

In addition to the ad hoc network context, it would be informative to investi-

gate the performance of RP-CDMA in an infrastructure network setting with a base

station. In situations where network traffic is primarily in one direction, a highly

capable base station - perhaps with a radio for both the downlink and uplink - may

offer high performance. In particular, it would be worthwhile to investigate the

performance of our RP-CDMA device when applied to the conference problem in

which many clients attempt to access a base station simultaneously. Some work has

already been done that is applicable to this context, such as in [16, 17], and it would

be worthwhile to undertake a performance study with simulated network devices.

In this work, we examined only simple acknowledgement policies which ac-

knowledged every packet. We justified this by noting that payload channel acknowl-

edgements and simultaneous transmission made the impact of acknowledgements

on the system acceptable for our purposes. With this said, more sophisticated ac-

knowledgement policies, such as collective or cumulative acknowledgements, are

worth investigating, particularly in the context of low capability multiuser detectors.

Finally, in the course of designing our MAC protocol and doing our perfor-

mance study, we received many suggestions for possible modifications or improve-

ments which might improve performance. These suggestions included modifica-

tions to the Phy header designed to reduce the size or number of headers in the

common channel, modifications to the MAC transmission algorithm which could

selectively ignore some incoming transmissions if they were deemed not impor-

tant, and modifications to the sending of acknowledgement packets which would

see them squeezed out during packet reception without having to drop packets. We

resisted the urge to experiment with these modifications at the time in the name of

maintaining simplicity, but we acknowledge that it would be worthwhile to investi-

gate these suggestions in the future.
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Appendix A

Theoretical Model

In this appendix we perform analysis on our system to better understand how it be-

haves. We begin with a discussion of what our MAC looks like from the queueing

model perspective in Section A.1, starting with a general description in Sections

A.1.1 and A.1.2, followed by a simplified model that we can validate in the sim-

ulator in Section A.1.3. Following our simplified analysis, we estimate the effect

on system performance of a scaled up system consisting of 16 nodes in a grid con-

figuration in Section A.2. We begin with a discussion of the effective load on the

network given multihop in Section A.2.1, followed by a discussion of the expected

transmission time for some number of packets given simultaneous transmission in

Section A.2.2. Finally, we finish in Section A.2.3 with a discussion of the probabil-

ity of any node beginning to transmit after the channel becomes unoccupied, and in

particular the probability that more than one node begins transmitting at the same

time.

A.1 Queueing Analysis

In general, an accurate queueing model for our MAC is more complex than we

can analyse in closed form. We can, however, describe the system in general and

then use simplifying assumptions to reduce our general model to a simplified one

which submits to closed form analysis. In this section, we will first describe how

our system looks from the queueing model point of view, and then proceed with a

simplified model which we can verify in the simulator.
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A.1.1 General Description

As we saw in Section 4.4, our MAC utilizes a type of carrier sense mechanism

coupled with a uniform random backoff (Algorithm 4.3) in order to determine when

to send a packet down to the Phy for transmission. For each packet, the MAC waits

until the Phy determines that it is safe to begin transmitting, then waits a randomly

chosen backoff period, and if the Phy still indicates it is safe to transmit then the

packet is sent to the Phy, where it is transmitted into the channel.

We can represent this as a queueing model, which we show in Figure A.1. In

this figure, packets arrive at the MAC from higher layers with rate λ. Upon arrival

at the MAC, each packet enters a first come first served queue, shown on the left

of Figure A.1. Once a packet reaches the front of the queue, it enters service at the

first of three servers. The first server, G, has a General distribution. This server

is responsible for determining when it is safe to transmit, which in practice means

waiting until there are no packets being received at the device Phy. Thus, the service

time in the server G ranges from zero, corresponding to the case where no packets

are being received at the Phy, up to the time required in order for one or more

neighbouring nodes to finish transmitting some number of packets, which we will

call Trx . In the case of infinitely capable multiuser detectors, the time required for

a neighbouring node to finish transmitting is the time required for that node to clear

its own data queue, which is determined by the queue length and the channel speed.

