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There has recently been great interest in applying theoretical quantitative genetic models to empirical studies of
evolution in wild populations. However, while classical models assume environmental constancy, most natural
populations exist in variable environments. Here, we applied a novel analytical technique to a long-term study of
birthweight in wild sheep and examined, for the first time, how variation in environmental quality simultaneously
influences the strength of natural selection and the genetic basis of trait variability. In addition to demonstrating that
selection and genetic variance vary dramatically across environments, our results show that environmental
heterogeneity induces a negative correlation between these two parameters. Harsh environmental conditions were
associated with strong selection for increased birthweight but low genetic variance, and vice versa. Consequently, the
potential for microevolution in this population is constrained by either a lack of heritable variation (in poor
environments) or by a reduced strength of selection (in good environments). More generally, environmental
dependence of this nature may act to limit rates of evolution, maintain genetic variance, and favour phenotypic stasis
in many natural systems. Assumptions of environmental constancy are likely to be violated in natural systems, and
failure to acknowledge this may generate highly misleading expectations for phenotypic microevolution.
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Introduction

Evolution is expected to occur when selection acts on a
trait that has a heritable basis of phenotypic variation.
Quantitative genetic models allow an evolutionary trajectory
to be predicted from the strength of selection and the
amount of genetic variance, usually expressed as the herit-
ability, h2 [1]. However, while simple theoretical models
assume a constant environment, environmental heterogene-
ity has long been recognised as an important factor
influencing the evolutionary dynamics of fitness-related traits
in the wild [2]. Specifically, selection can vary considerably
from year to year within a population [3,4], and it is
increasingly recognised that environmental conditions also
influence the heritability on which any response to selection
depends [5,6]. Although these observations generate an
expectation of an environment-driven coupling of the
magnitude of selection and heritability, to our knowledge,
no prior study has combined estimates of trait heritability
with estimates of the strength of selection across a range of
environmental conditions in order to fully assess the evolu-
tionary implications of environmental heterogeneity.

Here we examine the simultaneous effects of environ-
mental variation on selection and heritability, using data
from a long-term study of Soay sheep (Ovis aries) on the
Scottish island of Hirta, St. Kilda [7]. This system is ideal for
our purposes, because of the availability of a large volume of
multigenerational data (including both phenotypic and
pedigree data), which covers a 20-y period (1985–2005),
characterised by extensive variation in environmental quality.
In particular, the population has been subject to repeated
episodes of very high mortality that occur primarily in
response to density and climatic conditions [8,9]. By studying
a single population in which the major axis of environmental

variation is temporal, we can minimize the potential to
confuse environmental effects on genetic variance with
demographic effects that may arise with comparisons
between distinct populations over a spatially heterogeneous
environment. Our approach also contrasts with previous
empirical investigations of the impact of environmental
quality on genetic variances, which have relied on compar-
ison between environments defined as either good or bad
[10]. While such a dichotomous categorisation may be useful
under some circumstances, it may be rather arbitrary where
environmental quality shows a more continuous range.
Here, we employ the analytical technique of ‘‘random

regression’’ to model genetic variance as a function of a
continuously varying environment. This not only allows a
more realistic model of environmental variation, but can also
provide statistical benefits [11]. In particular, random
regression allows more efficient use of data by avoiding
subdivision of records into environment-specific traits with
reduced sample sizes. This is particularly useful for analyses
of natural populations where sampling constraints normally
limit data availability, and hence statistical power, by
comparison with artificial systems [12]. To date, random-
regression models have been used primarily to model trait
ontogenies in commercial livestock populations, with genetic

Academic Editor: Joel Kingsolver, University of North Carolina, United States of
America

Received February 2, 2006; Accepted April 25, 2006; Published June 13, 2006

DOI: 10.1371/journal.pbio.0040216

Copyright: � 2006 Wilson et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

* To whom correspondence should be addressed. E-mail: Alastair.Wilson@ed.ac.uk

PLoS Biology | www.plosbiology.org July 2006 | Volume 4 | Issue 7 | e2161270

PLoS BIOLOGY



effects modelled as covariance functions of age [13,14].
Though novel in an evolutionary context, their application
to testing of genotype-by-environment interaction does have
precedent in the animal-breeding literature [14].