After completing service in the server G (so, once the Phy determines it is safe to

transmit), the packet moves into another server, U , whose service time follows a

Uniform Discrete distribution. This is the random backoff period. This server has

a service time distributed uniformly in the discrete range [1, B)Th,1 where Th =

Lh/S, which is just the number of bits in a packet header, Lh, divided by the channel

speed, S. When service is complete in the server U , the packet proceeds with

probability ps to a third server, D, with Deterministic service time. This is the

Phy, where the time required to service the packet is simply the time required to

1We ignore for the moment the effects of simultaneous transmission, which would have the
discrete range be either [1, B)Th or [1, I)Th depending on whether or not the node was transmitting
more than one packet.
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U DG
λ ps

MAC Phy

Figure A.1: A general queue model of our MAC. Packets enter the system at the
left, and exit the system into the channel on the right.

transmit the packet into the channel. So for the server D, the service time is just

Thp = Lhp/S. The probability ps is the probability that the Phy will indicate that it

is safe to transmit at the end of service at server U , so ps is the probability that the

Phy does not begin receiving a packet from a neighbouring node in that time period.

Thus, the probability ps is a function of the number of neighbours for a given node,

the fraction of those neighbours who have a packet to transmit, and the probability

that any one of those neighbours with a packet begins transmitting before service at

U is complete. In the event that the packet completes service at server U but does

not proceed to server D, the packet will return to the first server in the chain, G.

Once a packet has finished service at server D then the next packet from the data

queue enters service at server G.

A.1.2 Simultaneous Transmission

If we add simultaneous transmission into our model, then we need to change the

service time functions for each of our servers to accommodate the case when a node

transmits more than one packet simultaneously. When transmitting simultaneously,

the service time at G is zero, at U is uniformly in the range [1, I)Th, and at D

becomes just the time required to transmit the packet header, Th. Additionally, we

must add K deterministic servers to the end of our model in order to represent the

transmission time of packet payloads up to the capability of the multiuser detector.

We thus arrive at the following system:
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μU μDμG
λ ps

μDp

μDp

1 ... K

MAC Phy

Figure A.2: A general queue model of our MAC, incorporating simultaneous trans-
mission. Packets enter the system at the left, and exit the system into the channel
on the right. Note the K deterministic queues at the end of the system, which are
responsible for transmitting up to K packet payloads.

µG =


0 : When IDLE
0 : When TX PAYLOAD

Trx : Otherwise
(A.1)

µU =

{
[1, I)Th : When TX PAYLOAD

[1, B)Th : Otherwise (A.2)

µD = Th (A.3)

µDp = Tp (A.4)

This system is shown in Figure A.2. The system can thus service up to K

packets concurrently in the payload servers indicated by Dp[1...K], and as a packet

moves from the header transmission server, D, to one of the payload servers, the

next packet from the queue enters service at server G.

A.1.3 Simplified Model

The system represented in Figure A.2 is difficult to represent in closed form, par-

ticularly because the service time for any one packet depends partially on the prob-

ability that some other node is transmitting (µG) and on ps, which represents that

probability that the packet proceeds from server U to server D instead of returning

the server G. We can, however, create a simplified model in which these compli-

cations are removed. If we create a system with a single sending node and single

receiving node, we can create a system in which the service time µG = 0 for all

packets in the sending node, ps = 1, and, due to simultaneous transmission, the
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μU
λ

Figure A.3: A simplified queueing model for the single sending node configuration.

service times in the payload servers Dp are irrelevant. What remains is the service

times µU and µD. Because µD is fixed, we can simply adjust the uniform range in U

upward by one packet header time Th. Finally, if we set I = B, then what remains

is the simplified system shown in Figure A.3 and given by:

µU = [2, B + 1)Th (A.5)

With Poisson arrival rate, λ, this system then becomes a M/G/1 queueing sys-

tem with G being a uniform discrete random distribution, which we can analyse in

closed form. We know from Kleinrock [27] that the average number of customers

in the M/G/1 system is given by

q̄ = ρ+ ρ2 (1 + C2)

2(1− ρ)
(A.6)

Where ρ = λx̄ as usual, with λ being the Poisson arrival rate and x̄ being the

expected service time. C2 is the squared coefficient of variation for service time,

C2 = σ2/(x̄)2, which is completely specified by the first and seconds moments

of the service time distribution. For the discrete uniform distribution in the range

[2, B + 1), we can calculate the these values directly:

x̄ =
B∑
i=2

iThpi (A.7)

σ2 =
B∑
i=2

(iTh − x̄)2 pi (A.8)

Where pi = 1/((B + 1) − 2) ∀ i, which is just the uniform probability of

choosing any of the values in the range [2, B + 1).

If we choose B = 10, λ = 1/0.0012 Hz, Th = Lh/S = 144 b/1 × 106 bps

= 0.000144 s then we can use formulas A.6 to A.8 to calculate specific values:
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x̄ = 0.000864s

σ2 = 1.3824× 10−7

ρ = 0.72

C2 = 0.1851

q̄ = 1.81714

Where q̄ is the expected number of packets in the system, including packets in

the queue and in service. The expected number of packets in only the queue is given

by [27]:

q̄q = q̄ − ρ = 1.0971 (A.9)

We can simulate this simplified system and compare the simulated results with

our predictions above. In our simulated implementation, we measure the number

of packets waiting in the MAC queue, which does not include any packets being

transmitted by the Phy. Specifically, a packet leaves the MAC queue and is passed

to the Phy when it passes from the serverU to the serverD, which we have indicated

in Figures A.1 and A.2 with a dashed line. Thus, when we measure the number of

packets in the MAC queue during an experiment, we expect that some of the time

the packet currently ’in service’ is in the MAC queue, and some of the time it is in

the Phy. Thus, we expect that some of the time the number of packets measured in

the MAC queue will represent all of the packets in the system (q̄) and some of the

time it will represent only the number of packets in the queue (q̄q). Since a packet

spends Th time in the Phy (server D), then we expect that the probability of finding

a packet in service at the Phy to be Th/x̄, and so we can combine equations A.6 and

A.9 to get the expected number of packets measured in the MAC queue during an

experiment:

q =
Th
x̄
q̄q +

(
1− Th

x̄

)
q̄ (A.10)

Which, for the same parameters we list above, gives us an expected MAC queue

length in our simulation of q = 1.6971.
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Figure A.4: The measured MAC queue length for the single sending node example.

We performed 10 independent trials of this single sender experiment. In each

trial we measured the MAC queue length of the sending node every 5 seconds over

10000 seconds, and then took the average of the 10 trials. The result is shown

in Figure A.4, where we have plotted the average of each 20 measurements (so

the average queue length over 100 seconds) for the sending node along with the

expected value. In this figure we see that the average queue length of the sending

node fluctuates around the expected value, and when we calculate the average and

95% confidence interval for our measured values, we find q = 1.7023 ± 0.02727,

which is within error of our expected value of q = 1.6971.

We performed the same experiment with a different packet arrival rate, λ =

1/0.024, which yields expectations:

x̄ = 0.000864s

σ2 = 1.3824× 10−7
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Figure A.5: The measured MAC queue length for the single sending node example
with light load.

ρ = 0.036

C2 = 0.1851

q̄ = 0.03679

q = 0.03079

Our results from this experiment are shown in Figure A.5. We can see again in

this result that the measured queue length fluctuates around the expected value, and

when we take the average of our measurements and the 95% confidence intervals,

we get q = 0.03065± 0.002406, which is again within error of our expected value

of q = 0.03079.

From these results, we conclude that our simplified queueing model accurately

represents our simulation in this example.
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Figure A.6: Grid Topology Queueing System. Here we represent the each node’s
transmission queue (Figure A.2) as a single server with service time µtx, along with
the node number.

A.2 Scaling Up

Having verified our simulation on a simplified example, we can now discuss the

larger system. Our aim in this section is to investigate the expected values for the

general queueing model parameters, λ, Trx and ps from Section A.1.2. Because

we cannot come to a closed form solution of the general MAC queueing model,

we will consider a simplified system of nodes, and discuss how to estimate these

parameters.