We focused on the trait of lamb birthweight (denoted in
Equation 1 by BWT) and its association with juvenile
mortality in the Soay sheep population. Of the total mortality
of sheep, 24% occurs during the neonatal period (from birth
in April or May until October 1 of the same year), making it a
critical episode for viability selection [15]. Early body-size
traits are under strong positive directional selection (i.e.,
larger individuals having higher fitness), with differential
juvenile mortality resulting in significant selection through
lifetime fitness [4,16,17]. While birthweight has been shown to
be positively associated with neonatal survival [15], previous
analyses have found no evidence for non-linear (i.e., stabilis-
ing or disruptive) selection on this trait [17].

Birthweight is also heritable, as a consequence of strong
maternal genetic effects, even though additive genetic
variance (VA) is relatively low [18] (see Table 1 for a glossary
of quantitative genetic parameters and their abbreviations
used herein). Maternal genetic effects occur when the
genotype of a mother influences the offspring’s phenotype
(independently of the direct effect of the genes it inherits
from her), and may often represent an important source of
heritable phenotypic variation [19]. Although only a limited
number of studies have directly estimated maternal genetic
effects in natural populations ([12,20]), they have previously
been shown to comprise the major heritable component of
phenotypic variance for birthweight in Soay sheep [18].

Despite both positive directional selection and heritable
variation [17,18], annual mean birthweight has not increased
over the study period and actually shows a non-significant
declining trend (linear regression on time; slope¼�0.016 kg/
y, p ¼ 0.15, n ¼ 19). We therefore tested the hypothesis that
environmental heterogeneity limits phenotypic evolution
through effects on heritability or selection, or both simulta-
neously. To do this, we first examined the impact of
environmental variation on the heritable basis of birthweight
by modelling levels of genetic variance across a variable
environment. Secondly, we tested for systematic variation
between years of differing environmental conditions in the
strength of selection acting over the neonatal period.

Results/Discussion

Heritable Variation in a Variable Environment
We estimated heritable variation in Soay sheep birthweight

using an animal model approach [21], which allows the
observed phenotypic variance to be separated into genetic
and environmental components. Female sheep are long-lived
(with a maximum recorded longevity of 16 y on Hirta), so that
individual mothers produce offspring in years of differing
environmental conditions. Consequently, we were able to use
a ‘‘random-regression animal model’’ [14] in which the main
source of heritable variation, the maternal genetic effect, was
explicitly modelled as a function of environmental quality.
To model genetic variation for birthweight, we defined a

measure of environmental quality (E) based on the level of
neonatal mortality in each year (see Materials and Methods).
An environment was defined as being of intrinsically poor
quality if lamb survival was low, and of good quality if survival
was high. We then fitted the maternal genetic effect as a
polynomial function of E in the random-regression animal
model. By changing the order of the polynomial function
used, we compared successively more complex models of the
maternal genetic effect. If a zero-order function (i.e., a
constant) is used, then an individual’s maternal genetic effect
cannot change with E and, consequently, variance in these
effects (i.e., the maternal genetic variance) is also constant
across environments. In contrast, fitting higher-order poly-
nomial functions allows systematic variation in the amount of
maternal genetic variance across environments to be explic-
itly tested for.
We fitted random-regression animal models with the

maternal genetic effect modelled using zero, first, second,
and third-order functions of environmental quality (denoted
as Models I, II, III, and IV, respectively, in Table 2).
Statistically, the best model fitted was with a third-order
function (Model IV) under which the maternal genetic
variance (VM) showed a general increase with E (Table 2;
Figure 1). Under Model IV, the additive, maternal permanent
environment plus residual components of variance (with
standard errors) were estimated as VA ¼ 0.020 (0.009), VC ¼
0.015 (0.008), and VR ¼ 0.116 (0.008), respectively. As a
consequence of increasing VM, the evolutionary potential of
birthweight, as indicated by the total heritability h2T (a
measure that includes contributions from both the additive
and maternal genetic effects [22]), also increased with
environmental quality. This pattern of increased heritability
in good conditions is consistent with the emerging trend
from empirical studies of wild vertebrate populations [10,23].

Table 1. Glossary of Terms and Abbreviations Used in
Quantitative Genetic Models

Abbreviation Meaning

h2 Heritability (defined as the proportion of phenotypic variance

attributable to additive genetic effects)

h2
T Total heritability (incorporating contributions from

both additive and maternal genetic effects)[22]

ai Additive genetic effect on phenotype of individual i

mj Maternal genetic effect of mother j on phenotype of

individual i

cj Maternal permanent environment effect of mother j

on phenotype of individual i

ei Residual error term for phenotype of individual i

VP Total phenotypic variance (calculated as the

sum of estimated variance components)

VM Maternal genetic variance component

VA Additive genetic variance component

VC Maternal permanent environment variance

component

VR Residual (environment) variance component

W Fitness scored as 0 (mortality) or 1 (survival)

over the neonatal period

S Selection differential (measure of the direction

and strength of selection on phenotype)

b Standardised selection gradient (measure of the

direction and strength of selection on phenotype)

R Predicted evolutionary response (determined as the

product of the selection differential and total heritability)

BWT Birthweight

sBWT Standardised birthweight

DOI: 10.1371/journal.pbio.0040216.t001
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Given the observed distribution of E across years (Figure 1), it
is apparent that the decline in VM at the uppermost values of
E is largely driven by data from a single year (1987). Analysis
with 1987 data excluded confirmed a strong trend of
increasing VM with E, as did simpler models where we used
first- or second-order functions of environmental quality
(Models II and III; Figure 1). All models in which VM could
vary with environment were statistically superior to a
conventional animal model with a constant maternal genetic
effect (Model 1 in Table 2).

Maternal genetic covariances between environments were
also estimated under Model IV, and were found to be
uniformly positive (Figure 2). Rescaling the covariances to a
correlation scale showed that maternal genetic correlations
were close to þ1 over most of the surface (Figure 2). The
strength of these correlations indicates that variation in
maternal performance likely involves the same loci in all
environments, while the positive sign shows that qualitative
effects of allelic variants are conserved as E changes. Never-
theless, maternal genotype-by-environment interaction is
shown by the environmental dependence of VM.

Selection in a Variable Environment
Our finding of environmental variation in the heritable

variance for birthweight was complemented by similar
systematic variation in strength of selection. The relationship
between phenotype and fitness (defined as neonatal survival)
was investigated using generalised linear mixed modelling
and standard regression-based methods [24], and confirmed
prior expectations of positive directional selection on birth-
weight. Thus, generalised linear mixed modelling shows
fitness increases with standardised birthweight (denoted in
Equation 3 by sBWT), as well as with environmental quality E
(Table 3). However, of more interest is the relationship
between the selection regime and the quality of the environ-
ment. The significant negative interaction between stand-
ardised birthweight and E indicates that the strength of the
positive relationship between fitness and phenotype is
reduced in better environments. Annual estimates of selec-
tion differential S were consistently positive, but ranged
widely fromþ0.025 toþ0.319 kg across years. Corresponding
estimates of the standardised selection gradient b (with
standard errors) are useful for comparison with other studies,
and ranged from þ0.038 (6 0.019) to a maximum of þ0.529
(6 0.064). This confirms that, in some years, directional

selection was considerably stronger than the median value of
0.16 reported in the literature [25].
Annual selection differentials were also strongly negatively

correlated with environmental quality (Pearson’s correlation
r ¼ �0.919, df ¼ 17, p , 0.001), confirming that positive
directional selection on birthweight is weaker in good
environments (Figure 3). Pooling across years, the overall
selection differential S was estimated at þ0.138 kg. This is

Figure 1. Estimated Maternal Genetic Variance across Environments

Dashed lines indicate approximate 95% confidence limits to the
estimated maternal genetic variance (VM), while triangles on the lower
panel indicate the actual distribution of environmental quality (E) across
years. All three models suggest a general increase in VM as environmental
quality increases.
DOI: 10.1371/journal.pbio.0040216.g001

Table 2. Comparison of Random-Regression Animal Models
Fitted

Model x lnL Number of

Variance Components

p-Value

I 0 908.8 4 —

II 1 911.8 6 0.05

III 2 916.7 9 0.02

IV 3a 926.5 13 ,0.001

Indicated are the order of polynomial function used (x), the associated log likelihood score
(LnL), and the number of variance components estimated. p-Values are for comparison
with model of polynomial order x�1 using likelihood ratio tests.
aDenotes the best model.
DOI: 10.1371/journal.pbio.0040216.t002
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slightly greater than the mean of the annual estimates (þ0.120
kg), suggesting a slight upward bias in the overall selection
estimate through environmentally induced positive cova-
riance between phenotype and fitness [26].

Thus, maternal genetic variance for birthweight increases
with environmental quality, while the strength of selection
decreases. This shared dependence on environmental quality
results in a negative correlation between the strength of
selection on birthweight and the amount of heritable

variation. Accordingly, annual estimates of the total herit-
ability (h2T), obtained under Model IV, were strongly
negatively correlated with annual selection differentials S
(Figure 4; Pearson’s correlation r¼�0.512, df¼ 17, p¼ 0.025).