If we consider 16 nodes placed in a grid configuration, which can communicate

only with their neighbours on the same X and Y axes, then we get the queueing

system shown in Figure A.6. In this figure, we represent the node MAC queues

using a single server with service time µtx, and each node is numbered from 1 to

16.

If each node experiences Poisson packet arrivals with rate λ, and each packet

is addressed to a uniformly randomly chosen node in the network, then we can es-
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timate the expected number of hops per packet, and thus the expected load on the

system as a function of the aggregate input load from each node. We perform this

analysis in Section A.2.1. In Section A.2.2, we analyse our simultaneous transmis-

sion mechanism in order to derive the effective data rate in the presence of con-

currently outgoing packets. With this estimate, and our estimate for effective load,

we can discuss the expected service time, µtx. Finally, we can perform an analysis

of the probability that any node begins transmission after an idle period in order to

obtain an estimate of the probability ps, which we do in Section A.2.3.

A.2.1 Expected Load with Multihop

Given our grid topology with N = 16 nodes, we can calculate the expected number

of hops for any packet directly. For any node, n, the expected number of hops for a

packet which is addressed to a uniformly random other node in the network is given

by:

Hn =
1

N − 1

N∑
i=1

hn→i (A.11)

Where hn→i is the shortest number of hops from node n to node i. For the grid

topology in Figure A.6, we can count hn→i directly:

n Destination Node i
1 0 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6
2 1 0 1 2 2 1 2 3 3 2 3 4 4 3 4 5
3 2 1 0 1 3 2 1 2 4 3 2 3 5 4 3 4
4 3 2 1 0 4 3 2 1 5 4 3 2 6 5 4 3
5 1 2 3 4 0 1 2 3 1 2 3 4 2 3 4 5
6 2 1 2 3 1 0 1 2 2 1 2 3 3 2 3 4
7 3 2 1 2 2 1 0 1 3 2 1 2 4 3 2 3
8 4 3 2 1 3 2 1 0 4 3 2 1 5 4 3 2
9 2 3 4 5 1 2 3 4 0 1 2 3 1 2 3 4

10 3 2 3 4 2 1 2 3 1 0 1 2 2 1 2 3
11 4 3 2 3 3 2 1 2 2 1 0 1 3 2 1 2
12 5 4 3 2 4 3 2 1 3 2 1 0 4 3 2 1
13 3 4 5 6 2 3 4 5 1 2 3 4 0 1 2 3
14 4 3 4 5 3 2 3 4 2 1 2 3 1 0 1 2
15 5 4 3 4 4 3 2 3 3 2 1 2 2 1 0 1
16 6 5 4 3 5 4 3 2 4 3 2 1 3 2 1 0
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We can calculate the expected number of hops for any packet in the system by

taking the average of Hn over all n:

H =
1

N

N∑
n=1

Hn (A.12)

And for our grid topology, we get H ≈ 2.6667. This means that for each

packet sent into the network, we expect that it will have approximately H hops to

its destination, or that each packet sent into the network will have to be transmitted

approximately H times.

In terms of the arrival rate, λ, if each node experiences Poisson packet arrivals

at rate λ, then the system arrival rate is λs = Nλ. If each packet experiences H

hops, then the system arrival rate is expected to be increased to λs = HNλ, not

counting any retransmissions.

A.2.2 Expected Service Time with Simultaneous Transmission

In this section, we estimate the expected service time for a single node transmitting

some number of fixed size packets into the network. This analysis will be approx-

imate because we assume fixed size packets, but we can nonetheless explore the

factors that contribute to the expected service time.

We begin with the transmit time for X simultaneous packets, and refer back

to Figure 4.1, which shows three simultaneous packets being transmitted into the

channel. Let Lh be the length of the packet header, Lp be the length of the packet

payload, and Lhp = Lh + Lp. The start of each packet header is separated from

the end of the previous one by a random uniform value in the range i ∈ [1, I)Lh.

The expected value of this uniform random value is given by E[i] = I
2
Lh. Thus,

the expected number of bits between the start of one packet header and the start

of the next is given by LI = Lh + E[i] =
(
1 + I

2

)
Lh. In terms of time, the

expected time between the start of one packet and the start of the next is therefore

TI = LI/S =
(
1 + I

2

)
Lh

S
, where S is the data rate of the transmitter.

Now, when we transmit X packets simultaneously, assuming for the moment

that X is less than the multiuser detector limit, X < K, then we can calculate

the expected time from the start of the first packet to the end of the last packet,
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assuming that all packets have equal length given by Lhp. In this case, there are

X − 1 intervals of length TI between the start of the first packet and the start of the

last packet, plus the time to transmit the last packet, Thp. Thus, we expect that the

time required to transmit X packets with simultaneous transmission is given by:

TX = (X − 1)
(

1 +
I

2

)
Lh

S
+
Lhp

S
(A.13)

If we drop the assumption that X < K, we can extend this analysis. First, we

consider the quantity Xk =
Lhp

LI
, which is the length of a full packet divided by the

inter-packet spacing. This quantity represents the maximum number of packets that

we expect to see being transmitted simultaneously, since the Xk + 1 packet will

begin transmission after the first packet is completed. Thus, for systems in which

Xk =
Lhp

LI
< K, we expect simultaneous transmission will not reach the limit of

the multiuser detector, and Equation A.13 holds for all X .

In the event that Xk > K and X > K, then our MAC will transmit up to K

packets, then stop adding new packets until all K are completely transmitted, after

which it will proceed through the normal MAC backoff procedure before initiat-

ing another transmission. In this case, the time to transmit X packets, TX , is less

straightforward, since it depends on the probability of a neighbouring node initiat-

ing a transmission in the backoff period, which is given by (1 − ps) in our general

queueing model.

In terms of our queueing model from Section A.1.2, TX corresponds to the

service time µG, since the expected time to transmit X packets, TX , is the same as

the time required to receive them. Given the expected number of packets waiting

to be transmitted from a given sending node, q̄, we can calculate Tq̄, and a packet

which enters service while the node is in the receive state can expect to wait Trx =

Tq̄/2 for the reception to finish. We can combine this with the probability of a node

being in the receive state at any given time, prx, to get the expected service time

E[µG] = prx
Tq̄

2
.

In this section we have approximated the expected transmit time for a number

of packets via simultaneous transmission, TX . We have also identified the maxi-

mum number of simultaneous packets that can be in transmission at the same time,
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Xk, and identified that for multiuser detectors with capability K > Xk, that simul-

taneous transmission will allow for a closed form expected transmission time for

any number of packets, given by Equation A.13, under the assumption of fixed size

packets. Finally, we have related the expected transmission time of some number

of packets to the expected waiting time in neighbouring nodes, µG.

A.2.3 Probability of Transmitting After Idle Period

We now turn our attention to the probability of a node commencing transmission

after an idle period, which is denoted by ps in our general queueing model. Our

approach here will be to calculate the probability of a given node in a group of

fully connected peers which all have a packet to send choosing the lowest random

uniform number in the range [1, B) after the channel becomes idle. The node which

chooses the shortest backoff period will commence transmission first, and the other

peers will wait. In addition to the probability of beginning transmission, ps, we

will also be able to calculate the probability of more than one node choosing the

same shortest random backoff interval and transmitting at the same time, which is

undesirable in the ad hoc context as it may result in packet loss.

We begin by describing our simplified example. Suppose we have a node, Node

1, with N neighbours. Suppose Node 1 is transmitting and the N neighbours are all

receiving. Each of the receiving N nodes has a packet to transmit. When Node 1

finishes transmitting, each of the N neighbours will uniformly randomly select an

integer number of header slots to back off before transmitting, b ∈ [1, B). If some

number of nodes, n, all select the same value for b, and that value is the smallest b

chosen among all N nodes, then those n nodes will begin transmitting and the end

of the backoff period. If n = 1, then only one node will begin transmission, and if

n > 1, then more than one node will begin transmission at the same time.

The probability ps is given by the probability that a specific node chooses some

backoff period, P (b) = 1
B−1

, and the probability that all of the other nodes choose

the same backoff period or a larger one, P (N − 1,≥ b) =
(

(B−1)−(b+1)
B−1

)N−1
.