Conclusions
Evolution of increased birthweight in response to differ-

ential neonatal mortality is therefore limited by either a lack
of heritable variation in poor environments or by a reduced
strength of selection in good environments. Annual pheno-
typic responses (R) to selection through neonatal mortality,
determined using the breeder’s equation [1] as the product of
h2T and S, were small but showed a 10-fold range in
magnitude (from 0.004 to 0.046 kg per generation). The
weighted geometric mean response (see Materials and
Methods) was 0.019 kg per generation (or approximately
0.008 kg per year, based on an estimated generation time of
2.4 y). This is less than the predicted response if environ-
mental heterogeneity is not considered (R ¼ 0.024 kg per
generation, with selection estimated across all years and total
heritability estimated from a conventional animal model).
Predicted responses should be interpreted with some caution
since many assumptions of the breeder’s equation will likely
be violated in this case. For example, these predictions reflect
selection through neonatal mortality only, while birthweight
may co-vary with multiple fitness components [17] and with
other traits under selection. Additionally, the relative
importance of different selective mechanisms may vary with
environmental conditions, such that more sophisticated
approaches to estimating selection will be needed to
effectively predict phenotypic change [27,28]. Nevertheless,
our results clearly demonstrate the potential for environ-
mental heterogeneity to significantly affect estimates of
evolutionary parameters in natural populations [6,26,29].
Our findings thus highlight the differences between

populations in natural environments and those in the
controlled, constant environments for which quantitative
genetic theory has been developed. While suitable long-term

Table 3. Mixed-Model Analysis of Offspring Fitness

Effect Coefficient

(SE)

F p-Value Variance Percentage

Random MOTHER 0.163 10.9

Residual 1.34 89.1

Fixed sBWT 1.45 (0.09) 274 ,0.001

E 0.69 (0.15) 60.0 ,0.001

sBWT 3 E �0.40 (0.16) 6.10 0.013

The model was fitted with a binomial error structure, and maternal identity was included
as a random effect (see Materials and Methods). Coefficients (with standard errors [SE]) are
shown for the fixed effects of standardised birthweight (sBWT), environmental quality (E),
and their interaction (sBWT 3 E). The significance of fixed effects was assessed from
associated F-statistics. Sample size was 2,734.
DOI: 10.1371/journal.pbio.0040216.t003

Figure 3. Selection Differential on Birthweight against Environmental

Quality

Each point represents the values measured in 1 y, and the solid line
shows the least-squares linear regression of selection differential (S) on
environmental quality (E). The strength of selection acting on birth-
weight declines as the environmental quality improves.
DOI: 10.1371/journal.pbio.0040216.g003

Figure 2. Maternal Genetic Covariance and Maternal Genetic Correlation

Surfaces for Birthweight Expressed across Environments

(A) Maternal genetic covariance; (B) maternal genetic correlation. The
maternal genetic correlation rM is close to þ1 over most of the surface,
suggesting that the same maternal loci are involved and have
qualitatively similar effects on offspring birthweight across all environ-
ments.
DOI: 10.1371/journal.pbio.0040216.g002
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data will not always be available, increased efforts should be
made, wherever possible, to fully consider the implications of
environmental heterogeneity for both selection and the
genetic variation on which it acts. In particular, if favourable
environmental conditions are generally associated with low
levels of selection but with high levels of heritability, and vice
versa, then rates of evolutionary change may be much lower
than those expected from values averaged across environ-
ments, providing an explanation for the frequently-observed
stasis [29].

Materials and Methods

Study system. Soay sheep were introduced to the Scottish
archipelago of St. Kilda in the Bronze Age, and to the main island
of Hirta (lat 578499N, long 088349W) in 1932 shortly after the human
evacuation of St. Kilda. Data relating to birth, death, reproduction,
and phenotype have been collected for individually tagged animals
resident in the Village Bay area since 1985 [7]. Lambs are generally
captured within a few days of birth, and we define an individual’s
birthweight as the residual from a linear regression of capture weight
on age [17]. The pedigree contains 6,117 individual records, with
3,355 maternal links and 1,615 paternal links (from 784 distinct dams
and 495 distinct sires, respectively), and has a maximum depth of nine
generations. This structure has been resolved from field observations
of maternity and microsatellite-based paternity assignment using the
maximum-likelihood method implemented in CERVUS [15,30].
Putative paternal identities were accepted if assigned at a pedigree-
wide confidence level �80% with a maximum of one allelic
incompatibility between sire and offspring. Birthweights were
available for 2,902 individuals born between 1985 and 2005 (though
no data were collected in 2001 owing to the UK outbreak of foot and
mouth disease). For animal model analyses, this was reduced to 2,630
individuals with known mothers.

Animal model analysis. Quantitative genetic parameters were
estimated using animal models to partition variance into genetic and
environmental components. Animal models are able to accommodate
unbalanced datasets and complex pedigrees typical of natural
populations [21], and also allow inclusion of fixed effects to account
for known influences on the phenotypic mean. Here we included sex,
litter size (twin versus singleton), and maternal age, which are all
known to influence birthweight in Soay sheep. Year was additionally
included (fitted as a factor) to remove the direct effect of environ-
ment on the phenotypic mean (as opposed to effects on variance
components). Random effects were then included to model a

maternal permanent environment effect (cj), as well as additive (ai)
and maternal genetic (mj) effects on birthweight. This random-effects
structure results in the total phenotypic variance (VP) being split into
four components: additive genetic variance (VA), maternal genetic
variance (VM), maternal permanent environment variance (VC), and
the residual (or temporary environment) variance (VR). Importantly,
rather than using a conventional animal model, we fitted the
maternal genetic effect mj as a polynomial function of environmental
quality E using random regression. Here, environmental quality E is
defined as the proportion of lambs surviving until October 1 in the
year of birth (standardized to the interval �1 � E � 1). Thus, the
birthweight of any animal i having mother j is given as:

BWTi ¼
ðSEXþ YEAR þ TWINþMATERNAL AGEÞi

þai þ f ðmj ; x;EÞ þ cj þ ei
ð1Þ

Where BWT is birthweight, ei is a residual error term (having mean
zero and variance VR), and f(mj,x,E) is the random-regression function
of maternal genetic value on orthoganol (Legendre) polynomials of E
with order x. The model structure was fitted using different orders of
the polynomial function (0 � x � 3) using restricted maximum
likelihood implemented in ASReml (VSN International; http://www.
vsn-intl.com). These alternative formulations of the model were then
compared statistically using likelihood ratio tests. Model convergence
was not achieved for x . 3 (unpublished data). As in a conventional
animal model, an implicit assumption here is that VA and VR are
constant across environments. Univariate animal models in data
subsets corresponding to good and bad environments (based on
upper and lower 50 percentiles of E ) provided support for this
assumption, with no significant differences in estimated additive or
residual variances.

The estimated variance–covariance matrix of random-regression
parameters for the maternal genetic effect (matrix Q) was used to
determine the maternal genetic variance–covariance matrix (M) as:

M ¼ ZQZT ð2Þ

Where Z is the vector of orthogonal polynomials evaluated at
observed values of E for �1 � E � 1 (and ZT is the transpose of Z).
Approximate standard errors for each element ofM were determined
following Fischer et al. [11]. The total heritability was evaluated as h2T
¼ (VA þ VM/2)/VP (assuming zero covariance between additive and
maternal genetic effects [22]). Note that VP was determined as the
sum of estimated variance components and therefore excludes
variance attributable to the fixed effects fitted in the model. Finally,
M was rescaled to a maternal genetic correlation matrix.

Selection analysis. Neonatal survival was used as the fitness
component (W) and was defined as 0 for animals that died before
October 1 in the year of birth and as 1 for those that survived. Note
that since offspring share common mothers, individual birthweights
cannot be considered as independent data points. To account for this
non-independence, we used a linear mixed model (with a binomial
error structure), with maternal identity fitted as a random effect such
that:

W ¼ b0 þ b1ðsBWTÞ þ b2ðEÞ þ b3ðsBWT 3EÞ þMOTHER ð3Þ

where E is environmental quality; sBWT is birthweight standardized
to mean 0 and variance 1, b0 to b3 are constants, and MOTHER is the
maternal identity. As E is determined from the average neonatal
survival in each year, a statistical association between fitness and
environment is inevitable (since by definition more individuals will
have W ¼ 1 when E is higher). However, it is the effect of E on
selection, assessed from b3, the interaction between sBWT and E, that
is of primary interest. Selection differentials (S) and standardized
selection gradients (b) [24] were determined as measures of the
strength of selection on BWT. Annual phenotypic responses (R) to
selection were determined as the product of h2T and S, and the
weighted geometric mean response was calculated. Annual responses
were weighted by surviving cohort size on October 1 (since, all else
being equal, larger cohorts will make greater contributions to future
phenotypic distributions).
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