Therefore:
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Figure A.7: The probability of more than one node transmitting in the same slot,
b ∈ [1, B), in a group of N nodes.

ps =
(

1

B − 1

)(
(B − 1)− (b+ 1)

B − 1

)N−1

(A.14)

Given the number of nodes in a group and the probability that a node has a

packet to transmit at a given time, we can use Equation A.14 to calculate the prob-

ability that any one of them will begin transmitting after the channel goes idle.

From this point, it is straightforward to calculate the probability of more than

one node starting transmission after an idle period. The probability of some n nodes

choosing the same value for b is given by P (n, b) = 1
B−1

n, and there are
(
N
n

)
ways

to select the n nodes. The probability that the selected b is the smallest b selected

of all N nodes is given by P (N − n,> b) =
(

(B−1)−b
B−1

)N−n
. We can therefore

calculate the probability that some number of nodes all select the same, smallest, b

by summing these probabilities over all n and b. Therefore:

P (> 1, b) =
B−1∑
b=1

N∑
n=2

(
N

n

)(
1

B − 1

)n
(

(B − 1)− b
B − 1

)N−n

(A.15)

Finally, the probability that only one node begins transmitting after an idle pe-

riod is given by one minus the probability of more than one transmitting P (1, b) =
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(1− P (> 1, b)).

Equation A.15 shows the probability of more than one node beginning to trans-

mit in the given slot b ∈ [1, B). When this happens, we can expect that their first

packets will collide in their headers and be lost. Additionally, any packets which

are intended for any of the transmitting nodes will be lost, as the intended receiver

will be in the transmit state when the packet arrives. The probability of packets

being lost is an important quantity in our system, as we want to minimize the prob-

ability that more than one node starts transmitting in a peer group at the same time.

We can visualize how Equation A.15 varies with the number of nodes and the size

of the backoff window by calculating it for selected values of N and B, which we

show in Figure A.7. In this figure, we see that the probability of more than one

node starting transmission at the same time drops off rapidly as the number of slots

increases, and is generally smaller for smaller peer groups, as we would expect. In

particular, for smaller values of N , increasing the number of backoff slots beyond

B > 30 yields only marginal reductions in the probability of more than one node

starting to transmit at the same time. Note that in our Grid configuration, we have

2 ≤ N ≤ 4, and in any topology with only 16 nodes will never have N > 15.

In this section, we have calculated the probability that a node will begin trans-

mitting after an idle period, ps, and calculated the probability that more than one

node begins transmission in a given peer group. The probability ps is one of the

elements in our queueing model, and given a probability that each node in a group

has a packet to transmit at any time, we can calculate the probability that any one of

them begins transmission after the channel becomes unoccupied. The probability

that more than one node begins transmission at the same time is an important metric

for our simulations, as we are interested in keeping this value as small as possible

to prevent packet losses.

A.3 Summary

In this appendix we have explored a queueing model of our MAC, both on its own

and in a grid configuration system. We began with a specification of a queueing
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system representing our MAC, including the various servers involved as a packet

proceeded from the queue, into the random backoff period, and then finally into

the channel. This model had several parameters, including the arrival rate, λ, the

time a node can expect to wait before an incoming transmission was completed,

Trx, and the probability that a node begins transmitting after the channel becomes

unoccupied, ps. While we did not find a closed form solution for the performance

characteristics of our general queueing system, we were able to obtain a closed form

solution for a simplified model, which we verified in our simulator. After verifying

the simplified model, we discussed how we expect the general system parameters to

behave. To this end, we identified the expected load multiplier for a grid system in

the presence of multihop, and therefore identified how we expect the actual arrival

rate, λs, to be related to the input rate. We then identified the expected transmission

time for a quantity of packets in the presence of simultaneous transmission, and

related it to the expected waiting time, Trx. Finally, we investigated the probabil-

ity that a node begins transmitting after the channel becomes unoccupied, ps, and

identified how to calculate this probability given a number of nodes with packets

to transmit. Finally, we investigated the probability that more than one node begins

transmitting at the same time, which is related to the expected amount of packet

loss in our system.
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